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Abstract: Mathematical models, as instruments for understanding the workings of nature, are a traditional tool of
physics, but they also play an ever increasing role in biology – in the description of fundamental processes as well
as that of complex systems. In this review, the authors discuss two examples of the application of group
theoretical methods, which constitute the mathematical discipline for a quantitative description of the idea of
symmetry, to genetics. The first one appears, in the form of a pseudo-orthogonal (Lorentz like) symmetry, in
the stochastic modelling of what may be regarded as the simplest possible example of a genetic network and,
hopefully, a building block for more complicated ones: a single self-interacting or externally regulated gene
with only two possible states: ‘on’ and ‘off’. The second is the algebraic approach to the evolution of the
genetic code, according to which the current code results from a dynamical symmetry breaking process,
starting out from an initial state of complete symmetry and ending in the presently observed final state of
low symmetry. In both cases, symmetry plays a decisive role: in the first, it is a characteristic feature of the
dynamics of the gene switch and its decay to equilibrium, whereas in the second, it provides the guidelines
for the evolution of the coding rules.
1 Introduction
Compared with the huge amount of experimental data on
genetics accumulated in the last few decades, which has led
some biologists to refer to our present times as the genomic
era, it is not unfair to say that true information and
knowledge about fundamental biological processes and
structures has not increased proportionally. A striking
example is gene expression: the sequencing of entire
genomes answers the question which protein will be
synthesised from a specific gene, but not when and at what
rate its synthesis will take place. However, it is becoming
increasingly clear how crucial the precise temporal and
spatial variation of gene expression is for pattern formation
[1] and how enormously complex and strongly species
dependent the underlying mechanisms are. Therefore we
can think of gene networks as complex dynamical systems
whose basic rules are still to be unravelled. From a
theoretical point of view, this subject is still in an
embryonic stage, since the main theoretical problem is not
only the intrinsic complexity of the dynamics of living
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matter but even the absence of simple quantitative models
that can serve as building blocks and starting points for
more elaborate, more detailed and more realistic models.

Our aim in the present review is to demonstrate that the
principle of symmetry and its mathematical implementation
through group theoretical methods can play a constructive
role in the development of such simple quantitative models,
and more generally, of models that are relevant for systems
biology, even in situations where no symmetry is visible at
first sight.

The usefulness of symmetry principles in arts and sciences,
including biology, has a long history, with many facets, as can
be seen, for example, from the inspiring and entertaining
collection of articles in [2, 3] and the books [4, 5]. There
can be no doubt that group theoretical methods are able to
make concrete statements about the behaviour of complex
systems; in fact, it can (and has) been argued that group
theory by itself is in some sense a complex system [6].
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As a concrete example from biology, think of shape
symmetries of flowers, which according to Linnaeus’
classification are an essential ingredient for flower taxonomy.
The flowers of Linaria vulgaris, a normal toadflax, present
a low degree of symmetry, with just one mirror plane of
invariance. The observation of a rare toadflax whose flowers
exhibit a much higher degree of symmetry, with multiple
mirror planes of invariance, suggested that one was dealing
with a new and different species. However, Linnaeus
classified it as a variant of the common toadflax and called
it Peloria (a greek word for monster), impressed by the fact
that the almost asymmetric flower was common and the
highly symmetric one was rare. This interpretation has been
shown to be correct two hundred years later, with the
advent of molecular biology, when it was found that in
Linaria vulgaris, the gene cycloidea presents a gradient of
activation in the young flower bud, which causes an
asymmetric development of the flower organs, whereas in
the Peloria mutants, this gene is completely switched off,
thus permitting a symmetric development of the flower.
Thus regular flowers can be thought of as ancestors of
irregular ones, which reveals the evolutionary aspect of the
concept of symmetry breaking in floral symmetry [7–9].

Another example from biology is the symmetry of virus
capsids, which is a consequence of energy minimisation at
the molecular level [10]. This was realised when it was
found that isolated viral particles can spontaneously
assemble into rod-shaped, fully functional and infective
viruses, indicating that stability of the proteic coat is
achieved in a configuration with a certain symmetry.
Concretely, an icosahedral symmetry was predicted as
a consequence of building up the capsid from identical
units [11].

Apart from symmetries of objects, described by point
groups and exhaustively used in crystallography, there is
also a notion of symmetry in processes, sometimes called
dynamical symmetries, which are present in the equations
governing a phenomenon. It is to this kind of symmetry
that we shall direct our attention in what follows,
beginning with the remark that such symmetries play a
central role in the development of modern physics. For
example, the understanding of atomic spectra from the
standpoint of quantum mechanics requires solving the
Schrödinger equation in a central force potential, whose
rotational symmetry forces the energy states to be organised
in multiplets (¼ irreducible representations) of the rotation
group. However, the seminal work of Pauli [12] showed
that, in the case of the hydrogen atom, rotational symmetry
alone is not sufficient to account for all the degeneracies of
the energy spectrum. There is an additional degeneracy
with the total angular momentum number l that can only
be explained by including the so-called Lenz–Runge
vector – a second conserved quantity besides the angular
momentum vector – and thus extending the symmetry
group of the Coulomb potential from the three-
dimensional rotation group SO(3) to the four-dimensional
2
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rotation group SO(4): this is the classical example of
a dynamical symmetry. Since then, group theoretical
techniques have become useful in a wide variety of physical
contexts, including more complex systems than just the
hydrogen atom. For example, in atomic physics they can be
used to derive a composition rule between hydrogen-like
wave functions to furnish an approximate description of
the ground state of multi-electronic atoms [13]. At a
slightly larger scale, in molecular physics, they are employed
in the theoretical calculation of spectra and transition
amplitudes [14, 15]. In the opposite direction (i.e. at a
much smaller scale), symmetry principles have become a
fundamental ingredient in particle physics ever since
Gell-Mann and Ne’eman proposed the first classification
of particles in terms of multiplets (¼ irreducible
representations) of the group SU(3), the special unitary
group in three dimensions, a classification that has become
known as the eightfold way [16] and that has opened the
way to the so-called standard model of particle physics,
which is largely based on group theoretical methods and on
the idea of symmetry.

In this review, we consider the application of the idea of
a dynamical symmetry to the modelling of gene expression
and of genetic code evolution. Our goal is to illustrate with
these two examples that group theoretical methods can be
used, widely and sometimes perhaps unexpectedly, in
biology.

The phenomena of gene transcription and translation
are distinguished by an intricate interaction between many
elements and by fluctuations that are inherent in chemical
reactions [17–64]. Here, the mesoscopic equations of an
isolated bimodal gene are shown to possess a symmetry
described by the pseudo-orthogonal group SO(2, 1)
(similar to the Lorentz group SO(3, 1)), whose
representation labels we continue to call ‘total angular
momentum’ and ‘azimuthal angular momentum’ even
though they are now arbitrary real numbers, in contrast to
the usual orthogonal group SO(3) for which these
quantities are integers (or at best half-integers). This
symmetry has clear biological implications, and there is a
potential use of group theoretical tools in the elaboration of
a composition principle between two or more genes.

On the other hand, there is the question of how the genetic
code has evolved [65–89]. It seems to be generally agreed
that this evolution has occurred through a process of
stepwise incorporation of new amino acids into the
machinery of cellular protein synthesis. In the algebraic
approach to the question of how precisely this has
happened, the existence of synonymous codons is
interpreted as a signal of symmetry – a symmetry that was
complete at the very beginning but then underwent a
dynamical process of symmetry breaking, which finally
came to a halt with the onset of ‘freezing’ [65]. This
approach establishes strong restrictions on the routes that
could have been followed during code evolution.
IET Syst. Biol., 2010, Vol. 4, Iss. 5, pp. 311–329
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The review is organised as follows. In Section 2, we collect
some of the necessary concepts from the theory of Lie groups
and Lie algebras. Section 3 presents a detailed review of a
simple stochastic model for gene expression, which involves
only two levels of expression, namely ‘on’ and (almost) ‘off ’,
of its symmetry and of the biological consequences. Section
4 is devoted to a short and non-technical overview of the
development of the algebraic model to genetic code
evolution. In Section 5, we outline our conclusions.

2 Mathematical theory of
symmetries
In this section, we present some concepts of group theory,
inasfar as they are essential to the understanding of what
follows. Our discussion will be informal and is based on
examples; readers interested in a more formal treatment
should consult standard mathematical references, such as,
for example [90–92].

Abstractly, a group is a set G whose elements g can be
multiplied among themselves, subject to certain constraints
such as the associativity rule (( g1g2)g3 = g1( g2g3)), the
existence of a (necessarily unique) two-sided identity in G
denoted by 1 ( g1 = g = 1g) and the existence of a
(necessarily unique) two-sided inverse g−1 for any g
( gg−1 = 1 = g−1g). In this review, we shall consider only
continuous symmetries that are described by Lie groups.
The prototype of such a group is the n-dimensional
rotation group SO(n). It is composed of (n × n)-matrices
g which are orthogonal, that is, satisfy gTg = 1 (where gT

denotes the transpose of g), and have determinant 1. The
concrete form of such a matrix in terms of explicit
parameters, such as the Euler angles in the case n ¼ 3, is
somewhat cumbersome and will not be needed here.

The rotation group bears a close relation with the set
of skew-symmetric matrices, that is, the set of (n × n)-
matrices X satisfying X T = −X : the exponential of any
skew-symmetric matrix X, defined by the standard series

eX =
∑1

k=0

X k

k!
= 1 + X + X 2

2!
+ · · · (1)

is a rotation matrix. This set has a simpler structure than
the rotation group itself: it is a vector space, since sums
and multiples of skew-symmetric matrices are again skew-
symmetric. Moreover, although the product XY of two
skew-symmetric matrices X and Y is no longer skew-
symmetric, their commutator [X, Y ], defined by

[X , Y ] = XY − YX (2)

is again skew-symmetric. In mathematical terminology, this
is expressed by saying that the set of skew-symmetric
matrices forms a Lie algebra: this Lie algebra is denoted by
so(n).
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Summarising, we have an n-dimensional vector space (the
carrier space) and two sets of (n × n)-matrices acting on it,
which are related by the exponential map. The former, the
Lie group, closes under multiplication whereas the latter,
the Lie algebra, closes under addition, multiplication by
scalars and commutators, and for this reason is easier to
deal with. For example, the Lie algebra so(3) can, as a
three-dimensional vector space, be thought of as spanned
by the three matrices

tx =
0 0 0

0 0 −1

0 1 0

⎛
⎜⎝

⎞
⎟⎠, ty =

0 0 1

0 0 0

−1 0 0

⎛
⎜⎝

⎞
⎟⎠

tz =
0 −1 0

1 0 0

0 0 0

⎛
⎜⎝

⎞
⎟⎠ (3)

which satisfy the commutation relations

[tx, ty] = tz, [ty, tz] = tx, [tz, tx] = ty (4)

In many applications in science, we have to deal with
functions instead of n-component vectors. Working with
function spaces, which are also vector spaces but are usually
infinite-dimensional, is more difficult from the purely
algebraic point of view but becomes possible by making use
of analytic techniques, such as derivatives and integrals. In
particular, the elements of the pertinent Lie algebra are in
this context represented by differential operators, instead of
matrices. For example, the matrices in (3) are (up to a
factor of i – the imaginary unit) represented by the angular
momentum operators

Kx = −i y
∂

∂z
− z

∂

∂y

( )
, Ky = −i z

∂

∂x
− x

∂

∂z

( )

Kz = −i x
∂

∂y
− y

∂

∂x

( )
(5)

which act in a space of differentiable functions of the variables
x, y, z and satisfy the commutation relations

[Kx, Ky] = iKz, [Ky, Kz] = iKx, [Kz, Kx] = iKy (6)

In this article, we shall deal with another three-dimensional
Lie algebra, denoted by so(2, 1), which is similar to the
rotation algebra so(3). It is represented by the differential
operators

Lx = h
∂2

∂h2
+ (2l + 2 − h)

∂

∂h
+ h− 2(1 + l )

2

Ly = −ih
∂

∂h
+ i

h− 2(1 + l )

2

Lz = h
∂2

∂h2
+ (2l + 2 − h)

∂

∂h
− (1 + l )

(7)
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where h is a complex variable and l is a real constant. These
operators satisfy the commutation relations

[Lx, Ly] = −iLz, [Ly, Lz] = iLx, [Lz, Lx] = iLy (8)

Thus the difference between the two algebras is just a
question of sign, but this sign has profound consequences.
The relation between the two algebras is the same as that
between the (Lie algebras of the) rotation group in four
dimensions and the Lorentz group – the symmetry group
of special relativity.

One can rewrite the differential operators in (7) in the
Cartan basis [90]. The Lx and Ly operators are combined as

L+ = Lx + iLy and L− = Lx − iLy (9)

and are denominated ladder operators with L+(L−) as being
the uppering (lowering) operator. Those three operators act
on a basis composed by eigenfunctions of the Lz operator
(the so-called Cartan subalgebra), which respective
eigenvalues denominated weights. The action of the
uppering (lowering) operator on an element of the basis
connects it with another one whose weight is increased
(decreased) by one. The commutation relations become

[Lz, L+] = +L+ [L+, L−] = −2Lz (10)

and are verified by considering the commutation relations
from (8).

We also make use of operators that commute with all
operators in the algebra: these are called Casimir operators.
They play an important role in the theory because in
so-called irreducible representations, operators commuting
with any operator in the algebra are proportional to
identity, in accordance with Schur’s lemma [90]. In other
words, it defines an invariant of the algebra and its
eigenvalue is, consequently, a constant. Here, there is (up
to constant multiples) just one of them: in the case of the
so(3)-algebra it is

C = L2
x + L2

y + L2
z (11)

which is the total angular momentum of a rotating particle in
the three-dimensional space.

In the case of the so(2, 1)-algebra the Casimir operator is

C = L2
z − L2

x − L2
y (12)

3 Symmetry in stochastic gene
expression
One of the motivations for the study of isolated genes is the
need for understanding the functioning of the basic building
4
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blocks that compose gene networks [17, 18]. Such a bottom-
up approach is useful since single genes, even small ones,
already perform specific functions in the circuit. However,
all such investigations, whether experimental, computational
or theoretical, must deal with the issue of fluctuations, that
is, the inherent randomness of a low reactant number
environment such as the cell [19].

Experimentally, gene networks – both natural and
synthetic ones – are tested by applying fluorescence
methods to detect the expression level of each gene, that is,
the production rate for the protein that it encodes [20–40].
Engineered networks have been used for studying self-
regulation [20–22], genetic toggle switches [23],
repressilator systems [24], noise propagation [25–27] and
so on. They are also useful for classifying sources of noise
in the cell as intrinsic or extrinsic [28, 29]. The former
type of noise comes from inherent fluctuations of a specific
chemical reaction whereas the latter arises from the
transmission of fluctuations by components of the cell such
as transcription factors or polymerases. Among the natural
networks, two systems are of particular interest, the lac
operon [38] and the l-phage [39, 40]. They were useful
for the establishment of the basic mechanisms of regulation
of gene transcription or decisory gene circuits.

The advances in the quantitative experimental
investigation of gene expression have motivated a boom
in the modelling of gene networks [41–46, 48–61].
Computational simulations based on Gillespie’s algorithm
[62] have been applied successfully to the l-phage decision
circuit [41, 42]. The advantage of this approach is that it
provides a highly detailed description of the chemical
reactions involved in a gene network. However, it requires
many hours of processing and involves lots of
phenomenological parameters [63]. This is where models
with analytic solutions become important, since they
furnish rapidly available information about a system. Such
solutions can be based on macroscopic or mesoscopic
equations [64]. The former are non-linear equations for
concentrations whereas the latter provide distribution
probabilities for the reactants.

Several deterministic models have been developed to
describe experiments with the lac operon [43] and the
l-phage [44], but they do not take into account
fluctuations. These can be introduced by the Langevin
technique [45] or recent more sophisticated versions
thereof [46, 47]. Some studies in terms of master
equations are basically committed to understanding the
role of fluctuations in protein synthesis by fully
calculating the microscopic distribution probabilities
[48–51]. Others deal with the noise calculated from the
master equations [54, 59–61], which are useful for
treating single-peaked distributions but insufficient when
multi-peaked distributions are involved. A more accurate
description requires explicit analytical solutions for the
IET Syst. Biol., 2010, Vol. 4, Iss. 5, pp. 311–329
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probability distributions from the master equations [48,
53, 57, 58].

In this section, we consider the Lie symmetry that
appears in the binary model to stochastic gene expression
[48]. We solve a pair of coupled master equations
analytically by using the generating function technique [53,
58]. The steady-state solutions are given in terms of the
celebrated confluent hypergeometric functions, on which
very detailed information is available in the literature [93,
94] and which is incorporated in mathematical programs
such as Maple, Mathematica and Matlab. It turns out that
this system of equations has a Lorentz-like Lie symmetry
[the symmetry group is SO(2, 1)], which is the reason
underlying its complete integrability [48]. The biological
meaning of the symmetry can be summarised as follows:
the eigenvalue under the invariant of the algebra (Casimir
operator) provides the decaying rate of the system to
equilibrium; the eigenvalue under the action of the
Lz operator gives the activity level of the gene; the
ladder operators act by connecting different stochastic
processes.

The symmetries that appear in this elementary gene switch
model were identified after its exact solution had already been
found. However, it should be kept in mind that the search for
symmetries in systems of differential equations is a central
method for the calculation of exact solutions. Indeed, the
motivation of Sophus Lie that led him to introduce the
class of continuous groups known today as Lie groups was
precisely the usefulness of this concept in the search for
solutions of differential equations.

3.1 Binary stochastic model to a gene

In the simple model adopted here, gene expression is
considered as a continuous time Markov process (master
equation), where the stochastic variables are (n, m), where n
is the number of proteins produced by the gene and m is
the state of the gene. For the sake of simplicity, in [52] the
gene was supposed to admit only two possible states: an
active one and a repressed one. The former prevails when
the operator site of the gene is free, whereas the latter is
realised when it is occupied by the regulatory protein,
leading to the total or at least partial obstruction of protein
synthesis. The processes of releasing of the regulatory
protein from an occupied operator site and of binding the
regulatory protein to an unoccupied operator site lead to
transitions of the gene between its active state and its
repressed state: this gene switch is governed by a ‘releasing
rate’ f and a ‘binding rate’ h1n + h2, with h1 = 0 for an
externally regulated gene, where the regulatory protein is
provided by external sources, and h2 = 0 for a self-
regulating gene, where the regulatory protein is the one
produced by the gene itself. Then denoting by an and by
bn the probability for the presence of n protein molecules
when the gene is in the active state and in the repressed
state, respectively, the master equation for the probability
Syst. Biol., 2010, Vol. 4, Iss. 5, pp. 311–329
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dynamics reads

dan

dt
= k(an−1 − an) + r[(n + 1)an+1 − nan]

− (h1n + h2)an + f bn

dbn

dt
= xk[bn−1 − bn] + r[(n + 1)bn+1 − nbn]

+ (h1n + h2)an − f bn

(13)

where k and r are protein production and degradation rates,
respectively. Here, we admit the possibility that there is still
some amount of protein synthesis going on even in the
repressed state, that is, repression may not be total: this is
represented by the ‘damping factor’, which should be such
that 0 ≤ x , 1. However, in what follows, we shall mostly
consider the case of total suppression, x ¼ 0.

3.2 Generating function technique

For the sake of definiteness, we shall in this subsection deal
only with the case of an externally regulated gene (h1 = 0),
since a self-regulating gene (h2 = 0) is completely
analogous, with the same solution method and the same
underlying symmetry; it is discussed in [48]. Exact
solutions of (13) are calculated by making use of the
generating functions method, in which the individual
probabilities are considered as the Taylor coefficients of a
function of a complex variable u, say, that is supposed to
be analytic near the origin. Within this procedure, the
difference-differential equations (13) are transformed into a
pair of coupled partial differential equations

∂a

∂t
= (z − 1) ka− r

∂a

∂z

( )
− h2a+ f b

∂b

∂t
= (z − 1) xkb− r

∂b

∂z

( )
+ h2a− f b

(14)

which are the master equations in terms of generating
functions

a(z, t) =
∑1

n=0

an(t)zn, b(z, t) =
∑1

n=0

bn(t)zn (15)

Equations (13) are recovered by direct substitution of (15)
into (14).

In terms of the functions (15) the conservation of
probability means that

a(1, t) + b(1, t) = 1 (16)

The nth probabilities (an, bn) and pth order moments
(kn p

al, kn p
bl) of the stochastic process defined by (13) are

recovered by differentiating and evaluating the respective
generating functions at the points z ¼ 0 and z ¼ 1,
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respectively

an = 1

n!

∂na

∂zn

∣∣∣∣
z=0

, bn = 1

n!

∂nb

∂zn

∣∣∣∣
z=0

(17)

knp
al = z

∂

∂z

( )p

a

∣∣∣∣
z=1

, knp
bl = z

∂

∂z

( )p

b

∣∣∣∣
z=1

(18)

These definitions are verified by direct substitution of (15).

The major advantage of the generating function method
is the possibility to use well-known mathematical
techniques from the theory of differential equations to solve
them.

3.3 Stationary regime

Let us consider the stationary or asymptotic solutions where
all time derivatives vanish, so that (14) becomes a system of
first-order ordinary differential equations that we rewrite in
the form

0 = (z − 1) Na− da

dz

( )
− epba+ epab

0 = (z − 1) Nxb− db

dz

( )
+ epba− epab

(19)

where new constants have been introduced as follows

N = k

r
, pa =

f

f + h2

, pb =
h2

f + h2

, e= f + h2

r
(20)

These parameters have been chosen so as to simplify the
identification of their biological significance. The first of
them, called N, depends on the affinity of the mRNA-
polymerase with the promoter site: it is just the protein
production rate k in the active state relative to the protein
degradation rate r. The parameters pa and pb represent the
asymptotic probabilities of the gene to be ‘on’ and ‘off ’,
respectively, as can be seen by setting z ¼ 1 and letting
t � 1 in any one of the equations (19) to obtain

−h2a(1, 1) + f b(1, 1) = 0 (21)

which together with the relation

a(1, 1) + b(1, 1) = 1 (22)

which follows from (16), implies

pa=a(1, 1)=
∑1

n=0

an(1), pb=b(1, 1)=
∑1

n=0

bn(1) (23)

The parameter pa can also be referred to as the steady-state
activity level of the gene, whereas the parameter
pb = 1 − pa measures the steady-state occupancy of the
operator site by the regulatory protein, depending on the
affinity between the two. The dimensionless parameter e
The Institution of Engineering and Technology 2010
measures the relation between the two decay rates to
equilibrium, f + h2 for the switch and r for protein decay.

To solve the system (19) we use the first equation to
express b in terms of a

b = − z − 1

epa
Na− da

dz

( )
+

pb
pa

a (24)

and inserting this result into the second equation to obtain

z− 1

N

d2a

dz2
+ 1+ e

N
− (z− 1)

( )
da

dz
− (1+ epa)a= 0 (25)

where it has been assumed that x ¼ 0 (a similar but
somewhat more complicated equation holds when x . 0; it
is given in Appendix). This is the celebrated
hypergeometric equation, which contains two singularities:
a regular one at z ¼ 1 and an irregular one at infinity. Its
solutions are given in terms of Kummer functions M and
U. The Kummer U function is irregular at z ¼ 1 and hence
must be discarded in order to avoid singularities, so the
solutions of interest here can be written exclusively in terms
of the Kummer M function, which can be defined by the
series [93]

M(a, b, u) =
∑1

n=0

(a)n

(b)n

un

n!
(26)

where (a)n is the Pochhammer symbol

(a)0 = 1, (a)1 = 1, . . . ,

(a)n = a(a + 1)(a + 2) . . . (a + n − 1) (27)

In these terms, the steady-state solutions are

a(z) = paM(1 + epa, 1 + e, N (z − 1))

b(z) = (1 − pa)M(epa, 1 + e, N (z − 1))
(28)

from which the probabilities can be directly calculated using
(17) together with the formula for the nth derivative of the
Kummer M function (see e.g. (13.4.9) of [93]) and the result is

an = pa
N n

n!

(1 + epa)n

(1 + e)n

M(1 + epa + n, 1 + e+ n, −N )

bn = (1 − pa)
N n

n!

(epa)n

(1 + e)n

M(epa + n, 1 + e+ n, −N )

(29)

when x ¼ 0 (similar but somewhat more complicated
expressions can be obtained when x . 0; they are given in
Appendix).

3.4 Lorentz-like Lie symmetry

The existence of analytical solutions of (25) and the similarity
between the differential operator acting on a that appears in
IET Syst. Biol., 2010, Vol. 4, Iss. 5, pp. 311–329
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(25) with the Lz of (7) leads us to suspect the existence of a
Lie symmetry in this model. This is indeed so [48]. In fact,
identifying the variable h in the Lz operator of (7) with
N(z 2 1), the latter becomes

Lz =
z − 1

N

d2

dz2
+ 2

1 + l

N
− (z − 1)

( )
d

dz
− (1 + l ) (30)

so (25) can be rewritten as an eigenvalue equation for Lz

Lza(z) = ma(z) (31)

provided the group theoretical parameters l and m are related
to the parameters e and pa by

e = 2l + 1, pa = l + m

2l + 1
(32)

The ladder operators defined in (9)

L+ = z − 1

N

d2

dz2
+ 2

l + 1

N

d

dz

L− = z − 1

N

d2

dz2
+ 2

l + 1 − N (z − 1)

N

d

dz

− 2(l + 1) + N (z − 1)

(33)

In terms of the parameters m and l, the function a(z) is
defined as (l + m)/(2l + 1)M(1 + m + l, 2l + 2, N(z 2 1)).
The action of the ladder operators on the Kummer M
function defining a(z) or b(z) results

L−M(1 + m + l , 2l + 2, N (z − 1))

= (m − l − 1)M(m + l , 2l + 2, N (z − 1))

L+M(m + l , 2l + 2, N (z − 1))

= (m + l )M(1 + m + l , 2l + 2, N (z − 1))

(34)

The Casimir operator is given by [90]

C = −L2
z + Lz + L+L− (35)

and it has eigenvalue 2l(l + 1) on a, that is,

Ca = −l (l + 1)a (36)

as follows from (31) and (34). In terms of the parameter e,

Ca = 1 − e2

4
a (37)

Summarising, the operators Lz, L+ and L−, defined in (30)
and (33), span the Lie algebra so(2, 1) whose irreducible
representations are labelled by an arbitrary real number l;
the index m labelling different states within the
representation space is also a real number. The
representations are all unbounded, both from above and
from below. The relation between these group theoretical
labels and the parameters of the model is given by (32).
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3.5 Biological meaning of symmetry

We discuss the biological significance of the various operators
and parameters. The action of L+ in a and b produces new
amplitudes a1 and b1, respectively, for a new stochastic
process. By the successive application of this operator, we
construct a family of related processes. It is remarkable that
b1 coincides with a and a repressive process (pb ≃ 1) is
transformed into a non-repressive process (pa ≃ 1).

The invariant of the algebra, the Casimir operator, has a
clear biological meaning: its eigenvalue gives the decaying
rate of the system to equilibrium, relative to the protein
degradation rate r. In order to show that, we evaluate the
dynamic equations (14) at z ¼ 1, writing Pa(t) ; a(1, t)
and Pb(t) ; b(1, t) for the total probability, at time t, for
the gene to be in the active state and in the repressed state,
respectively, we have

dPa

dt
= −h2Pa + f Pb

dPb

dt
= h2Pa − f Pb

(38)

Noting that according to equation (16), Pa(t) + Pb(t) = 1,
and using (20), we can write down the solution:

Pa(t) = pa + (Pa(0) − pa) exp(−ert) (39)

Thus we see that the probability Pa(t) decays exponentially to
its equilibrium value pa, and the rate at which it does so,
in terms of the protein degradation rate r, is given by the
parameter e, or what according to (37) amounts to the
same thing, by the eigenvalue of C.

This analysis can also be extended to values of z which are
= 1. In order to show how, we rewrite the dynamic
equations (14) in matrix form

1

r

∂C

∂t
= HC (40)

where

C =
a

b

( )
and

H =
N (z − 1) − epb − (z − 1)

∂

∂z
epa

epb −epa − (z − 1)
∂

∂z

⎛
⎜⎝

⎞
⎟⎠

(41)

Time-dependent solutions are obtained by expanding C in a
basis of eigenfunctions of H

C =
∑
l

exp(−lt)Cl (42)
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The eigenvalue equation is written as

HCl = −lCl (43)

or, in components

−lal = (N (z − 1) − epb)al − (z − 1)
dal

dz
+ epabl

−lbl = epabl − (z − 1)
dbl

dz
+ epbal

(44)

Solving the first of these equations for bl and substituting it
into the second, we obtain a second-order ordinary
differential equation for al. Its solution is obtained by
the Frobenius method [95], which starts from a series
expansion of al(z) around z ¼ 1 in the form

al(z) = (z − 1)s
∑1

n=0

Cn(z − 1)n (45)

where s is a number, called ‘indicium’, which appears when
the exponent of the first term of the series does not vanish,
and the Cn(l) are the coefficients of the expansion. The
requirement of analyticity forces the indicium to be a non-
negative integer, and the aforementioned second-order
differential equation gives the result

l = er+ s, where s = 0, 1, 2, . . . (46)

Therefore we conclude that the fundamental mode (s ¼ 0),
which dominates the decay to equilibrium, has decay rate
equals to er, as before.
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Concerning the range of possible values for the parameters
l and m, the mathematics imposes no constraints, but the
biological interpretation does. The range of allowed values
for m comes from the restriction that a probability must lie
in the interval between 0 and 1; this implies, according to
(32)

−l ≤ m ≤ l + 1 (47)

Similarly, the requirement of positivity of the parameter e,
which follows from its definition in (20), implies

l ≥ −1/2 (48)

3.6 Probability distributions and
fluctuations

In Fig. 1 we show the probability distributions for selected
values of the algebraic parameters. The protein number is
drawn along the the horizontal axis. The graphics were
designed by using (55) of Appendix. We have chosen two
different values for l: a high (l ¼ 5) and a low (l ¼ 21/4).
For each of these two values, the distributions are plotted
for three different values of m: one close to the minimum,
one medium and one close to the maximum. The dashed
lines represent active state probabilities and the dotted are
the repressed. The continuous line shows the sum between
the active and repressed states. Note that two-peaked
probability distributions appear for l ¼ 21/4, corresponding
to a slowly switching gene. For high values of l,
corresponding to a fast switching gene, the distributions are
single-peaked in the sense that the two gene state
probabilities are centred around (almost) the same point.
They are in accordance with a fast-switching gene. The
Figure 1 Probability distributions of the free state and total number of proteins inside the cell

In all plots N ¼ 40 and x ¼ 0.2. In the top set of plots, l ¼ 21/4 (slowly switching gene), whereas in the bottom, l ¼ 5 (fast switching
gene)
IET Syst. Biol., 2010, Vol. 4, Iss. 5, pp. 311–329
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relation between the heights of the peaks depends on the
value of m. If m is close to the minimum the repressed
peak is higher; if m is close to the maximum, the active
peak is the higher. The histograms are displaced to the left
or to the right, respectively, when m is lowered or raised.
The description of a slowly switching gene requires both
active and repressed state probabilities, since the
fluctuations in gene state correspond to changing the centre
of the distributions, whereas in the case of a fast switching
gene, the total probability distribution is sufficient to
characterise it, because the two partial distributions that
compose it are centred around (almost) the same point.

A bi-peaked probability distribution associated with a slow
switch can be observed in protein production of eukaryotes
[96]. That is because this DNA is packed in a complex
structure, called chromatin, which can be opened and
closed to expression at quite slow rates. Otherwise, one-
peaked distributions are most frequent in prokaryotic gene
expression, since the chemical reactions that regulate the
protein synthesis are fast.

In Fig. 2, we plot the Fano factor in terms of the algebraic
parameters. It is defined as

F = kn2l − knl2

knl
(49)

and characterises the deviation of a distribution from a
Poissonian one, whose F is equal to one [97]. Super-
Poissonian processes have F . 1 and sub-Poissonian
processes have F , 1. The explicit form of F for the
externally regulated gene is

F = 1 + N (1−x)2(l +m)(1−m+ l )

(2l +2)(2l +1)[(m+ l )(1−x)+ (2l +1)x]
(50)

Note that F is greater or equal to one, so the externally
regulated gene has only a super-Fano or a Fano noise
regime. Sub-Fano processes only occur for l + m , 0, as
demonstrated recently for a self-interacting gene [48].
Furthermore, low l valued states are noisier than states with

Figure 2 Fano factors for two values of N with x ¼ 0.2

In order to plot all Fano factors together we substituted m in (50)
by the expression 2l + pa(2l + 1) that comes from the definition
(32). Note that noise tends to one for high values of l
Syst. Biol., 2010, Vol. 4, Iss. 5, pp. 311–329
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high l. In the limit when l goes to infinity, the Fano factor
tends to 1, independent of the value of m, as long as N
remains finite. This follows by writing the numerator and
denominator of the second part of (50) as polynomials in l.
The former has a degree 2 and the latter a degree 3, so in
the limit when l goes to infinity, their quotient tends to
0. In fast-switching genes effects of protein creation and
degradation phenomena are sufficient for stochastic
modelling, whereas in slow systems an accurate modelling
also depends on the description of the gene states.

In Fig. 2 we present two plots of the noise as a function of
m for a set of values of l and two limit values of N. Each curve
presents a maximum at the point

mmax + l

2l + 1
=

��
x

√

1+ ��
x

√ , Fmax = 1+N

2
(1− ��

x
√

)21+ l (51)

Since x lies in the interval 0 and 1, mmax lies in the interval
between 2l and 1/2. The value of Fmax is linearly
proportional to N and tends to one for fast-switching
genes. In the limiting values of m the Fano factor tends
to one. This means that the gene remains in a Poissonian
production degration state. Note also that for a fixed
value of the Fano factor, there are two levels of gene
activity. This indicates that consideration of variation in
protein number only is incomplete in determining
gene performance. The probability distributions and
Fano factor present an explicit dependence on the
algebraic parameters. Slowly switching genes tend to be
more fluctuating and present bi-peaked probability
distributions: this is in accordance with previous
simulation results [56]. Furthermore, it indicates that a
stochastic model that accounts for the two states of a
gene, even when dealing with conjugated transcription
and translation, is enough to indicate a binary behaviour.
Otherwise, fast switching genes tend to be Poissonian.
The fluctuations in protein number are not affected by
gene state variations. Thus, symmetry tells us that high
stochasticity is associated with low eigenvalues of the
Casimir operator (36). The analogy comes from atomic
physics, where quantum mechanical effects are more
prominent for energy levels close to ground-states and,
low eigenvalues of the Casimir operator. High energised
levels tends to present a quasi-classical behaviour, as
occurs in Rydberg atoms [98].

4 Symmetry breaking in genetic
code evolution
This section is divided into two main parts. In the first,
we shall give a brief account of the construction of the
algebraic model for the evolution of the genetic code. In
the second part, we present the exact Klein symmetry of
the standard code discovered in the course of this
investigation, as a remnant of a larger symmetry that,
according to the algebraic model, has prevailed in earlier
319
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stages of its evolution. Part of this Klein symmetry is the
obvious symmetry of the genetic code table (Table 1) under
the exchange of U and C in the third base, but the other
part is far from obvious. The same Klein symmetry is also
found in most of the non-standard codes, in particular the
mitochondrial ones, a fact that speaks in favour of its
importance in the course of code evolution.

4.1 Construction of an algebraic model
to genetic code evolution

Since the expression ‘genetic code’ is often used
erroneously (a quite common abuse consists in confusing
it with what should correctly be called the genome,
usually of a specific organism or species), it seems in
good order to recall that, when interpreted correctly, it
refers to the rules of protein synthesis in the ribosome;
more precisely, the rules for translating the information
contained in a gene, copied to a strand of mRNA, into
the sequence of amino acids that constitutes the protein
encoded by that gene. It consists of a table specifying the
assignment of a specific amino acid to each possible
triplet of mRNA nucleotides: such a triplet is called a
codon. Note that the four nucleotides U, C, A and G can
be combined into 64 different triplets, but all living
organisms found in nature use only 20 different amino

Table 1 Standard genetic code – mRNA codons against
amino acids

First base Second base Third base

U C A G

U Phe Ser Tyr Cys U

Phe Ser Tyr Cys C

Leu Ser Stop Stop A

Leu Ser Stop Try G

C Leu Pro His Arg U

Leu Pro His Arg C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

A Ile Thr Asn Ser U

Ile Thr Asn Ser C

Ile Thr Lys Arg A

Met Thr Lys Arg G

G Val Ala Asp Gly U

Val Ala Asp Gly C

Val Ala Glu Gly A

Val Ala Glu Gly G
0
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acids to build their proteins. Addition of the termination
or stop signal implies that there are altogether 21 distinct
meanings to be assigned to the 64 codons, so that more
than one codon will have the same meaning. This
mathematical feature of the table is referred to as the
degeneracy of the genetic code, even though biologists or
linguists will probably prefer to speak of ‘synonymous
codons’ rather than ‘degenerate codons’.

The notion of degeneracy is profoundly related to that
of symmetry. Degeneracy means invariance; in the present
case, it means that the codon to amino acid assignment is
invariant under the replacement of codons by synonymous
ones. And invariance means symmetry, in the sense that
one can build transformation groups that keep invariant
certain properties. This kind of connection between
symmetry and invariance can be seen in the spectrum of
the hydrogen atom: this is a system with an obvious
rotational symmetry, implying that states with the same
azimuthal angular momentum quantum number m will
have the same energy. But symmetries may be much less
obvious than in this case; they may be hidden! And there
are many examples where the spectrum of a molecule or
atom is a testimony of some hidden symmetry [14]. Thus
if we look at the genetic code from this point of view, as if
it were some kind of spectrum, we face a straightforward
question: is the degeneracy pattern of the code the
expression of some hidden symmetry? This promptly
suggested performing what we may call ‘the search for
symmetries in the genetic code’.

Summarised briefly, the program runs as follows. First
of all, the 64 available codons are considered as forming
a basis of a 64-dimensional vector space, called the codon
space, on which some (as yet unknown) ‘primordial’
symmetry group G acts by linear transformations: its
elements can be thought of as certain (64 × 64)-matrices
acting on the vectors in the codon space. Initially, the
symmetry is complete in the sense that, roughly speaking,
it is able to generate any vector in codon space from any
other one; the technically correct condition is that the
‘primordial’ symmetry group G acts irreducibly on codon
space. In the language used in physics, this is expressed by
saying that all 64 codons form a single multiplet under
the ‘primordial’ symmetry group. Starting out from this
situation as an initial condition, the symmetry breaking
process consists in selecting a descending chain of
subgroups of G, G . G1 . · · · . Gn−1 . Gn, and
successively restricting the symmetry transformations to
belong to these subgroups. This picture fits in neatly with
the widely accepted idea that the genetic code has evolved
from an early stage with few amino acids by gradually
incorporating new ones. The process ends when one
reaches the ‘residual’ symmetry group Gn which, ideally,
should be such that when considered as acting on the
vectors in the codon space, the latter decomposes into the
direct sum of 21 disjoint irreducible subspaces: three of
dimension 6 to accomodate the three codon sextets for
IET Syst. Biol., 2010, Vol. 4, Iss. 5, pp. 311–329
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Arg, Leu and Ser; five of dimension 4 to accomodate the five
codon quartets for Ala, Gly, Pro, Thr and Val; two of
dimension 3 to accomodate the codon triplet for Ile and
the Stop codons; nine of dimension 2 to accomodate the
nine codon doublets for Asn, Asp, Cys, Gln, Glu, His,
Lys, Phe and Tyr; and finally two of dimension 1 to
accomodate the two codon singlets for Met and Try. A
more general rule, which formalises the idea of ‘freezing’
first proposed by Crick [65], allows for the possibility
to obtain this final distribution of multiplets from a
distribution of multiplets under the penultimate subgroup
in the chain, Gn−1, by admitting that under the passage to
the last subgroup in the chain, Gn, the symmetry breaking
may only be partial, that is, some of the Gn−1-multiplets
break up into the appropriate Gn-multiplets as required by
the rules of group theory whereas others that
should normally break up as well fail to do so: their
breakup is frozen.

The first step to obtain this program up and running is to
discover what are the possible ancestor groups G, the basic
restriction being that any such group should admit a
64-dimensional irreducible representation. This condition
is much more restrictive than may seem and, typically, leads
to a finite (and small) list of solutions. In particular, in the
world of compact simple Lie groups, the search for such an
ancestor group can be performed by combining the Cartan
classification theorem, which allows for four series of
symmetry groups called ‘classical’ and another five
‘exceptional’ groups, with methods from representation
theory. The second step of the search consists in analysing,
step by step and for each of these possible ancestor groups,
all possible chains of subgroups and find out whether
symmetry breaking along any one of them is able to
produce the distribution of multiplets observed in the
genetic code; this procedure relies heavily on the tables of
branching rules for irreducible representations of simple Lie
algebras of [99].

The first result of such a search has been reported in [72],
and the most promising scheme that emerges is based on the
symplectic group Sp(6) as the ‘primordial’ symmetry group,
with the following chain of subgroups

Sp(6) . Sp(4) × SU(2) . SU(2) × SU(2) × SU(2)

. SU(2) × O(2) × SU(2) . SU(2) × SO(2) × SU(2)

(52)

(We note in passing that symplectic groups are not totally
unfamiliar: their non-compact versions arise naturally in
classical mechanics.) The corresponding sequence of
branchings, constructed according to the tables of [99], is
shown in Fig. 3. The subspaces that appear are represented
by boxes with numerical entries indicating the respective
dimensions. The symmetry breaking occurs at the
branching points where one line may split into two (or
more) others, indicating the breakup of the multiplet
Syst. Biol., 2010, Vol. 4, Iss. 5, pp. 311–329
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written to its left into the two (or more) others written to
its right, but the line may just as well continue onward
without bifurcating, indicating that the multiplet written to
its left does not break up at this point. Thus, for example,
at the first step, the 64-dimensional Sp(6)-multiplet breaks
into six different (Sp(4) × SU(2))-multiplets of dimension
20, 16, 12, 10, 4 and 2, respectively, corresponding to six
primordial amino acids; at the second step, the 20-
dimensional (Sp(4) × SU(2))-multiplet breaks into three
different (SU(2) × SU(2) × SU(2))-multiplets of dimension
8, 6 and 6, respectively, whereas the two-dimensional
(Sp(4) × SU(2))-multiplet does not break up, and so on.
The distribution of multiplets with their respective
dimensions reached after the last step reproduces exactly the
degeneracies found in the standard genetic code, but can be
realised only if one allows for the phenomenon of freezing:
otherwise, some additional symmetry breakings would occur
in the last step, as indicated by the dashed lines. Finally, the
amino acid assignments shown in the last step are obtained
from principles first established in [73] and further
elaborated in [80]. A mathematically complete treatment
can be found in [74, 78].

Evidently, this mathematical procedure reflects an
evolution of the genetic code in terms of a step-by-step
addition of amino acids and corresponding reduction of its
degeneracy.

Further insight into this symmetry breaking scheme can
be gained by inspecting what is called the weight diagram of
the pertinent representation [90], which in this case is the
codon representation of the group Sp(6): it provides an
intuitive picture of some of its central features that
otherwise would be hard to visualise for such a high-
dimensional representation. In the case of the group
Sp(6), which has rank 3 and dimension 21, this diagram
is a three-dimensional array of points, each one associated
with a basis vector in the representation. In the present
case, we have 64 points that, in Figs. 4 and 5, are
depicted as little balls, forming an internal octahedron
and an external truncated octahedron. In the external
truncated octahedron, the vertices are non-degenerate but
the centres of the hexagonal faces are two-fold
degenerate, whereas the vertices of the internal
octahedron are four-fold degenerate; this is indicated in
the figures by drawing several balls at (what is meant to
be) the same position but in the picture are slightly
displaced in order not to overlap completely. Their
coordinates are integers that correspond to the
simultaneous eigenvalues of the three commuting
generators of the maximal torus of Sp(6). The remaining
18 generators of Sp(6) are divided into nine raising and
nine lowering operators that interconnect the points; they
can be visualised through the nine directions in which
there are segments connecting the balls. The whole figure
is invariant under a set of transformations consisting of (i)
rotations by 908 around an axis passing through antipodal
vertices of the internal octahedron; (ii) rotations by 1208
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Figure 3 Tree of evolution of the genetic code with amino acid assignment for the Sp(6)-model
2

around an axis passing through antipodal centres of the
hexagons of the external truncated octahedron; (iii)
rotations by 1808 around an axis passing through the
centre points of opposite edges of the internal octahedron;
The Institution of Engineering and Technology 2010
(iv) inversion; and (v) composition of inversion and any of
the above operations. These transformations form a finite
group of 48 elements known as the ‘Weyl group’ of the
symplectic group Sp(6).
IET Syst. Biol., 2010, Vol. 4, Iss. 5, pp. 311–329
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Fig. 4 shows the weight diagram before the first symmetry
breaking, where all codon vectors are indistinguishable and
represented by one and the same colour, whereas Fig. 5
shows the weight diagram after the first symmetry
breaking, where codon vectors belonging to different
(Sp(4) × SU(2))-multiplets are distinguished by different
colours. The operators affiliated with the subgroup
Sp(4) × SU(2) only connect equally painted spheres. At
this stage of evolution, a primordial genetic code with six
initial amino acids is established.

Figure 4 Weight diagram of the codon representation of
Sp(6) before the first symmetry breaking

Figure 5 Weight diagram of the codon representation of
Sp(6) before the first symmetry breaking

Different colours represent the reciprocally orthogonal subspaces
T Syst. Biol., 2010, Vol. 4, Iss. 5, pp. 311–329
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Taking horizontal cross-sections of Figs. 4 and 5 along
the five planes at z ¼ 0, z ¼ 1 and z ¼ 2, we arrive at the
diagrams of Fig. 6. Each of them appears twice in order to
include the tags showing the assignment of amino acids
(top) and codons (bottom) to each of the points, according
to the rules established in [73]: these have been suppressed
in Figs. 4 and 5 to avoid visual congestion.

4.2 Klein symmetry preservation in
evolution of genetic code

The weight diagrams of Figs. 4 and 5 possess an obvious
octahedral symmetry that is not preserved in the final stages
of the symmetry breaking process, but it is remarkable that
there is a subgroup of the octahedral group, known in
mathematics as the Klein group, which remains untouched.
This symmetry group is composed of four operators that
act on three-dimensional vectors with coordinates x, y, z as
follows: (i) the identity; (ii) the reflection in the xz-plane,
taking (x, y, z) to (x, 2y, z); (iii) the reflection in the yz-
plane, taking (x, y, z) to (2x, y, z); and (iv) the 1808
rotation around the z-axis, taking (x, y, z) to (2x, 2y, z).
Indeed, all the planar diagrams of Fig. 6 are manifestly
invariant under these transformations [84]. Even more
remarkable is the fact that this non-trivial Klein symmetry
of the standard genetic code is shared by almost all of the
presently known non-standard codes, in particular the
mitochondrial codes [84].

In Fig. 7 we show the phylogenetic tree for the evolution of
the non-standard mitochondrial codes. The numbers inside
the brackets represent different codon reassignments (as
compared to the standard code) that have been found. The
ones that have occurred in the main line of evolution are
labelled by (1), (2), (3) and (7). The remaining numbers
represent changes that have occurred in the side branches
of the tree. For example, in the transitions (1) and (3), the
standard codons UGA and AUA for Stop and Ile are
reassigned so as to code for Trp and Met, respectively,
whereas in the transitions (2) and (7), the standard codons
AGA and AGG for Arg are reassigned so as to code for
Ser in (2) and Stop in (7).

The four transitions occurred in the main line of evolution
preserve the Klein symmetry, as can be seen by inspecting
Fig. 6. Moreover, the changes (1) and (3) even increase the
symmetry of the internal octahedron by including the
reflection in the horizontal plane (xy-plane). Even though
the reflection in the horizontal plane is not a symmetry of
the external truncated octahedron, this still means that
the evolution of the mitochondrial codes has a tendency
towards increasing their symmetry.

The reassignments in the side branches are of three kinds.
The first group consists of those that preserve the Klein
symmetry completely, namely (6), (9) and (10), which
occur in yeast (Saccharomyces cerevisiae, Torulopsis glabrata),
echinoderms and tunicates, respectively. Transition (6)
323
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Figure 6 Codon assignments in terms of the weights of the 64-dimensional representation of the Sp(6) in the bidimensional
diagram

a Lies in the plane z ¼ 0
b Horizontal sections in planes z ¼ 1 and z ¼ 21
c Elements of the planes z ¼ 2 and z ¼ 22
represents the reassignment of the standard Leu codons
CUN to Thr, (9) reverts (3), reassigning the codon AUA
back to its standard meaning, from Met to Ile, and (10)
reassigns the pair of standard Arg codons AGA and AGG
to Gly.
he Institution of Engineering and Technology 2010
The second group is formed by those that preserve
the Klein symmetry partially, namely they preserve the
symmetry under reflection in one of the two planes, xz or
xy. These are (4) and (5), indicating the reassignment of
the standard Lys and Stop codons to Asn and Tyr, as
IET Syst. Biol., 2010, Vol. 4, Iss. 5, pp. 311–329
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Figure 7 Phylogenetic tree for the evolution of mitochondrial codes [66]
observed in the mitochondrial codes of platyhelmints and
echinoderms, respectively.

The remaining transitions are (8) and (11), in which
unassigned and nonsense codons arise. The first is found in
yeast mitochondrial codes (Torulopsis glabrata) and affects
the standard Arg codons CGN, whereas the second is
observed in green algae, affecting the codons CGG, UGA
and UAG. According to the codon capture theory, these
codons are in a transient state for future reassignment.
Therefore even though in (8) the Klein symmetry is
preserved and in (11) it is entirely broken, these exceptional
cases are probably not important.

5 Conclusions
Lie group theory provides a well-developed mathematical
machinery for modelling symmetry in biological systems. It
provides not only a quantitative framework but also leads to
biological insights about the processes that are modelled, as
shown by the examples presented in this review. In the
stochastic model for a two-state gene, symmetry has
practical implications: the eigenvalue of the diagonal
operator characterises the dynamics of the gene switch and
the affinity between the regulatory protein and the gene
operator site, whereas the non-diagonal operators connect
the probability distributions of the two states. In addition,
noise analysis leads to the conclusion that fast switching
genes give rise to Poissonian distributions whereas slowly
switching genes have broader or bi-peaked distributions. In
the algebraic model for the evolution of the genetic code,
possible pathways for this evolution arise naturally, but are
Syst. Biol., 2010, Vol. 4, Iss. 5, pp. 311–329
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strongly restricted. The picture of evolution by a stepwise
incorporation of new amino acids fits perfectly with that of
dynamical symmetry breaking. The Klein symmetry that
has remained preserved can serve as an underlying principle
that has conducted the evolution of the standard code as
well as that of non-standard codes.

In the modelling of gene networks, group theoretical tools
can be useful for the search for a composition rule between
two or more genes. Another feature is the possibility to
model single genes that present more than two levels of
regulation. The construction of a dynamical system for the
evolution of the genetic code is also a possible future
application of group theoretical methods in biology.
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8 Appendix
Most of the explicit formulas stated in Section 3 have been
given for the special case x ¼ 0 only. In order to deal with
the case where x = 0, the following substitutions must be
made:

The differential equation 25 is replaced by

z − 1

N (1 − x)

d2a

dz2
+ 1 + e− N (1 + x)(z − 1)

N (1 − x)

da

dz

−
1 + epa + xepb − Nx(z − 1)

1 − x
a = 0 (53)

The expression for its solution given by (28) is replaced by

a(z)=pa exp[Nx(z−1)]M(1+epa, 1+e, N (1−x)(z−1))

b(z)= (1−pa)exp[Nx(z−1)]M(epa, 1+e, N (1−x)(z−1))

(54)

The expressions for the probability distributions given by (29)
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are replaced by

an = pae−Nx N n(1 − x)n

n!

∑n

k=0

n!

k!(n − k)!

x

1 − x

( )n−k

× (1 + epa)k

(1 + e)k

M(1 + epa + k, 1 + e+ k, N (x− 1))

bn = (1 − pa)e−Nx N n(1 − x)n

n!

∑n

k=0

n!

k!(n − k)!

x

1 − x

( )n−k

× (epa)k

(1 + e)k

M(epa + k, 1 + e+ k, N (x− 1))

(55)

and the operators of (30) and (33) are replaced by

Lz =
z − 1

N (1 − x)

d2

dz2
+ 2(l + 1) − N (1 + x)(z − 1)

N (1 − x)

d

dz

+ Nx(z − 1) − (1 + x)(1 + l )

1 − x

L+ = z − 1

N (1 − x)

d2

dz2
+ 2

(l + 1) − Nx(z − 1)

N (1 − x)

d

dz

+ x
Nx(z − 1) − 2(1 + l )

1 − x

L− = z − 1

N (1 − x)

d2

dz2
+ 2

(l + 1) − N (z − 1)

N (1 − x)

d

dz

+ N (z − 1) − 2(1 + l )

1 − x

(56)

Finally, (50) has been obtained from the formulae

f(z) = a(z) + b(z) = exp[Nx(z − 1)]

× M(m + l , 2l + 1, N (1 − x)(z − 1)),

knpl = z
d

dz

( )p

f

[ ]
z=1

(57)

where we employed (13.4.3) from [93].
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