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7 Special Relativity

7.1 The Principle of Relativity

The origin of the theory of special relativity is associated with the difficulties to
bring the behavior of electromagnetic waves, as predicted by Maxwell’s theory
and confirmed by experiment, into agreement with the conception of space and
time that underlies Newtonian mechanics. Einstein’s analysis of this situation
has led to a fundamental revision of the physical concept of space and time and,
as a consequence, to the formulation of a new relativistic mechanics by which
the problem of consistency between mechanics and electrodynamics is solved in
an elegant way. The point of departure of this analysis, and hence of special
relativity as a whole, is the substitution of the Newtonian (or Galilean) principle
of relativity, implicitly contained in Newtonian mechanics, by the Einsteinian (or
Lorentzian) principle of relativity suggested by the laws of electrodynamics, in
particular by the negative outcome of all experiments to measure motion relative
to the (hypothetical) ether (Michelson-Morley experiment).

Apart from the differences, the Newtonian and the Einsteinian principle of
relativity also share a number of common features. We shall begin by discussing
these.

An observer in a given state of motion defines a reference system R. For the
quantitative description of phenomena in nature, such an observer must introduce
coordinates, i.e., a system of measuring rods at rest with respect to R and of ap-
propriately synchronized clocks, so that the space-time position of a point particle
may be determined by specifying four coordinates. In principle, these coordinates
are arbitrary, as long as they allow to identify space-time positions: their choice is
a matter of convenience.

An inertial system is a reference system in which – in terms of appropriate
coordinates which will be called natural coordinates – every point particle that is
not subject to external forces moves uniformly in a straight line. The existence
of inertial systems is by no means evident. Indeed, by an appropriate choice of
coordinates, we may always linearize a specific trajectory, but the possibility to
simultaneously linearize the trajectories of all freely moving point particles, within
a single coordinate system, constitutes a fundamental fact of experience. It turns
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out that, to an excellent approximation, a reference system R at rest with respect
to the stars becomes an inertial system if we introduce spatial coordinates by
choosing an oriented orthonormal frame at rest in R and a time coordinate by
choosing appropriately synchronized “standard” clocks; we shall always imagine
natural coordinates in an inertial system to have been introduced in this way.
(The question of how to perform the synchronization will be discussed later.)

The statements on the structure of space and time that are common to the
Newtonian and the Einsteinian principle of relativity can now be summarized as
follows.

(R1) Space and time are homogeneous and isotropic.

(R2) All reference systems that move relative to some given inertial system uni-
formly in a straight line are also inertial systems and are physically equivalent
among themselves: there is no physically preferred inertial system.

There is a third requirement (R3) in which the two principles differ from each other
and which will be discussed below. Before that, however, we proceed to explain
the meaning of the requirements (R1) and (R2).

Mathematically, the requirement (R1) is formulated by stating that physical
space has the structure of a Euclidean three-dimensional affine space E3 and phys-
ical time has the structure of a one-dimensional affine space; they can be united into
physical space-time which therefore has the structure of a spatially Euclidean four-
dimensional affine space E4. The introduction of natural coordinates for an inertial
system mentioned before then corresponds to the choice of a spatially Euclidean
affine coordinate system, consisting of an origin in space, an oriented orthonormal
3-frame, an origin in time and a time scale.

The requirement (R2) of physical equivalence between inertial systems means
that all physical phenomena must in all inertial systems obey the same laws of
nature. Implementing this principle requires, however, that every observer uses
the same methods to define the natural coordinates in his inertial system, that is,
using the same kind of clocks, of measuring rods, of protractors, etc., and without
reference to any other inertial system than his own. One says that the procedure
for defining natural coordinates in inertial systems must be universal and intrinsic.

Let us now consider a single but arbitrary event, which is located at a point
in space-time. In an inertial system I it will be described by natural coordinates
(t,x) ∈R4 and in an inertial system I ′ by coordinates (t′,x′) ∈R4. Of course, these
coordinates must be convertible into each other in a unique way, and since the
event was arbitrary, this means that there must exist an invertible transformation
TI′I : R4 −→ R4 such that for the natural coordinates of any event, we have

TI′I(t,x) = (t′,x′) (7.1)

Obviously, composition and inversion of these transformations must obey the rules

TI′′I′ ◦ TI′I = TI′′I and T−1
I′I = TII′ . (7.2)

Due to (R2), the transformation TI′I can depend only on quantities that relate
I and I ′, not on quantities describing, e.g., the state of motion of I or I ′ alone
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(relative to a third inertial system I ′′). More precisely, (R2) implies that given any
three inertial systems I, I ′ and J , there is exactly one inertial system J ′ with

TI′I = TJ′J .

As a result, the set of all transformations TI′I between inertial systems forms a
group which, for the time being, we shall denote by Γ . Indeed, given TI′I ∈Γ and
TJ′J ∈Γ , we can write TJ′J = TI′′I′ and obtain

TJ′J ◦ TI′I = TI′′I′ ◦ TI′I = TI′′I ∈ Γ .

From (R1) we obtain further restrictions on the coordinate transformations in Γ :
First of all, elements of Γ must be affine transformations, that is, inhomogeneous
linear transformations, because they transform uniform rectilinear motion into uni-
form rectilinear motion, without singling out particular points. The most general
such transformation has the form

x′ = Ax + vt + x0 , (7.3)

t′ = γt+w·x + t0 , (7.4)

where A is a linear transformation in R3, v,w,x0 are vectors in R3 and γ, t0 are
scalars in R; the vector −A−1v is to be interpreted as the relative velocity between
the two inertial systems I and I ′. Moreover, Γ must contain the group of rotations
in three-dimensional space as a subgroup, that is, all transformations of the form
given above with A ∈SO(3) and v = 0, w = 0, x0 = 0, γ = 1, t0 = 0.

Newtonian mechanics, as mentioned before, implicitly contains the Newtonian
principle of relativity which supplements the requirements (R1) and (R2) by the
postulate of absolute space and absolute time:

(RN) Space and time are absolute, i.e., spatial distances and time differences do
not depend on the reference system.

This requirement leads directly to the Galilei invariance of Newtonian mechanics
because it forces A ∈SO(3) in eq. (7.3) as well as γ = 1 and w = 0 in eq. (7.4).
Thus the most general Galilei transformation is of the form

x′ = Rx + vt + x0 , (7.5)

t′ = t + t0 , (7.6)

with R ∈SO(3), v,x0 ∈R3 and t0 ∈R.
For the sake of definiteness, consider the Newtonian equations of motion for a

system of point particles under the influence of pair forces, each of which is directed
along the connecting line between the two particles involved and has magnitude
depending only on their distance: this covers a large number of physically important
cases. In the absence of external forces, all forces can be derived from a common
potential V = V (|x1 − x2| , . . . , |xi − xj | , . . . ) , and the Newtonian equations of
motion become

mi
d2xi
dt2

= − ∇iV . (7.7)
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It is immediately verified that these equations are invariant under Galilei transfor-
mations

xi 7→ Rxi + vt + x0 , t 7→ t + t0 . (7.8)

Of course, the equations (7.7) refer to natural coordinates in an inertial system, so
their invariance under the Galilei transformations (7.8) is the formal expression of
the relativity principle of Newtonian mechanics. The conception of absolute time
and of instantaneous interaction is already expressed through the introduction of
a potential that depends only on the relative positions of the particles.

Electrodynamics (in vacuum) does not obey the relativity principle of Newto-
nian mechanics, i.e., it is not Galilei invariant. Indeed, Maxwell’s equations (in
vacuum) explicitly contain a universal velocity c and imply that light (in vacuum)
propagates isotropically with this velocity.

The ether hypothesis interpreted this fact by giving up the principle of relativity
itself, postulating that Maxwell’s equations be valid only in one distinguished iner-
tial system, that of the ether. According to this idea, light really never propagates
in a complete vacuum but rather in a medium, the ether – just like sound always
propagates in a medium, such as air – and the distinguished inertial system is sim-
ply that in which the ether is at rest. Indeed, some phenomena such as the Doppler
effect and the aberration of light are consistent with this hypothesis. However, all
experiments aiming at some kind of direct evidence for the existence of the ether,
basically by trying to measure the motion of sources of light relative to the ether,
among them the famous Michelson-Morley experiment, have failed.

Rather than trying to explain this failure by additional hypotheses about prop-
erties of the ether, Einstein concluded that the principle of relativity itself had
to be modified. Once this point of view is adopted, one almost obviously arrives
at the Einsteinian principle of relativity which supplements the requirements (R1)
and (R2) by the postulate of the constancy and universality of the speed of light:

(RE) The speed of light in vacuum c is finite and universal: Relative to an arbitrary
inertial system, the propagation of light in vacuum does not depend on the
state of motion of the source.

This requirement leads, as we shall see, to the Lorentz invariance of relativistic
mechanics and of electrodynamics.

Obviously, the Newtonian and the Einsteinian principle of relativity are in-
compatible: they contradict each other. The careful analysis of this contradiction
led Einstein to his fundamental criticism of the concept of absolute time and in
particular of the concept or simultaneity. Indeed, in Newtonian mechanics, the
synchronization of spatially far distant clocks that are at rest in a given inertial
system does not cause any problems and will be the same for any observer, in-
dependently of his state of motion: it can be carried out, for example, by simply
transporting the clocks or by rigid rods or by other instantaneously propagating
signals. If on the other hand one adopts the Einsteinian principle of relativity, syn-
chronization becomes problematic and one is forced to specify a synchronization
procedure. There are different possibilities for doing this, but the most natural one
is
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Einstein’s synchronization procedure:

In a given inertial system, consider a clock at rest and located at the
origin, U(0), as well as another clock of the same kind at rest but located
at another point x, U(x). When U(0) shows the time t1, a source at
rest and located at the origin emits a light pulse that propagates to the
point x, is reflected there and returns to the origin, arriving there when
U(0) shows the time t3. U(x) is said to be synchronized with U(0) if,
at the moment when the light pulse is reflected at the point x, U(x)
shows the time

t2 = t1 + 1
2 (t3 − t1) = t1 + |x| /c

where c is the speed of light in vacuum.

This synchronization procedure is certainly universal because it can be carried
out intrinsically within any given inertial system. Moreover, it guarantees that
light signals emanating from sources at rest propagate isotropically and with the
universal velocity c. (Instead of light, one could use any other form of transmission
of signals, provided it takes place isotropically with a known and fixed velocity
of propagation v0.) Conversely, Einstein’s definition of t2 as being simply the
arithmetic mean of t1 and t3 is suggested by the requirement of isotropy of the
propagation of light, since if more generally we set, e.g., t̃2 = t1 + ε(t3 − t1) with
0≤ε≤1, uniform rectilinear motion would still remain uniform rectilinear motion,
but the propagation of light signals would for ε 6= 1/2 take a more complicated
form: the isotropy of the propagation of light would be hidden by an asymmetry
in the choice of coordinates (in this case, the time coordinate).

We shall show later that Einstein’s synchronization procedure coincides with
the synchronization of clocks by slow transport.

To fix natural coordinates in inertial systems, we must not only determine the
time coordinate by synchronizing clocks but also spatial coordinates: this can, as
mentioned before, be done by introducing an oriented orthonormal 3-frame.

An inertial system with coordinates given by natural measuring rods and nat-
ural clocks, synchronized according to Einstein’s procedure, will in the following
be called a Lorentz system. Special relativity describes the phenomena of nature
as viewed from Lorentz systems, postulating that all laws of nature have the same
form in all of them. In particular, Maxwell’s equations are valid in any Lorentz
system.

7.2 Lorentz Transformations

The form of the coordinate transformations from one Lorentz system I to another
Lorentz system I ′ is fixed by the Einsteinian principle of relativity. For its de-
scription it is convenient to replace t by the new time coordinate x0 = ct and to
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introduce the following canonical basis in R4:

e0 =


1
0
0
0

 , e1 =


0
1
0
0

 , e2 =


0
0
1
0

 , e3 =


0
0
0
1

 . (7.9)

The coordinates of an event are then given by the components of the four-vector

x =


x0

x1

x2

x3

 =
(
x0

x

)
∈ R4 . (7.10)

We shall usually denote the components of x by xµ, following the convention that
greek indices µ, ν, κ, λ, . . . assume the values 0, 1, 2 and 3 while latin indices i,
j, k, l, . . . assume the values 1, 2 and 3. Thus we have

x = xµeµ = x0e0 + x1e1 + x2e2 + x3e3 (7.11)

in analogy with
x = xiei = x1e1 + x2e2 + x3e3 (7.12)

(see Appendix). With this notation, the coordinate transformations between
Lorentz systems take the form

x′ = Λx+ a , (7.13)

or written in components
x′µ = Λµνx

ν + aν . (7.14)

Here, the four-vector a ∈R4 represents a shift of the origin of the space-time co-
ordinate system. Such translations are certainly always possible but are also com-
pletely under control, so that it will be sufficient to discuss the homogeneous part.
In other words, we want to determine the linear transformations Λ that give rise to
coordinate transformations between Lorentz systems. Of course, these must again
form a group which, for the time being, we shall denote by Γ̃ : it is the subgroup of
the group Γ introduced above consisting of those coordinate transformations that
leave the origin of the space-time coordinate system invariant. It will be shown in
this section that Γ̃ , and hence also Γ , are completely fixed by the postulate of the
constancy and universality of the speed of light.

To this end, we first define a non-degenerate symmetric bilinear form η on R4

which plays a fundamental role in all of relativity; it is given by

η(x, y) = ηµνx
µxν , (7.15)

where

η00 = + 1 , η11 = η22 = η33 = − 1 , ηµν = 0 for µ 6= ν . (7.16)
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One often writes x · y instead of η(x, y), so that

x · y = x0y0 − x · y . (7.17)

With respect to the scalar product given by η, R4 becomes a four-dimensional
pseudo-Euclidean vector space, called Minkowski space, in which the canonical
basis (7.9) is an orthonormal basis (see Appendix).

The scalar product in Minkowski space is not positive definite (nor is it negative
definite); in particular, there do exist four-vectors x 6=0 for which η(x, x) = 0. Such
four-vectors are called lightlike or null, and the set of all such vectors forms a double
cone in Minkowski space, called the light cone (see Fig. 7.1). The term “lightlike”
is motivated by the fact that a light pulse emitted at time x0/c from the point x
in the direction of the vector y − x will arrive at time y0/c at the point y if and
only if

|y − x| = y0 − x0 ,

that is, if and only if the four-vector y − x ∈R4 is lightlike (and satisfies y0>x0),
as well as by the fact that this statement, according to the postulate of the con-
stancy and universality of the speed of light, must be valid in any Lorentz system
– independently of the state of motion of the source that emits the light pulse or
of the detector that receives it.

Fig. 7.1: Light cone in Minkowski space (one space dimension is suppressed)

For the homogeneous coordinate transformations Λ ∈ Γ̃ between Lorentz systems,
this postulate amounts to requiring that they must map lightlike four-vectors to
lightlike four-vectors:

η(x, x) = 0 =⇒ η(Λx,Λx) = 0 . (7.18)



8 7 Special Relativity

But this implies
η(Λx,Λy) = a(Λ) η(x, y) (7.19)

with a scalar factor a(Λ) depending on the transformation Λ.

In order to prove this statement, we split Minkowski space into two subspaces
V+ and V− which are orthogonal with respect to η, where V+ consists of all
scalar multiples of e0 and V− consists of all linear combinations of e1, e2 and
e3; then η is positive definite on V+ and negative definite on V− . Next, we
set

a(Λ) = η(Λe0, Λe0) .

Then to begin with, we have for x+ ∈V+ with x+ = x0e0

η(x+, x+) = (x0)2 , η(Λx+, Λx+) = (x0)2 η(Λe0, Λe0) ,

so

η(Λx+, Λx+) = a(Λ) η(x+, x+) . (7.20-a)

On the other hand, we have for x+ ∈V+ and x− ∈V−

η(Λx+, Λx−) = 0 , (7.20-b)

η(Λx−, Λx−) = a(Λ) η(x−, x−) . (7.20-c)

For the proof, we may assume without loss of generality that x+ 6=0, x− 6=0
and may replace the vector x+ in eqn (7.20-b) by the rescaled vector

y+ =

√
− η(x−, x−)

η(x+, x+)
x+ =

√
− η(x−, x−) e0

The normalization of y+ has been chosen in such a way that the vectors
x− + y+ and x− − y+ are both lightlike:

η(x− ± y+, x− ± y+) = 0 .

This implies

η(Λ(x− ± y+), Λ(x− ± y+)) = 0 ,

i.e.,

η(Λx−, Λx−) + η(Λy+, Λy+) ± 2η(Λx−, Λy+) = 0 ,

so we get

η(Λx−, Λy+) = 0

and, using eqn (7.20-a),

η(Λx−, Λx−) = − η(Λy+, Λy+) = − a(Λ) η(y+, y+) = a(Λ) η(x−, x−) .

Combining eqns (7.20-a)–(7.20-c) gives, for any four-vector x ∈R4,

η(Λx,Λx) = a(Λ) η(x, x) .

Replacing x in this formula first by x + y and then by x− y and taking the
difference between the two resulting equations, we arrive at eqn (7.19).
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In index notation and in matrix notation, eqn (7.19) takes the form

ηκλ Λ
κ
µ Λ

λ
ν = a(Λ) ηµν (7.21)

and
ΛTηΛ = a(Λ) η (7.22)

respectively, where the factor a(Λ) is always positive: a(Λ) > 0.

The possibility a(Λ) = 0 can be excluded since η is non-degenerate and
Λ has an inverse. Indeed, suppose a(Λ) < 0 ; then η would be negative
definite on the three-dimensional subspace V− but positive definite on the
three-dimensional subspace ΛV−, i.e., would be simultaneously positive and
negative definite on their intersection V− ∩ ΛV−, which would be possible
only if this intersection were trivial: V− ∩ ΛV− = {0}. This however can be
excluded on purely dimensional grounds: according to the formula

dim (V1 + V2) + dim (V1 ∩ V2) = dim (V1) + dim (V2)

which is valid for any two subspaces V1 and V2 of an arbitrary finite-
dimensional vector space W , we have in the pesent case dim (V− ∩ ΛV−) ≥ 2.

Moreover, the factor a(Λ) is obviously multiplicative with respect to the compo-
sition of transformations:

a(Λ1Λ2) = a(Λ1) a(Λ2) . (7.23)

Therefore, the subset of linear transformations Λ on Minkowski space R4 that
satisfy the equations (7.19), (7.21) and (7.22) is a group Γ̂ which is essentially
built of two subgroups:

(a) Scale transformations are linear maps Dλ : R4 −→ R4 of the form

Dλx = λx with λ > 0 , (7.24)

thus satisfying the relation a(Dλ) = λ2. They form a subgroup of Γ̂ which
is isomorphic to the group R+ of positive real numbers, equipped with the
standard multiplication.

(b) Lorentz transformations are linear maps Λ : R4 −→ R4 with the property
that

η(Λx,Λy) = η(x, y) , (7.25)

or written in index notation,

ηκλ Λ
κ
µ Λ

λ
ν = ηµν , (7.26)

or written in matrix notation

ΛTηΛ = η , (7.27)

thus satisfying the relation a(Λ) = 1. They form a subgroup of Γ̂ which
is identical with the pseudo-orthogonal group O(1, 3); it is also called the
Lorentz group and is often denoted by L.
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We see immediately that every transformation in Γ̂ can be written uniquely as the
product of a scale transformation and a Lorentz transformation, where the order
of the factors in the product is irrelevant because scale transformations commute
with Lorentz transformations (even with general linear transformations). Thus Γ̂
has the structure of a direct product

Γ̂ ' R+ × L . (7.28)

Our next step will be to investigate the structure of the Lorentz group L more
closely. We begin with the statement that L is not connected but rather splits into
four different connected components:

L = L↑+ ∪ L
↓
+ ∪ L

↑
− ∪ L

↓
− . (7.29)

For the proof, consider first the determinant and second the sign of the 00 diagonal
element: For Λ ∈L, we have

det(η) = det(ΛT η Λ) = det(ΛT) det(η) det(Λ)

and therefore
det(Λ) = ± 1 , (7.30)

as well as

1 = η00 = ηκλ Λ
κ
0 Λ

λ
0 = (Λ0

0)2 − (Λ1
0)2 − (Λ2

0)2 − (Λ3
0)2

and therefore ∣∣Λ0
0

∣∣ ≥ 1 . (7.31)

Then by definition,

L↑+ = {Λ ∈L / det(Λ) = + 1 , Λ0
0 ≥ + 1 } ,

L↓+ = {Λ ∈L / det(Λ) = + 1 , Λ0
0 ≤ − 1 } ,

L↑− = {Λ ∈L / det(Λ) = − 1 , Λ0
0 ≥ + 1 } ,

L↓− = {Λ ∈L / det(Λ) = − 1 , Λ0
0 ≤ − 1 } .

(7.32)

These subsets may be combined into subgroups by forming the group L+ of proper
Lorentz transformations,

L+ = L↑+ ∪ L
↓
+ = {Λ ∈L / det(Λ) = 1 } , (7.33)

the group L↑ of orthochronous Lorentz transformations,

L↑ = L↑+ ∪ L
↑
− = {Λ ∈L /Λ0

0 ≥ 1 } , (7.34)

and their intersection, the group L↑+ of proper orthochronous Lorentz transforma-
tions, as specified in eqn (7.32).

Within each of the subsets L↑−, L↓− and L↓+ specified in eqn (7.32) above, we
can identify a distinguished element, namely the spatial reflection or parity trans-
formation P , the time reversal transformation T and the total reflection PT ,
respectively, which are defined by
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P

(
x0

x

)
=
(
x0

−x

)
, i.e., P =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,

T

(
x0

x

)
=
(
−x0

x

)
, i.e., T =


−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1

 , (7.35)

PT (x) = − x , i.e., PT =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,

It is immediately verified that every Lorentz transformation Λ ∈L can be uniquely
represented in the form

Λ = Pn Tm Λ0 with n,m ∈ {0, 1} , Λ0 ∈L
↑
+ . (7.36)

Therefore, the problem is reduced to the task of clarifying the structure of the
proper orthochronous Lorentz group; in particular, we still have to show that L↑+
is indeed connected.

To this end, we remark first that L↑+ contains, in a natural way, the rotation
group SO(3):

R̃ =


1 0 0 0
0
0 R
0

 ∈ L↑+ for R ∈SO(3) . (7.37)

Indeed, we obviously have

R̃

(
x0

x

)
=
(
x0

Rx

)
(7.38)

and hence

η(R̃x, R̃y) = x0y0 − (Rx) · (Ry) = x0y0 − x · y = η(x, y)

as well as det(R̃) = 1 and R̃0
0 = 1. Normally, the R̃ are identified with the R and

are called the rotations in Minkowski space; they form a subgroup of the (proper
orthochronous) Lorentz group isomorphic to the rotation group SO(3). For later
use, note also that a (proper orthochronous) Lorentz transformation Λ ∈L↑+ is a
rotation if and only if

Λe0 = e0 . (7.39)
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Next we shall determine those (proper orthochronous) Lorentz transformations
Λ ∈L↑+ that leave, say, the coordinates x2 and x3 fixed, i.e., are of the form

Λ =


Λ0

0 Λ0
1 0 0

Λ1
0 Λ1

1 0 0
0 0 1 0
0 0 0 1


For these, we must have

(Λ0
0)2 − (Λ1

0)2 = η(Λe0, Λe0) = η(e0, e0) = + 1 ,

(Λ0
1)2 − (Λ1

1)2 = η(Λe1, Λe1) = η(e1, e1) = − 1 ,

Λ0
0 Λ

0
1 − Λ1

0 Λ
1
1 = η(Λe0, Λe1) = η(e0, e1) = 0 ,

as well as
Λ0

0 ≥ 1

and
det(Λ) = Λ0

0 Λ
1
1 − Λ1

0 Λ
0
1 = 1 .

The most general solution of this system of equations can be written in the form

Λ0
0 = Λ1

1 = cosh θ , Λ1
0 = Λ0

1 = − sinh θ

with some θ ∈R which is arbitrary; we shall denote this transformation by Λ1(θ):

Λ1(θ) =


cosh θ − sinh θ 0 0
− sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1

 . (7.40)

Lorentz transformations of the form Λ1(θ) are called boosts in the 1-direction
and the parameter θ is called the rapidity. Its interpretation can be derived by
considering the action of Λ1(θ) on four-vectors x ∈R4 :

x′0 = cosh θ x0 − sinh θ x1 ,

x′1 = cosh θ x1 − sinh θ x0 , (7.41)
x′2 = x2 , x′3 = x3 .

In particular, we have x′1 = 0 if and only if x1 = ct tanh θ = vt . Thus Λ1(θ)
describes a coordinate transformation in which the origin of I ′, as viewed from I,
moves with velocity

v = c tanh θ (7.42)

in the 1-direction. Expressing the rapidity θ in terms of the velocity v, the trans-
formations (7.41) become

x′0 = γ (x0 − βx1) ,
x′1 = γ (x1 − βx0) , (7.43)

x′2 = x2 , x′3 = x3 ,
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with
β =

v

c
and γ =

1√
1− β2

=
1√

1− v2/c2
(7.44)

or even more explicitly,

t′ =
t− vx1/c2√

1− v2/c2
,

x′1 =
x1 − vt√
1− v2/c2

, (7.45)

x′2 = x2 , x′3 = x3 .

The definition of boosts Λ2(θ) in the 2-direction and boosts Λ3(θ) in the 3-
direction, as well as, more generally, of boosts Λ(n, θ) along an arbitrary unit
vector n in 3-space, is analogous. For example, eqn (7.40) is extended to

Λ1(θ) =


cosh θ − sinh θ 0 0
− sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1

 ,

Λ2(θ) =


cosh θ 0 − sinh θ 0

0 1 0 0
− sinh θ 0 cosh θ 0

0 0 0 1

 , (7.46)

Λ3(θ) =


cosh θ 0 0 − sinh θ

0 1 0 0
0 0 1 0

− sinh θ 0 0 cosh θ

 ,

whereas, in analogy with eqns (7.41) and (7.43), the action of Λ(n, θ) on four-
vectors in Minkowski space is given by

x′0 = cosh θ x0 − sinh θ (n·x) ,
x′‖ = cosh θx‖ − sinh θ x0 n , (7.47)

x′⊥ = x⊥ ,

with
v = c tanh θ n , (7.48)

or

x′0 = γ (x0 − β n·x) ,
x′‖ = γ (x‖ − βnx0) , (7.49)

x′⊥ = x⊥ ,

with
β =

v

c
and γ =

1√
1− β2

=
1√

1− v2/c2
(7.50)
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or even more explicitly,

t′ =
t− (v ·x)/c2√

1− v2/c2
,

x′‖ =
x‖ − vt√
1− v2/c2

, (7.51)

x′⊥ = x⊥ ,

where x‖ (x′‖) and x⊥ (x′⊥) denote the components of x (x′) parallel and orthog-
onal to n, respectively.

Thus Λ(n, θ) is a coordinate transformation between two Lorentz systems which
move with velocity v in relation to each other, where n, θ and v are related by
eqn (7.48); we shall also write B(v) rather than Λ(n, θ). The advantage of using
the rapidity θ instead of the velocity v (or the dimensionless velocity β = v/c) lies
in the simple composition rule: successive application of two boosts in the same
direction produces another boost, also in the same direction, where the rapidities
simply add:

Λ(n, θ1) Λ(n, θ2) = Λ(n, θ1 + θ2) . (7.52)

Translating this rule from the rapidities to the velocities gives

B(v1) B(v2) = B(v) (7.53)

with
v1 = v1n , v2 = v2n , v = vn (7.54)

and
v =

v1 + v2
1 + v1v2/c2

. (7.55)

The last equation is known as the relativistic addition theorem of velocities.
Moreover, we see from equations (7.47)–(7.51) that the speed of light c consti-
tutes an upper bound for the possible relative velocity between any two inertial
systems, since the quantity γ becomes infinite for v = c and imaginary for v > c,
whereas eqns (7.52) and (7.55) show that even the trick of combining several suc-
cessive boosts in the same direction will not allow us to bypass this upper bound.
In passing, we note that successive application of two boosts in different directions
will no longer produce a boost, i.e., the set of boosts does not provide a subgroup
of the (proper orthochronous) Lorentz group. However, boosts do behave naturally
under rotations:

R̃ Λ(n, θ) R̃−1 = Λ(Rn, θ)
or (7.56)

R̃ B(v) R̃−1 = B(Rv) .

Finally, every (proper orthochronous) Lorentz transformation Λ can be written
uniquely as the product of a boost B(Λ) with a rotation R̃(Λ):

Λ = B(Λ) R̃(Λ) . (7.57)
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Such a decomposition is known in mathematics as a Cartan decomposition – in this
case of the (proper orthochronous) Lorentz group.

For the proof, assume that Λ ∈L↑+ is given, and write

Λe0 = xΛ =

(
x0

Λ

xΛ

)
.

Due to
(x0

Λ)2 − (xΛ)2 = η(e0, e0) = 1 , x0
Λ ≥ 1

we may put

x0
Λ = cosh θ , |xΛ| = sinh θ , n = xΛ/|xΛ|

and obtain
Λ(n,− θ)Λe0 = e0 ,

i.e., Λ(n,− θ)Λ is a rotation, thus proving eqn (7.57) with B(Λ) = Λ(n, θ)
and R̃(Λ) = Λ(n,− θ)Λ.

The uniqueness of the decomposition is simply based on the fact that a
(proper orthochronous) Lorentz transformation which is simultaneously a
boost and a rotation must be the identity.

Using eqn (7.56), we may even show that every (proper orthochronous) Lorentz
transformation Λ ∈L↑+ can be written in the form

Λ = R̃(Λ)B0(Λ) R̃′(Λ) , (7.58)

where R̃ and R̃′ are rotations and B0 is a boost in some fixed direction n0; such
a decomposition is however no longer unique. The decomposition (7.57) also im-
plies that the proper orthochronous Lorentz group must be connected because the
rotation group SO(3) is connected: the fact that every element R ∈SO(3) can
be connected to the identity element through a continuous curve (which will be
taken for granted here) implies that the same holds true for every element Λ ∈L↑+.
Therefore, as has been stated before, the Lorentz group as a whole really does have
precisely four connected components.

Concluding, we are now in a position to prove that the homogeneous coordinate
transformations between Lorentz systems are exactly the proper orthochronous
Lorentz transformations:

Γ̃ = L↑+ . (7.59)

A first hint in this direction is provided by the observation that Γ̃ must be
contained in the subgroup L of Γ̂ : Indeed, one may argue that, according
to the principle of relativity and the isotropy of physical space, the factor
a(Λ) in eqns (7.19), (7.21) and (7.22) can only depend on the modulus of the
relative velocity of the inertial systems involved:

a(Λ) = a(|v|) .

But then we also get
a(Λ−1) = a(|v|) .
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Applzing the product rule (7.23) gives

a(|v|)2 = a(0) = 1 ,

and hence a(|v|) = 1 . In what follows, we shall however use a different
procedure, which allows to handle the discrete parts as well.

To this end, we start out from the observation that, due to isotropy of physical
space and by continuity, Γ̃ should contain

(a) arbitrary spatial rotations R̃,

(b) for every velocity v satisfying the condition v < c, precisely one boost B̃(v)
describing the transition from a given Lorentz system to a new one whose
origin moves relatively to the old one with velocity v.

On the other hand, Γ̃ should not contain

(c) the scale transformations Dλ,

(d) the reflections P and T ,

(e) combinations of these.

Indeed, the presence of such transformations within Γ̃ would violate the principle
of universality of the procedure for fixing coordinates in each Lorentz system, since
they would represent transformations between coordinate systems without relative
motion and with parallel coordinate axes. Natural coordinates in two such systems
must however be identical.

Now according to the equations (7.19), (7.21) and (7.22), Γ̃ is a subgroup of Γ̂ .
But we know from eqns (7.28) and (7.36) that every linear transformation Λ ∈ Γ̂
can be written uniquely in the form

Λ = Dλ P
n Tm Λ0 with λ > 0 , n,m ∈ {0, 1} , Λ0 ∈L

↑
+ . (7.60)

In particular, every Λ̃ ∈ Γ̃ is of the form

Λ̃ = Dλ P
n Tm Λ with λ > 0 , n,m ∈ {0, 1} , Λ ∈L↑+ , (7.61)

and according to (a) and (b), all Λ ∈L↑+ will appear in this way. But every Λ ∈L↑+
can be associated with only one value for λ, for n and for m, since otherwise the
subgroup property of Γ̃ would force at least one of the forbidden transformations
in (c)–(e) to belong to Γ̃ ; thus in eqn (7.61), the numbers λ, n and m are in fact
functions of Λ, with

λ(Λ1Λ2) = λ(Λ1) λ(Λ2) (7.62)

and

n(Λ1Λ2) = n(Λ1) + n(Λ2) mod 2 ,
m(Λ1Λ2) = m(Λ1) + m(Λ2) mod 2 .

(7.63)
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Moreover, we have n(1) = m(1) = 0, and as n(Λ) and m(Λ) must depend contin-
uously on Λ and L↑+ is connected, we get

n(Λ) = m(Λ) = 0

for all Λ ∈L↑+. It only remains to be shown that, similarly,

λ(Λ) = 1

for all Λ ∈L↑+; this is based on the multiplicativity expressed by eqn (7.62).

For the proof, we use the decomposition (7.57): Λ = BR̃ implies
λ(Λ) = λ(B)λ(R̃) , so it suffices to show that λ(R̃) = 1 and λ(B) = 1.

Now every rotation R̃ and every boost B can be written in the form

R̃ = S̃ R̃3(ϕ) S̃−1 and B = S̃ Λ3(θ) S̃−1 ,

respectively, where S̃ is an appropriate rotation while R̃3(ϕ) is a rotation
about the 3-axis with angle ϕ and Λ3(θ) is a boost in the 3-direction with
velocity v = c tanh θ. Due to the multiplicativity expressed by eqn (7.62),
we have

λ(R̃) = λ(S̃) λ(R̃3(ϕ)) λ(S̃−1) = λ(R̃3(ϕ))

and
λ(B) = λ(S̃) λ(Λ3(θ)) λ(S̃−1) = λ(Λ3(θ)) ,

as well as
R̃3(ϕ1 + ϕ2) = R̃3(ϕ1) R̃3(ϕ2)

and
Λ3(θ1 + θ2) = Λ3(θ1) Λ3(θ2) ,

so that
λ(R̃) = λ(R̃3(ϕ)) = exp (const. ϕ)

and
λ(B) = λ(Λ3(θ)) = exp (const. θ) .

However, when combining rotations about different axes or boosts in differ-
ent directions, the angles or rapidities do not simply add, so that the only
possibility to satisfy these conditions is to set const. ≡ 0, i.e., λ ≡ 1, as was
to be shown.

Thus we have definitely identified, on the basis of Einstein’s principle of relativity
alone, the group of all linear homogeneneous coordinate transformations between
Lorentz systems as being the proper orthochronous Lorentz group.

What remains to be added are the translations. One defines the Poincaré group
P , the proper Poincaré group P+, the orthochronous Poincaré group P ↑ and the
proper orthochronous Poincaré group P ↑+ as the groups of affine transformations in
Minkowski space whose homogeneous parts are the corresponding versions of the
Lorentz group:

P = { (a, Λ) / a ∈R4 , Λ ∈L } , (7.64)

P+ = { (a, Λ) / a ∈R4 , Λ ∈L+ } , (7.65)

P ↑ = { (a, Λ) / a ∈R4 , Λ ∈L↑ } , (7.66)

P ↑+ = { (a, Λ) / a ∈R4 , Λ ∈L↑+ } . (7.67)
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The multiplication law results from the interpretation of the pair (a, Λ) as a Lorentz
transformation Λ followed by a translation by a:

(a1, Λ1) (a2, Λ2) = (a1 + Λ1a2, Λ1Λ2) . (7.68)

We have thus proved completely, on the basis of Einstein’s principle of relativity
alone, that the invariance group of special relativity, i.e., the group of all coordinate
transformations between Lorentz systems, is the proper orthochronous Poincaré
group.

7.3 On the Geometry of Minkowski Space

In this section we shall investigate the question which four-vectors x ∈R4 can
be transformed into each other by proper orthochronous Lorentz transformations.
Two vectors x and x′ in Minkowski space will be called equivalent if there exists a
proper orthochronous Lorenty transformation Λ ∈L↑+ such that x′ = Λx; in this
case we write x ≈ x′. Obviously, “≈” does satisfy the defining properties of an
equivalence relation, namely

Reflexivity: x ≈ x ,
Symmetry: x ≈ x′ =⇒ x′ ≈ x ,

Transitivity: x ≈ x′ and x′ ≈ x′′ =⇒ x ≈ x′′ .

For the rotation group and vectors in three-dimensional Euclidean space R3, the
solution of the corresponding equivalence problem is well known: Vectors can be
transformed into each other by a rotation if and only if they have the same length.

For the Lorentz group and vectors in four-dimensional Minkowski space R4, the
second part of this statement remains valid: two four-vectors x and x′ can certainly
be transformed into each other by a Lorentz transformation only if their invariant
“length” with respect to the Lorentz metric η is the same:

x2 = x′2 .

Definition: A non-zero four-vector x in Minkowski space is called

timelike if x2 > 0 ,
lightlike or null if x2 = 0 ,

spacelike if x2 < 0 .

This gives four different classes of four-vectors, the fourth class being trivial, con-
sisting of the zero four-vector alone. Obviously, four-vectors in different classes
are inequivalent. Moreover, each class of timelike four-vectors of a given invariant
“length” and the class of lightlike four-vectors decompose into two distinct sub-
classes, according to the sign of their time component x0 (note that timelike and
lightlike vectors always satisfy x0 6=0).
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In order to show this, we consider an arbitrary four-vector

x =
(
x0

x

)
∈ R4

and its image

Λx = x′ =
(
x′0

x′

)
∈ R4

under a proper orthochronous Lorentz transformation Λ ∈L↑+.

If x is timelike or lightlike, so is x′, and we have |x0|> |x|>0 and |x′0|> |x′|>0
or |x0|= |x|>0 and |x′0|= |x′|>0, respectively. In this case, Λ0

0≥1 implies that
x′0 and x0 have the same sign:

x0 ≥ 0 =⇒ x′0 = Λ0
0x

0 + Λ0
1x

1 + Λ0
2x

2 + Λ0
3x

3

≥ Λ0
0x

0 −
√

(Λ0
1)2 + (Λ0

2)2 + (Λ0
3)2 |x|

≥ Λ0
0 (x0 − |x|) ≥ 0 ,

x0 ≤ 0 =⇒ x′0 = Λ0
0x

0 + Λ0
1x

1 + Λ0
2x

2 + Λ0
3x

3

≤ Λ0
0x

0 +
√

(Λ0
1)2 + (Λ0

2)2 + (Λ0
3)2 |x|

≤ Λ0
0 (x0 + |x|) ≤ 0 .

Moreover, fixing a unit vector e ∈R3, we can verify the following statements:
If x is timelike, then by applying a boost Λ = B(v) with velocity v = cx/x0,
x can be brought to the normal form xN, where x0

N = (sgnx0)
√
x2 and xN = 0.

If x is lightlike, then by applying a boost Λ = B(v) with velocity

v = − (sgnx0) c
1− |x|2

1 + |x|2
x

|x|
,

x can be brought to the form x′, where x′0 = sgnx0 and x′ = x/|x| . By a
subsequent rotation, x′ may then be transformed into e.

If x is spacelike, then by applying a boost Λ = B(v) with velocity v = cx0x/|x|2,
x can be brought to the form x′, where x′0 = 0 and x′ =

√
−x2 x/|x| . By a

subsequent rotation, x′ may then be transformed into
√
−x2 e.

In this way, we arrive at the following subdivision of Minkowski space into
L↑+-invariant subsets (see Fig. 7.2):

R4 = V + ∪ V − ∪ V +
0 ∪ V

−
0 ∪R ∪ {0} . (7.69)
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Fig. 7.2: Subdivision of Minkowski space into L↑+-invariant subsets
(two space dimensions are suppressed)

For these subsets, the following terminology is used:

1. Elements of
V + = {x ∈R4 / x2 > 0 , x0 > 0 } (7.70)

and of
V − = {x ∈R4 / x2 > 0 , x0 < 0 } (7.71)

are called future oriented and past oriented timelike vectors, respectively. By
applying a proper orthochronous Lorentz transformation, such vectors may
be brought to the normal form(

+
√
x2

0

)
and

(
−
√
x2

0

)
, (7.72)

respectively.

2. Elements of
V +

0 = {x ∈R4 / x2 = 0 , x0 > 0 } (7.73)

and of
V −0 = {x ∈R4 / x2 = 0 , x0 < 0 } (7.74)

are called future oriented and past oriented, lightlike vectors, respectively. By
applying a proper orthochronous Lorenty transformation, such vectors may
be brought to the normal form(

+ 1
e

)
and

(
− 1
e

)
, (7.75)

respectively, where e denotes a fixed unit vector in R3.
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3. Elements of
R = {x ∈R4 / x2 < 0 } (7.76)

are called spacelike vectors. By applying a proper orthochronous Lorentz
transformation, such vectors may be brought to the normal form(

0
√
−x2 e

)
, (7.77)

where e denotes a fixed unit vector in R3. In particular, proper orthochronous
Lorentz transformations can change the sign of the time component of a
spacelike vector.

The sets V +
0 and V −0 are also called the forward or future light cone and the

backward or past light cone, respectively, whereas the sets

V̄ + = V + ∪ V +
0 ∪ {0} (7.78)

and
V̄ − = V − ∪ V −0 ∪ {0} (7.79)

are sometimes called the forward or future cone and the backward or past cone,
respectively; then V + is the interior and V +

0 ∪ {0} is the boundary of the forward
cone whereas V − is the interior and V −0 ∪ {0} is the boundary of the past cone.

Finally we agree to call two events represented by the four-vectors x and y
in R4 (with x 6= y) timelike separated or lightlike separated or spacelike separated
whenever we have (y − x)2 > 0 or (y − x)2 = 0 or (y − x)2 < 0, respectively. In
the case of timelike or lightlike separation, we can also define their temporal order:
if (y − x)2 ≥ 0, we say x is before y and y is after x if y0 > x0.

This subdivision has profound physical significance:
Suppose first that x and y are timelike or lightlike separated, i.e.,∣∣y0 − x0

∣∣ ≥ |y − x| .
Obviously, such events can, at least in principle, be connected by a signal or a
causal influence whose velocity of propagation does not exceed the speed of light.
If on the other hand x and y are spacelike separated, i.e.,∣∣y0 − x0

∣∣ < |y − x| ,
then a signal to be exchanged between two such events would have to propagate
with a medium velocity

v = c
|y − x|
|y0 − x0|

> c .

If such signals existed, then by passing to another inertial system we could switch
the temporal order between the event of its emission and the event of its reception.
The consequences of this possibility are absurd: a phenomenon of this kind would
jeopardize the possibility to distinguish in an invariant way between cause and
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effect, and we would be forced to give up either the principle of relativity or the
principle of causality. This fundamental problem is the real reason behind the
special role of the speed of light as the maximal possible velocity of propagation
for signals and for any kind of causal influence. In particular, the velocity of point
particles is limited by the speed of light – at least as far as they may be used to
transmit information or any other kind of causal influence. If on the other hand
one wants to transmit information by using wave phenomena, one has to take into
account that the phase velocity

vph = ω(k)/k

of a plane wave may very well exceed the speed of light because such a wave
is inadequate for transmitting signals. Transmitting information requires using
pulses, that is, wave packets, which propagate with the group velocity

vgr = |∇k ω(k)| .

For example, we have for a wave guide

ω(k) =
√
ω2

0 + k2c2 ,

so that

vph =

√
ω2

0 + k2c2

k
> c , vgr =

kc2√
ω2

0 + k2c2
< c .

A more precise analysis reveals that the really relevant quantity is the front end
velocity

vfr = lim
k→∞

ω(k)
k

;

this is the velocity of propagation in space of the first signal of a wave whose source
has been turned on instantaneously.

Quite generally and as a matter of principle it may be stated that only timelike
or lightlike separated events can be causally related and that their causal relation-
ship (the order of cause and effect) is independent of the chosen inertial system.
For spacelike separated events, on the other hand, one can always find an inertial
system I in which they are simultaneous, but they will then no longer be simulta-
neous in an inertial system I ′ that is moving with respect I: this is the relativity
of simultaneity.

To conclude this section, we report two other interesting results on the charac-
terization of Lorentz transformations as transformations between inertial systems.

1. As early as 1911, P. Frank and H. Rothe have investigated to what extent
the general requirements (R1) and (R2) of the principle of relativity alone –
that is, homogeneity and isotropy of space and time together with physical
equivalence between all inertial systems – determine the transformations be-
tween inertial systems. We have already seen that these transformations must
be affine and must form a group. It turns out that for the homogeneneous
transformations there remain only three possibilities:
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a) homogeneous Galilei transformations,

b) Lorentz transformations with a finite limit velocity c∞,

c) four-dimensional rotations.

Possibility c) can be immediately discarded because in this case one could by
an appropriate rotation invert the sign of any coordinate, so that the temporal
order between any two events would always depend on the inertial system.
Homogeneous Galilei transformations result from Lorentz transformations by
considering the limit c∞ → ∞. Which of the two possibilities a) or b) is
realized therefore depends on whether there exists a finite limit velocity c∞
for signals or not; if it does, it is also a limit for the relative velocity between
inertial systems.

2. The orthochronous Lorentz transformations can be characterized solely by
their property of preserving the temporal order between events. More pre-
cisely, E.C. Zeeman has in 1964 proved the following theorem:

Let f : R4 −→ R4 be an invertible causal mapping, i.e., for any two events
x, y ∈R4, f(y) is timelike separated and after f(x) if and only if y is timelike
separated and after x. Then f is of the form

f(x) = λΛx + a ,

where λ>0, Λ ∈L↑ and a ∈R4. Observe that no additional assumptions on f
(such as differentiability or even continuity) are needed: all these properties
already follow from the hypothesis of causality.

7.4 Behavior under Lorentz Transformations

7.4.1 Time Dilatation

Consider a clock at rest in an inertial system I. Two subsequent time beats of
the clock correspond to events represented by four-vectors x and y with timelike
difference vector ∆x = y − x. In I, we have x = (ct,x), y = (c(t + ∆t),x) and
∆x = (c∆t, 0) where c∆t =

√
(∆x)2. By applying a boost with velocity −v, we

pass to an inertial system I ′ in which the clock moves with velocity v = cβn and
find

∆t′ = ∆t
1√

1− v2/c2
. (7.80)

The effect, called relativistic time dilatation, is that moving clocks run more slowly,
since ∆t ≤ ∆t′. The shortest possible time difference is the time difference ∆t
measured in the inertial system I in which the clock is at rest and is called the
proper time difference.

The effect of time dilatation can be verified experimentally, e.g., by the increased
lifetime of rapidly moving unstable particles, such as pions and muons in cosmic
radiation or the great majority of particles produced in accelerator experiments.
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It is also the reason why one has to be careful when synchronizing clocks by physical
transport from one place to another. In a given inertial system, moving a clock by
a distance L with velocity v requires the time T = L/v. According to the clock
itself, however, the time elapsed is only

T0 = (L/v)
√

1− v2/c2 .

For v�c, the difference

∆T = T − T0 = (L/v) (1−
√

1− v2/c2)

is to first order given by

∆T =
Lv

c2
.

Thus as announced before, the difference can be made arbitrarily small by suffi-
ciently slow transport.

7.4.2 Lorentz Contraction, Relativity of Simultaneity

Consider a measuring rod at rest in an inertial system I and oriented along some
given unit vector e. At a given time t, the two ends of the measuring rod corre-
spond to events represented by four-vectors x and y with spacelike difference vector
∆x = y − x. In I, we have x = (ct,x), y = (ct,y) and ∆x = (0,∆le) where
∆l =

√
−(∆x)2. By applying a boost with velocity −v, we pass to an inertial

system I ′ in which the measuring rod moves with velocity v = cβn and find

∆t′ =
β n·e
c

∆l√
1− v2/c2

. (7.81)

In particular, we see that ∆t′ 6= 0 but ∆t = 0 (relativity of simultaneity). More-
over,

∆x′‖ =
∆l√

1− v2/c2
e‖ , ∆x′⊥ = ∆l e⊥ .

However, because of ∆t′ 6= 0, the length of the measuring rod in I ′ is not equal
to the absolute value of ∆x′ but rather to the spatial distance between the world
points of the rod’s beginning and end point when these are simultaneous in I ′:

∆l′ = |y′ − x′| when y′0 = x′0 .

Now we have

x′0 = γ (x0 + β n·x) , y′0 = γ (y0 + β n·y)
x′‖ = γ (x‖ + βnx0) , y′‖ = γ (y‖ + βny0)

x′⊥ = x⊥ , y′⊥ = y⊥

and therefore

y′0 = x′0 =⇒ y0 − x0 = − β n · (y − x) = − β n·e ∆l ,

=⇒ y′‖ − x
′
‖ = γ

(
(y‖ − x‖) + βn

(
y0 − x0

))
= γ (1− β2) ∆l (n·e)n ,
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so that

∆l′ = ∆l
√

1− v2/c2 when n ‖ e , ∆l′ = ∆l when n⊥ e . (7.82)

The effect, called Lorentz contraction, is that moving bodies are contracted in the
direction of motion, since ∆l′ ≤ ∆l, whereas there is no contraction orthogonal to
the direction of motion; thus volumes are also reduced by the same factor:

V ′ = V
√

1− v2/c2 . (7.83)

The greatest possible length of a measuring rod is the length ∆l measured in the
inertial system I in which it is at rest and is called its proper length.

The effect of Lorentz contraction differs from that of time dilatation in that it
cannot be observed directly. One reason is that the image produced by a rapidly
flying object on a detector, such as the retina of an observer or a photographic plate,
is determined by the distribution of photons emitted or reflected by the object at
different times so that they may arrive at the detector at a given instant, that is,
simultaneously. A detailed analysis shows that the resulting image is not contracted
in one direction (flattened) but rather rotated by an angle ϕ = arctan(v/c).

7.4.3 Addition Theorem of Velocities

Consider a body moving uniformly in a straight line with respect to an inertial
system I, with velocity v; it will then also be moving uniformly in a straight line
with respect to any other inertial system I ′, with velocity v′. Assuming that I ′

moves with velocity −w as measured from I, we may divide the spatial components
of eq. (7.49) by its time component to obtain

v′‖ =
v‖ +w

1 + v ·w/c2
, v′⊥ = v⊥/γ . (7.84)

In particular, when v ‖w, we recover the previously derived relativistic addition
theorem of velocities, eq. (7.55). Again, the speed of light c appears as an upper
bound for velocities.

7.4.4 Doppler Effect and Aberration of Light

Consider a plane wave

u(t,x) = u0 exp (− i(ωt− k·x)) = u0 exp (− iϕ(t,x)) .

Putting

k =
(
ω/c
k

)
∈ R4 , (7.85)

we can write its phase as ϕ(t,x) = k·x. This phase cannot depend on the reference
frame, which is possible if and only if under Lorentz transformations, k transforms
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in the same way as x, or in other words, if k is a four-vector. Thus under a boost
Λ(n, θ) = B(v), k transforms according to

k′0 = γ (k0 − β n·k) ,
k′‖ = γ (k‖ − βnk0) , (7.86)

k′⊥ = k⊥ ,

with k0 = ω/c, k′0 = ω′/c (cf. eq. (7.49)). In particular, for light waves, we have
ω2/c2 = k2, i.e., k2 = 0: k is lightlike. In this case, the first equation in (7.86)
becomes

ω′ = γ ω (1− β cos θ) , (7.87)

where θ denotes the angle between n and k: this frequency shift is the relativistic
Doppler effect. For β � 1, one finds the classical Doppler effect, which agrees
with the one that would result from the ether hypothesis. In addition, there is a
transversal Doppler effect, occuring even when θ = π/2; it is however of order β2.
Finally, using k′⊥ = k⊥ and |k⊥| = |k| sin θ, |k′⊥| = |k

′| sin θ′, we get

sin θ′ =
|k|
|k′|

sin θ =
ω

ω′
sin θ ,

so using the previous equation,

sin θ′ =
√

1− β2
sin θ

1− β cos θ
. (7.88)

Thus the apparent direction of a light ray depends on the reference frame: this
is the relativistic aberration of light. For β� 1, one finds the classical aberration
effect, which agrees with the one that would result from the ether hypothesis; it is
observed as as shift of the position of fixed stars due to the orbital motion of the
earth around the sun.

7.5 Relativistic Cinematics
of a Point Particle

In non-relativistic mechanics, the motion of a point particle is described by its
trajectory t 7→ x(t) which gives its position as a function of time. A relativistic
theory requires an analogous treatment which must however be more symmetric in
t and x. To this end, one introduces a new parameter σ and describes the motion
in terms of a world line σ 7→ x(σ) where

x(σ) =
(
x0(σ)
x(σ)

)
. (7.89)

The parameter σ is arbitrary and has no physical significance, but it will be required
to increase monotonically with t:

dx0

dσ
> 0 . (7.90)



7.5 Relativistic Cinematics of a Point Particle 27

In addition, physically realizable motions will satisfy∣∣∣∣dxdσ
∣∣∣∣ / dx0

dσ
=

1
c

∣∣∣∣dxdt
∣∣∣∣ ≤ 1 ,

i.e., (
dx

dσ

)2

≥ 0 . (7.91)

This condition is Lorentz invariant and does not depend on the parametrization.
In a space-time diagram, the world line will be the graph of a function over the
time axis (with respect to any inertial system) and its inclination will never be less
than 1 (see Fig. 7.3).

Fig. 7.3: Space-time diagram with world line of a point particle
(two space dimensions are suppressed)

The Lorentz invariant quantity

τ12 =
1
c

∫ σ2

σ1

dσ

√(
dx

dσ

)2

=
∫ t2

t1

dt

√
1− v2(t)

c2
(7.92)

does not depend on the parametrization and is the proper time measured by a
comoving observer, using a set of clocks each of which is in uniform rectilinear
motion and momentarily at rest relative to the particle. Such a set of clocks can
be considered as the idealization of a real clock carried along the trajectory and
insensitive to acceleration. More realistically, one can measure the acceleration
along the trajectory and use the result to correct for the deviation in the clock’s
pace, as compared to a non-accelerated clock of the same design. For example,
a quartz clock is to a good approximation insensitive to acceleration, in contrast
to a pendulum clock. In the same sense, the “biological clock” of a comoving
observer is insensitive to acceleration, at least when the acceleration is not too
great. Therefore, τ12 is also the time interval measured and experienced by a
comoving observer.
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Proper time τ is a particulary natural and preferred Lorentz invariant parameter
for timelike world lines, i.e., world lines σ 7→ x(σ) satisfying(

dx

dσ

)2

> 0 . (7.93)

They are the world lines along which the speed of light is never reached. Obviously,

dτ

dσ
=

1
c

√(
dx

dσ

)2

=
dt

dσ

√
1− v2(t)

c2
. (7.94)

Moreover, eq. (7.92) leads to the inequality

τ12 ≤ t2 − t1 , (7.95)

i.e., proper time differences are always smaller than or at most equal to coordinate
time differences, as measured in an arbitrary inertial system.

A classical thought experiment will help to further substantiate this result.
Imagine two twin brothers, one of whom remains at home in an inertial system
while the other embarks on a spaceship to undertake a high speed round trip; then
when he gets back and both meet again, the travelling twin will be younger than
the twin who has stayed back at home. To clarify this assertion, we show in Fig.
7.4 the world lines of the two brothers, as viewed from the inertial system of the
one who has stayed back at home.

Fig. 7.4: Twin experiment: world line of twin A staying at home and
general world line of travelling twin B, as viewed from twin A’s rest frame
(two space dimensions are suppressed)

This clear prediction of special relativity is very often questioned in the name
of “common sense” – so much that the situation has come to be referred to as the
twin paradox. Briefly, the main objection raised and used to classify the result as
paradoxical goes as follows.
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Special relativity states that a clock runs most slowly in its rest frame. But of
course, just as twin B move in relation to twin A, so does twin A move in relation
to twin B. Therefore, it is argued, just as twin A sees twin B age more slowly, so
should twin B see twin A age more slowly, and this is paradoxical: the only way
out would be that both twins have aged by the same amount.

Of course, this argument is fallacious because it is based on the tacit assumption
that the situation of the twins is symmetrical, which is not the case. Indeed, the
world line of A is straight, whereas the world line of B must be curved, at least
somewhere, if B and A are to meet again. This difference holds in any inertial
system. It can be observed physically, for example, by noting that B, in contrast
to A, will undergo acceleration, at least somewhere along his journey. One might
therefore be tempted to consider this acceleration as being the cause of the age
difference between A and B, shifting the effect into the realm of general relativity.

As we shall see, however, this view is not correct either. Indeed, the world line
of B can be arranged in such a way that B is almost always in uniform rectilinear
motion. Fig. 7.5 shows such a situation, in which the world line of B is piecewise
straight; acceleration is restricted to short (i.e., in principle, arbitrarily short) inter-
vals, in order to change the direction of the velocity of B. It would be very strange
if the entire age difference were accumulated during the short periods of accelera-
tion. Moreover, even if these are supposed to be spread out over longer intervals,
in order to avoid physically unbearable accelerations, the possibility of considering
the acceleration phase as the cause of the age difference between A and B can be
ruled out by comparing two possible journeys of B, B1 and B2, carried out with
identical periods of acceleration but different periods of uniform rectilinear motion,
since the age differences accumulated in the course of these two journeys – that
between A and B1 and that between A and B2 – are not equal. (Otherwise, one
would be led to the conclusion that one and the same cause can have two different
effects, and in fact arbitrarily many different effects, which is absurd.)

Sceptics use the limiting case of a piecewise straight world line to argue that
the situation of the twins should be symmetrical after all and that there should
thus be no age difference, since the period of acceleration, being arbitrarily short,
should have no effect.

Of course, special relativity does predict an age difference, even for piecewise
straight world lines. In fact, the effect is in this case particularly easy to compute.
Assuming that the velocities of B on the two straight pieces of B’s world line in
Fig. 7.5, as measured in A’s rest frame, are ±v, we get

τ12 =
√

1− v2/c2 (t2 − t1) < t2 − t1 .

The world lines of A and B are fundamentally different: that of A is straight
whereas that of B is only piecewise straight. The twin effect is not of dynamical
but of purely geometrical nature.

In a triangle with three positive timelike sides x, y and z = x+ y, the side z is,
measured in the Lorentz metric η, longer than the two other sides x and y taken
together. Indeed,

z2 = x2 + 2x·y + y2 .
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Fig. 7.5: Twin experiment: world line of twin A staying at home and piece-
wise straight world line of travelling twin B, as viewed from twin A’s rest frame
(two space dimensions are suppressed)

The quantity 2x·y is best evaluated in the rest frame of x:

2x·y = 2x0y0 = 2
√
x2
√
y2 + y2 ≥ 2

√
x2
√
y2 .

Thus

z2 ≥ x2 + 2
√
x2
√
y2 + y2 =

(√
x2 +

√
y2
)2

,

i.e., √
z2 ≥

√
x2 +

√
y2 . (7.96)

The twin effect is based on the geometry of timelike triangles in the Lorentz metric.
It is geometric in the sense that a “detour” in space-time leads to a shorter proper
time. In this respect, the Lorentz metric differs from the Euclidean metric, for
which any two sides of a triangle taken together are longer than the third. It is true
that the world line of the travelling twin cannot be realized without acceleration,
but it is inappropriate to consider this acceleration as the cause of the age difference
between the two, just as it would be absurd to consider the bends in the corners
of a triangle as the cause of the fact that the triangle is closed or that any of its
two sides taken together are longer than the third.

We want to study more closely how the age difference does come about by
analyzing a simple example (see Fig. 7.6). Assume that A is at rest in an inertial
system I whereas B, as seen from I, moves away from A with velocity v during the
time interval 0≤ t≤T/2 and then moves back towards A with velocity −v during
the time interval T/2≤ t≤T , so that both meet again at time t=T . Both of them
agree to emit light signals with frequency ν0, in order to keep the other informed
about their aging process. We want to calculate at what time B receives the light
signals emitted by A and at what time A receives the light signals emitted by B.
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To this end, we first write down the world lines of A and B, parametrized by the
respective proper time (which for A is simply t, the time coordinate in I, but for
B is τ = t/γ + const.), as well as the world lines of the light signals emitted by A
and by B.

Fig. 7.6: Twin experiment: the origin of the age difference; see text for more
details (two space dimensions are suppressed)

World line of A: xA(t) = (ct, 0)

World line of B: xB(τ) =
{

γτ(c, v) for 0 ≤ τ ≤ T/2γ
T (0, v) + γτ(c,−v) for T/2γ ≤ τ ≤ T/γ

World lines of
signals of A:

ξn(σ1) = xA(tn) + σ1(c,+c) ; tn = n/ν0

World lines of
signals of B:

ηn(σ2) = xB(τn) + σ2(c,−c) ; τn = n/ν0

The arrival times of the signals are simply found from the intersection points of
the world lines. Putting β = v/c, we find
Arrival of signals from A at B:

τ̃n =


n

ν0

√
1 + β

1− β
for 0 ≤ τ̃n ≤ T/2γ(

n

ν0
+ Tβ

) √
1− β
1 + β

for T/2γ ≤ τ̃n ≤ T/γ
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Arrival of signals from B at A:

t̃n =



n

ν0

√
1 + β

1− β
for 0 ≤ n/ν0 ≤ T/2γ

i.e. 0 ≤ t̃n ≤ (T/2)(1 + β)

n

ν0

√
1− β
1 + β

+ Tβ for T/2γ ≤ n/ν0 ≤ T/γ

i.e. (T/2)(1 + β) ≤ t̃n ≤ T

From this result, we may conclude the following.

a) Both A and B distinguish two phases: in the first phase they see signals
coming from the receding partner, in the second phase they see signals coming
from the approaching partner.

b) Both for A and for B, the arrival frequency of the signals, as compared to the
emission frequency ν0, is reduced to

ν1 = ν0

√
1− β
1 + β

during the first phase and enhanced to

ν2 = ν0

√
1 + β

1− β

during the second phase, by factors√
1− β
1 + β

and

√
1 + β

1− β
,

respectively, which are precisely the relative frequency shifts of the Doppler
effect. They are the same for A and B, so in this respect, we do have symmetry
between A and B. If the world line of B were straight, there would be only
the first phase, and the symmetry between A and B would be complete.

c) An asymmetry of geometric nature arises from the fact that for B, both phases
last for exactly half of the total proper time of the journey, whereas for A, the
first phase corresponds to the proper time interval 0 ≤ t ≤ (T/2)(1 + β) and
the second to the proper time interval (T/2)(1 + β) ≤ t ≤ T : for A, phase 1
lasts longer than phase 2.

d) The total number of signals received is
for B:

NB =
Tν0
2γ

√
1− β
1 + β

+
Tν0
2γ

√
1 + β

1− β

=
Tν0

2
(1− β + 1 + β) = Tν0 .
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for A:

NA =
Tν0

2
(1 + β)

√
1− β
1 + β

+
Tν0

2
(1− β)

√
1 + β

1− β

= Tν0
√

1− β2 .

Thus,
NA =

√
1− β2 NB < NB ,

that is, A receives less signals than B: B has aged less than A. The asymmetry
arises from the fact that for A the phase of higher signal frequency (blue
shift) is shorter than the phase of lower signal frequency (red shift). In other
words, the age difference is accumulated during the period in which A and
B are in different phases, rather than during the (arbitrarily short) period of
acceleration.

The last doubts as to the real existence of the twin phenomenon should have been
eliminated by the chronometer experiment of Hafele and Keating which consisted
in transporting a high precision clock in a standard airplane around the world and
measuring the time difference to a clock of the same design maintained at rest.

After this excursion, let us return to the subject of relativistic cinematics. The
four-vector

u =
dx

dτ
(7.97)

is called the four-velocity; it satisfies

u =
dx

dt

dt

dτ
= γ

(
c
v

)
, (7.98)

where as before v = dx/dt is the ordinary velocity. Obviously,

u2 =
(
dx

dτ

)2

= c2 . (7.99)

Next, we define the four-acceleration

a =
du

dτ
=

d2x

dτ2
(7.100)

and obtain

a =
du

dt

dt

dτ
= γ2

(
0
a

)
+

γ4 v ·a
c2

(
c
v

)
, (7.101)

where a = dv/dt = d2x/dt2 is the ordinary acceleration.1. Due to eq. (7.99), we
have

2u · du
dτ

=
d

dτ
(u2) = 0 ,

1Thus in the case of the four-acceleration, we deviate from our standard convention, in that
the three-dimensional vector formed by the spatial components of the four-acceleration a is not
the ordinary acceleration a; according to eq. (7.101) and eq. (7.103), this is only true in the rest
frame of the particle.
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i.e.,
u · a = 0 . (7.102)

This implies that a must be a spacelike four-vector, since u is a timelike four-vector.
In the momentary rest frame of the particle, we have

u =
(
c
0

)
, a =

(
0
a

)
. (7.103)

As a simple example of a problem of relativistic cinematics, we discuss the case
of uniformly accelerated motion, restricting ourselves for the sake of simplicity to
linear motion in one space dimension. (Thus during the remainder of this section,
x(τ) and v(τ) will represent the non-trivial spatial component of the four-vector
elsewhere denoted by x(τ) and u(τ), respectively.) This kind of motion can be char-
acterized, independently of the inertial system employed, by the Lorentz invariant
condition (

du

dτ

)2

= − a2 = const. . (7.104)

As we shall see, it is particularly convenient to use the rapidity θ of the momentary
rest frame of the particle, relative to the rest frame of the particle at the beginning
of its motion, as a function of the proper time τ . Due to

β = tanh θ , γ = cosh θ , βγ = sinh θ

(cf. eq. (7.42) and eq. (7.44)), we have

u = c

(
cosh θ
sinh θ

)
, a = c

dθ

dτ

(
sinh θ
cosh θ

)
and thus

a2 = − c2
(
dθ

dτ

)2

.

Comparing with eq. (7.104), this yields

dθ

dτ
=

a

c

with the solution
θ(τ) = aτ/c (7.105)

corresponding to the initial condition θ(0) = 0. Thus we get

β(τ) = tanh (aτ/c) , (7.106)

dt

dτ
= γ(τ) = cosh (aτ/c) , (7.107)

1
c

dx

dτ
= β(τ) γ(τ) = sinh (aτ/c) , (7.108)
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and by integration in τ with initial conditions t(0) = 0, x(0) = x0,

t(τ) =
c

a
sinh (aτ/c) , (7.109)

x(τ) =
c2

a
cosh (aτ/c) + x0 . (7.110)

Expressing τ in terms of t, we finally arrive at

x(t) =
c2

a

√
1 + (at/c)2 + x0 , (7.111)

v(t) =
at√

1 + (at/c)2
. (7.112)

In particular, we see that t→∞ is equivalent to τ →∞ and that for large times

x(t) ∼ ct , v(t) ∼ c for t→∞ , (7.113)

whereas for small times

x(t) ∼ 1
2 at

2 + x0 , v(t) ∼ at for at� c , (7.114)

which is the Newtonian limit.

7.6 Covariant Formalism

In the course of our discussion of the theory of special relativity, we have so far
identified the proper orthochronous Poincaré transformations as the admissible co-
ordinate transformations between Lorentz systems (that is, inertial systems with
natural coordinates), have studied the structure of these transformations and have
analyzed some of the resulting physical consequences. It is now time to proceed
to the core of Einstein’s principle of relativity, which in its full generality states
that all laws of physics must have the same form in all Lorentz systems, or ex-
pressed differently, must preserve their form under proper orthochronous Poincaré
transformations. Mathematically, this means that all laws of physics must be writ-
ten in relativistically covariant form, that is, as equations between quantities that
transform in the same way under the proper orthochronous Lorentz group. In
order to verify compatibility of a given physical theory with Einstein’s principle
of relativity, it is therefore necessary to first of all organize the physical quanti-
ties appearing in that theory into scalars, vectors or, more generally, tensors over
Minkowski space R4; one also speaks of world or four-scalars, world or four-vectors
and world or four-tensors, respectively. We have already encountered examples
of this procedure in the previous section, where in the course of our discussion
of the relativistic cinematics of point particles we introduced proper time τ as
a world scalar, as well as the position four-vector x, the four-velocity u and the
four-acceleration a as world vectors. Other important examples can be constructed
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from differential operators, such as the ordinary differential operator d/dτ , a world
scalar, the partial diffential operator

∂ = (∂0 ,∇) =
(

1
c

∂

∂t
,∇
)
, (7.115)

a world covector, and its square, the wave operator or d’Alembertian

2 ≡ ∂2 =
1
c2
∂2

∂t2
−∆ , (7.116)

a world scalar.
The natural formalism for handling relativistically covariant theories is thus

the tensor algebra and tensor analysis over Minkowski space R4. Its geometry is
determined by the scalar product η, and the Lorentz transformations are simply
the isometries of this four-dimensional pseudo-Euclidean vector space. In contrast
to the tensor calculus on standard three-dimensional Euclidean space, however, we
must now distinguish clearly between vectors and covectors and, more generally,
between contravariant and covariant tensors. In the so-called index calculus that
we shall employ in what follows, the relation between contravariant and covariant
components is established by pulling indices up and down with the help of the
scalar product η: numerically, this leaves the time components unchanged whereas
the spatial components switch sign. On the other hand, we shall continue to follow
the convention that upper and lower indices for components of three-dimensional
vectors need not be distinguished and shall therefore adopt the rule that the com-
ponents of three-vectors are to be identified with the corresponding components
of four-vectors (upper indices) and not of four-covectors (lower indices), with one
notable exception: the partial differential operator ∂ introduced above. Finally, we
agree to write both four-vectors and four-covectors as rows, rather than columns.
Thus, for example,

xµ = (ct,+x) ,
xµ = (ct,−x) ,

(7.117)

uµ = γ (c,+v) ,
uµ = γ (c,−v) ,

(7.118)

aµ = γ2

(
γ2 v ·a
c

, +a +
γ2 v ·a
c2

v

)
,

aµ = γ2

(
γ2 v ·a
c

, −a − γ2 v ·a
c2

v

)
,

(7.119)

but

∂µ =
(

1
c

∂

∂t
,−∇

)
,

∂µ =
(

1
c

∂

∂t
,+∇

)
.

(7.120)
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7.7 Relativistic Dynamics
of a Point Particle

According to the postulate of relativistic covariance formulated in the previous
section, we begin our approach to the formulation of the relativistic mechanics of
a point particle by introducing two more four-vectors: its four-momentum p which
is simply proportional to its four-velocity u and the four-force F which is simply
proportional to the four-acceleration a that it suffers:

pµ = muµ , (7.121)

Fµ = maµ . (7.122)

Then eq. (7.99) and eq. (7.102) imply

pµp
µ ≡ pµpµ ≡ p2 = (mc)2 , (7.123)

and
pµF

µ ≡ pµFµ ≡ p · F = 0 , (7.124)

respectively. Here, m is a positive real constant (that is, a four-scalar) called the
rest mass of the particle.

For the interpretation of eqns (7.121)–(7.124), we use eqns (7.118) and (7.119)
to write

pµ = mγ (c,v) , (7.125)

Fµ = mγ2

(
γ2 v ·a
c

, a +
γ2 v ·a
c2

v

)
. (7.126)

Expanding in powers of β = v/c, we obtain to lowest non-trivial order

E = cp0 =
mc2√

1− v2/c2
= mc2 + 1

2mv
2 + . . . , (7.127)

p =
mv√

1− v2/c2
= mv + . . . , (7.128)

cF 0 =
v ·ma

(1− v2/c2)2
= v ·ma + . . . , (7.129)

F =
ma

1− v2/c2
+

m (v ·a)v
(1− v2/c2)2

= ma + . . . . (7.130)

Comparing with Newtonian mechanics, we arrive directly at the desired physical
interpretation of four-momentum and four-force. Their spatial components are
the relativistic generalizations of the ordinary momentum pN = mv and of
the ordinary force FN = ma , respectively, whereas their time components (af-
ter multiplication by c) provide the relativistic generalizations of kinetic energy
EN = 1

2mv
2 and of power LN = v ·FN . (The index N is to indicate that these

are the well-known, non-relativistic expressions of Newtonian mechanics.) Thus
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eq. (7.122) is to be viewed as the relativistic equation of motion of a point par-
ticle; it extends and unites in a relativistically covariant fashion the Newtonian
equation of motion and the resulting energy balance. From eq. (7.130) we also see
that the constant m is really the rest mass of the particle, that is, the coefficient
that describes its inertia in its momentary rest frame. Indeed, the classical relation
p = mv does hold, at least approximately, for small velocities. The exact relation
between momentum and velocity, however, reads p = mγv. This means that the
inertial mass of a particle – which is the coefficient between the force acting on
it and the resulting acceleration – is enhanced by a factor of γ when viewed from
a moving reference frame rather than the particles’s momentary rest frame. This
phenomenon is known as the relativistic enhancement of mass and has been verified
experimentally with high precision; it must in particular be taken into account in
the construction of particle accelerators. From a theoretical point of view, it is
however not adequate to call the factor mγ a mass since although it is a scalar, it
is not a world scalar: only the rest mass has a Lorentz invariant meaning.

As has already been mentioned and is also indicated by the notation employed
in eq. (7.127), the time component of four-momentum (multiplied by a factor of c)
must in relativistic mechanics be interpreted as the total energy:

E = cp0 . (7.131)

In particular, it contains a constant contribution, namely

E0 = mc2 . (7.132)

It is proportional to the rest mass and can be called the rest energy of the particle.
This proportionality between rest mass and rest energy is certainly the most famous
prediction of special relativity. It results naturally from the necessity to reconcile
the basic laws of mechanics with Einstein’s principle of relativity. However, the
derivation given here, although plausible, is by no means compelling, since the
total energy E could differ from the time component p0 of four-momentum by some
additive constant. For example, it would be conceivable to replace eq. (7.127) by

E = cp0 −mc2 = mc2

(
1√

1− v2/c2
− 1

)
= 1

2mv
2 + . . . , (7.133)

a relation that in the limit of small velocities would be equally compatible with
Newtonian mechnics, in which the total energy is only determined up to an addi-
tive constant anyway. In order to rule out this possibility and to fix the additive
constant to the value given by eq. (7.127), it is necessary to consider the con-
servation laws for total energy and total spatial momentum in systems of point
particles, in the absence of external forces, for example in scattering processes:
these conservation laws can only be unified into a single conservation law for the
total four-momentum if the total energy is defined by eq. (7.131), i.e.,

E =
√
m2c4 + c2|p|2 , (7.134)

without any additional constant.
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It must be stressed that the conservation law for four-momentum in closed sys-
tems is valid for all scattering processes – elastic as well as inelastic. In particular,
the binding energy of bound states (which may for example be formed by inelastic
scattering) is reflected as a mass defect: the mass of a bound state is less than
the sum of the masses of its constituents. This fact provides the basis for energy
production in stars by nuclear fusion, so that our mere existence as human beings,
based on billions of years of biological evolution for which the shining of our sun
has furnished the source of energy, is proof enough for the correctness of Einstein’s
formula (7.132).

A particular but extremely important situation occurs when the rest mass m
vanishes. The physics of such massless particles is completely beyond the reach of
Newtonian mechanics. Their world lines are lightlike, and according to eq. (7.92),
the proper time between any two events on a lightlike curve is always zero. Proper
time is therefore inadequate for parametrizing world lines of massless particles,
and there is also no other physically distinguished quantity that could serve as a
Lorentz invariant parameter. This implies that for massless particles, the concepts
of four-velocity and of four-acceleration are ill-defined, and in fact the only concept
that does remain meaningful is that of four-momentum. In particular, the concept
of four-force, being the derivative of four-momentum with respect to proper time,
is also ill-defined, as there is no natural Lorentz invariant parameter that could be
used to replace proper time in this relation. As a result, there is no such thing
as an equation of motion for massless particles. Instead, the four-momentum of
a massless particle can only be changed in jumps: the world lines of massless
particles are piecewise straight, beginning at the event of emission, ending at the
event of absorption and possibly with discontinuities in the first derivative at events
of collisions with other particles – mostly massive. The behavior of the trajectory
at such events is governed by the conservation law for the total four-momentum of
the particles involved in the collision.

As an application we consider Compton scattering, that is, elastic scattering
between a photon (γ) and an electron (e−).

particles: γ + e− −→ γ + e−

four-momenta: q + p = q′ + p′

Obviously, q2 = q′2 = 0 and p2 = p′2 = (mc)2, where m is the rest mass of the
electron. Denoting by θ the scattering angle of the photon, as measured in the rest
frame of the incoming electron, we have in this inertial system

p = (mc, 0) und q · q′ = |q| |q′| cos θ = q0q′0 cos θ ,

so

q − q′ + p = p′ =⇒ ((q − q′) + p)2 = p′2 =⇒ (q − q′) · p = q · q′

=⇒ mc
(
q0 − q′0

)
= q0q′0 (1− cos θ)

=⇒ mc

(
1
q0
− 1
q′0

)
= 1− cos θ .
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Using the relation E = hν between the energy E of the photon and the frequency
ν of the corresponding electromagnetic wave, borrowed from quantum mechanics,
we arrive at the relation between frequency loss and scattering angle that is typical
for Compton scattering:

mc2

h

(
1
ν′
− 1
ν

)
= 1− cos θ . (7.135)

Another nice application of the conservation law for four-momentum is the
dynamics of a rocket in the context of special relativity. For the sake of simplicity,
we shall once again restrict ourselves to linear motion in one space dimension and
use proper time τ in the rocket as the parameter. The rocket is propelled by
the emission of gas, consisting of particles of rest mass m0, ejected with velocity
ve = cβe, the case m0 = 0, ve = c, βe = 1 (photon rocket) being explicitly
included. To begin with, we define

M(τ) = remaining rest mass of the rocket at proper time τ ,
u(τ) = four-velocity of the rocket at proper time τ ,
p(τ) = four-momentum of the rocket at proper time τ ,

as well as

qe(τ) =
four-momentum of a single particle
ejected by the rocket at proper time τ ,

dn(τ) = ν(τ) dτ =
number of particles ejected by the rocket
at proper time τ in proper time interval dτ .

We also write

u(τ) = c (γ(τ) , β(τ) γ(τ)) = c (cosh θ(τ) , sinh θ(τ)) ,

p(τ) = M(τ)u(τ) .
(7.136)

Then the conservation law for the four-momentum of the entire system consisting
of the rocket and the ejected gas reads

dp(τ) + dn(τ) qe(τ) = 0 ,

i.e.,
dM

dτ
u + M

du

dτ
=

dp

dτ
= − νqe . (7.137)

Together with eq. (7.99) and eq. (7.102), this equation gives after scalar multipli-
cation with u

c2
dM

dτ
= u ·

(
dM

dτ
u + M

du

dτ

)
= − ν u · qe , (7.138)

and after scalar multiplication with itself

c2
(
dM

dτ

)2

+ M2

(
du

dτ

)2

= ν2q2e . (7.139)
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As u is lightlike and qe is timelike or lightlike, we have u ·qe 6= 0 and may therefore
use eq. (7.138) to eliminate the particle flux rate ν from eq. (7.139). Then

c2
(
dM

dτ

)2

+ M2

(
du

dτ

)2

=
q2ec

4

(u · qe)2

(
dM

dτ

)2

,

i.e.,

− 1
c2

(
du

dτ

)2

=
(

1− q2ec
2

(u · qe)2

)
1
M2

(
dM

dτ

)2

. (7.140)

If m0 = 0, we have q2e = 0, so the first factor on the rhs of eq. (7.140) equals 1.
If m0 > 0, this factor can be most easily evaluated in the rocket’s momentary rest
frame, where

u = (c, 0) , qe = m0c (γe, βeγe) =⇒ u · qe = m0c
2γe , q2e = m2

0c
2

=⇒ 1− q2ec
2

(u · qe)2
= 1− γ−2

e = β2
e .

Thus in any case, we obtain(
dθ

dτ

)2

= − 1
c2

(
du

dτ

)2

=
β2
e

M2

(
dM

dτ

)2

, (7.141)

(the first of these two equalities follows from eq. (7.136)). Supposing that θ in-
creases monotonically with τ (otherwise, we need only perform the substitution
θ → − θ), we can take the square root to arrive at

dθ

dτ
= − βe

M

dM

dτ
. (7.142)

In the case of a constant emission velocity ve = cβe, integration of this differential
equation is elementary: the solution with the initial condition θ(τ0) = 0 with
M(τ0) = M0 is

θ(τ) = − βe ln
M(τ)
M0

,

β(τ) = tanh
(
−βe ln

M(τ)
M0

)
, (7.143)

γ(τ) = cosh
(
−βe ln

M(τ)
M0

)
,

or

β(τ) =
1−

(
M(τ)
M0

)2βe

1 +
(
M(τ)
M0

)2βe
,

γ(τ) =
1
2

((
M(τ)
M0

)βe

+
(
M(τ)
M0

)−βe
)
.

(7.144)
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In the non-relativistic limit (βe� 1), this reduces to the well known equation of
motion of the rocket

v(t) = − ve ln
M(τ)
M0

. (7.145)

In any case, the final velocity that can be reached depends only on the emission
velocity ve and on the ratio between the rocket’s initial and final mass. In order to
maximize the final velocity, it thus seems desirable to take ve as large as possible;
the best choice would be a photon rocket, where ve = c. However, a photon rocket
has its own problems which appear most clearly when one compares the acceleration
a that can be reached with the power P available in the rocket’s engine. Indeed,
evaluating eq. (7.142) in the rocket’s momentary rest frame and using eq. (7.103)
gives

a = − ve
M

dM

dτ
, (7.146)

whereas the power P of the rocket’s engine is given by

P = − dM

dτ
c2 − m0νc

2 . (7.147)

This can be understood by going to the rocket’s momentary rest frame, in which
the loss of rest mass dM (dM<0) during the proper time interval dτ is easily seen
to be made up from two contributions: the transformation of mass into energy
inside the rocket’s engine (−Ldτ/c2) and the loss due to the ejection of the gas
particles (−m0νdτ). If m0 > 0, we can use eq. (7.138) to transform the second
term in eq. (7.147):

P = − dM

dτ
c2 − m0νc

2 = − dM

dτ
c2
(

1− m0c
2

u · qe

)
.

But in the rocket’s momentary rest frame, we have

u = (c, 0) , qe = m0c (γe, βeγe) =⇒ u · qe = m0c
2γe

=⇒ m0c
2

u · qe
= γ−1

e =
√

1− β2
e .

Thus in any case, we obtain

P = − dM

dτ
c2 (1−

√
1− β2

e ) . (7.148)

Combination with eq. (7.146) yields the following relation between the specific
power P/M of the rocket’s engine and the acceleration a attained:

P

M
= c

1−
√

1− β2
e

βe
a . (7.149)

In the non-relativistic limit (βe�1), this reduces to

P

M
= 1

2vea , (7.150)
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whereas in the ultra-relativistic limit (βe=1), we get

L

M
= ca . (7.151)

Thus in order to achieve an acceleration of about 10 meters per square second,
the engine of a photon rocket would have to provide a specific power of about 3
Gigawatt per kilogram – which is pure science fiction.

We conclude by computing the efficiency η of the rocket, that is, the ratio
between the total kinetic energy T of the rocket and the total work W done by the
rocket’s engine, assuming as before that the emission velocity ve = cβe is constant.
If M0 = M(τ0) is the initial mass and M1 = M(τ1) is the final mass of the rocket
and x = M1/M0 (x<1) is their ratio, then

T = M1c
2 (γ1 − 1) ,

whereas integration of eq. (7.148) gives

W = (M0 −M1) c2
(

1−
√

1− β2
e

)
.

Using eq. (7.143) gives

η =
T

W
=

x

1− x
cosh(βe lnx)− 1

1−
√

1− β2
e

=
x

1− x
xβe + x−βe − 2
2(1−

√
1− β2

e )
. (7.152)

In the non-relativistic limit (βe�1), this reduces to

η =
x

1− x
ln2 x , (7.153)

with a maximum at 1/x = 4, 93, η = 0, 647, whereas in the ultra-relativistic limit
(βe=1), we get

η = 1
2 (1− x) , (7.154)

i.e., the efficiency of a photon rocket is always < 50%.

7.8 Covariant Formulation
of Electrodynamics

As has already been mentioned at the beginning of this chapter, the observed fact
that the speed of light is the same in all inertial systems, raised to the status of
a postulate, is the starting point of the theory of special relativity. Light being
an electromagnetic phenomenon, electrodynamics should be a relativistically co-
variant theory. In order to transform the standard formulation of the basic laws
of electrodynamics – the Lorentz force law and Maxwell’s equations – into mani-
festly covariant form, we must first of all describe how quantities such as charge
density and current density, scalar potential and vector potential or electric field
and magnetic field can be combined into four-vectors or four-tensors, respectively.
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The starting point for this reformulation is the fact, substantiated by extensive
experimental evidence, that electric charge is an absolutely conserved quantity
which, in addition, only appears in integer multiples of the so-called elementary
charge and shows no velocity dependence whatsoever: this means that the electric
charge of a point particle is a Lorentz invariant real constant, or four-scalar.

Now consider a charge density ρ0 that is at rest in a given Lorentz system;
thus the corresponding current density is j0 = 0. Viewed from another Lorentz
system moving with velocity v with respect to the first one, we find, due to in-
variance of the total charge and Lorentz contraction of the volume element (cf. eq.
(7.83)), the charge density ρ = ρ0γ and, due to convection, the current density
j = ρv = ρ0γv . This suggests to combine charge density ρ and current density j
into a four-vector field

jµ = (ρc, j) , jµ = (ρc,−j) (7.155)

called the current four-vector density: this allows to write the conservation law for
electric charge (cf. eq. (3.1)) in relativistically covariant form:

∂µj
µ = 0 . (7.156)

In complete analogy, the scalar potential φ and the vector potential A can be
combined into a four-vector field

Aµ = (φ/κc,A) , Aµ = (φ/κc,−A) (7.157)

called the four-potential: this allows to write the Lorentz gauge (3.46), as well as
Maxwell’s equations (3.54) and (3.55) for the potentials in the Lorentz gauge in
relativistically covariant form

∂µA
µ = 0 , (7.158)

2A
µ ≡ ∂2Aµ = κµ0 j

µ . (7.159)

The fields are obtained from the potentials by differentiation. Electric field E and
magnetic field B can be combined into a rank 2 antisymmetric four-tensor field F ,
called the field strength tensor, according to

− F 0i = F0i = Ei/κc ,

F ij = Fij = − εijk Bk ,
(7.160)

where we must remember our convention not to distinguish between upper and
lower indices of three-dimensional vectors: in particular, Ei and Bi are the com-
ponents of E and B, respectively. In matrix notation,
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Fµν =


0 −E1/κc −E2/κc −E3/κc

+E1/κc 0 −B3 +B2

+E2/κc +B3 0 −B1

+E3/κc −B2 +B1 0

 ,

Fµν =


0 +E1/κc +E2/κc +E3/κc

−E1/κc 0 −B3 +B2

−E2/κc +B3 0 −B1

−E3/κc −B2 +B1 0

 .

(7.161)

This allows to rewrite the definition of the fields in terms of the potentials, given
by eqns (3.40) and (3.42), in relativistically covariant form:

Fµν = ∂µAν − ∂νAµ . (7.162)

Moreover, the homogeneous Maxwell equations (3.5-b) and (3.5-c) assume the rel-
ativistically covariant form

∂κFµν + ∂µFνκ + ∂νFκµ = 0 , (7.163)

whereas the inhomogeneous Maxwell equations (3.5-a) and (3.5-d) assume the rel-
ativistically covariant form

∂µF
µν = κµ0 j

ν . (7.164)

The transformation law of electromagnetic fields under a boost B(v) = Λ(n, θ)
can be read off from the fact that F is a four-tensor. A short calculation using
eqns (7.47)–(7.51) gives:

E′‖ = E‖ , E′⊥ = γ
(
E⊥ + κcβ n×B

)
,

B′‖ = B‖ , B′⊥ = γ
(
B⊥ −

β

κc
n×E

)
.

(7.165)

The notation in terms of differential forms is also much simpler and more trans-
parent in its relativistically covariant form, that is, in four-dimensional Minkowski
space-time, than it is in ordinary three-dimensional Euclidean space, with time
as an additional parameter. In order to see this, we introduce the canonical ba-
sis {e0, e1, e2, e3} of Minkowski space defined in eq. (7.9) and the corresponding
dual basis

{
e0, e1, e2, e3

}
and define two one-forms j, A and one two-form F on

Minkowski space, as follows:

j = jµ e
µ , A = Aµ e

µ , (7.166)

F = 1
2 Fµν e

µ ∧ eν . (7.167)

The important equations can then be written down using the exterior derivative
d and the star operator ∗ for differential forms on Minkowski space; the latter is
explicitly given by



46 7 Special Relativity

∗ (1) = e0 ∧ e1 ∧ e2 ∧ e3 ,

∗
(
e0
)

= e1 ∧ e2 ∧ e3 , ∗
(
ei
)

= 1
2 εijk e

0 ∧ ej ∧ ek ,

∗
(
e0 ∧ ei

)
= − 1

2 εijk e
j ∧ ek , ∗

(
ej ∧ ek

)
= + 1

2 εjkl e
0 ∧ el , (7.168)

∗
(
e1 ∧ e2 ∧ e3

)
= e0 , ∗

(
e0 ∧ ej ∧ ek

)
= εjkl e

l ,

∗
(
e0 ∧ e1 ∧ e2 ∧ e3

)
= − 1 ,

with the convention

ε0123 = − 1 , ε0123 = + 1 . (7.169)

Then the conservation law (7.156) for electric charge and the Lorentz gauge (7.158)
assume the form

d ∗ j = 0 (7.170)

and
d ∗A = 0 (7.171)

respectively, whereas the definition of the fields in terms of the potentials becomes

F = dA . (7.172)

Finally, the homogeneous and inhomogeneous Maxwell equations read

dF = 0 (7.173)

and
− ∗ d ∗ F = κµ0 j (7.174)

respectively.
Apart from Maxwell’s equations, we have as a fundamental law of electro-

dynamics the Lorentz force law, whose relativistically covariant form has not yet
been given. It states that the four-force Fµ exerted by the electromagnetic field
strength tensor Fµν on a point particle with charge q, moving along its world line
τ 7→ xµ(τ) with four-velocity uµ (here, the parameter τ is proper time), is the
Lorentz four-force

Fµ = κquνF
µν . (7.175)

When dealing not with a charged point particle but with a general charge and
current distribution given by a current four-vector density jµ, the Lorentz four-
force must be replaced by the Lorentz four-force density

fµ = κjνF
µν . (7.176)

The spatial components of the expressions (7.175) and (7.176) are the relativistic
generalizations of the force laws (3.2) and (3.3), respectively, whereas their time
components (after multiplication by c) provide the relativistic generalizations of
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the expressions qv·E and j ·E for the power and the power density, respectively,
referring to the work done by the field on the matter distribution. Moreover,
the two equations (7.175) and (7.176) can in relativistically covariant manner be
identified as two variants of one and the same force law if one considers that a point
particle with charge q, moving along its world line τ 7→ xµ(τ) with four-velocity
uµ (here, the parameter τ is proper time), produces the current four-vector density

jµ(x) = qc

∫
dτ uµ(τ) δ(x− x(τ)) , (7.177)

whereas the four-force Fµ to which it is subjected along its world line corresponds
to a four-force density

fµ(x) = c

∫
dτ Fµ(τ) δ(x− x(τ)) . (7.178)

Both of these are, as expected, concentrated on the particle’s world line in a δ-
function like manner.

7.9 The Energy-Momentum Tensor
of the Electromagnetic Field

In Chapter 3, we have discussed separately the energy balance and the momentum
balance in the presence of electromagnetic fields. These two can now be unified in
a remarkable way. To this end, we use the Maxwell equations (7.164) and (7.163)
to rewrite the Lorentz four-force density fµ given by eq. (7.176) as follows:

fµ = κFµκ jκ =
1
µ0

Fµκ ∂νFνκ

=
1
µ0

(
∂ν(FµκFνκ) − (∂νFµκ)Fνκ

)
=

1
µ0

(
∂ν(FµκFνκ) − 1

2 (∂νFµκ)Fνκ − 1
2 (∂κFµν)Fκν

)
=

1
µ0

(
∂ν(FµκFνκ) − 1

2 (∂νFµκ + ∂κF νµ)Fνκ
)

=
1
µ0

(
∂ν(FµκFνκ) + 1

2 (∂µFκν)Fνκ
)

=
1
µ0

(
∂ν(FµκFνκ) − 1

4 ∂
µ(F νκFνκ)

)
.

Thus we have
fµ = − ∂νT

µν , (7.179)

with a rank 2 four-tensor field T , called the energy-momentum tensor of the electro-
magnetic field, defined by

Tµν = − 1
µ0

(
ηκλF

µκF νλ − 1
4 η

µνFκλFκλ
)
. (7.180)
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It is symmetric and traceless:

Tµν = T νµ , Tµµ = 0 . (7.181)

Its components have the following meaning:

• Its purely time component is the energy density ρE of the electromagnetic
field; cf. eq. (3.58):

T 00 = T00 = ρE .

• Its mixed components are (apart from factors of c or 1/c) the components of
the Poynting vector S that describes both the energy flux density and the
momentum density of the electromagnetic field; cf. eqns (3.59), (3.60) and
(3.85):

T 0i = T i0 = − T0i = − Ti0 = Si/c = jEi /c = ρPi c .

• Its purely spatial components are (apart from a sign) the components of
Maxwell’s stress tensor that describes the momentum flux density of the
electromagnetic field; cf. eqns (3.86) and (3.87):

T ik = T ki = Tik = Tki = − TMax
ik = jPik .

In particular, the relativistically covariant formulation of electrodynamics reveals
the equality (up to a factor of c2) between the energy flux density and the momen-
tum density – a fact already mentioned, though without further explanation, in
Chapter 3 – to be part of the statement that the energy-momentum tensor is sym-
metric. The remaining part of the same statement is that Maxwell’s stress tensor
is symmetric – another fact already observed and commented upon in Chapter 3.
Moreover, the statement that the energy-momentum tensor is also traceless means
that the energy density is equal to the negative of the trace of Maxwell’s stress
tensor, that is, the energy density of the electromagnetic field describes precisely
the volume expanding part of the forces that it exerts.

7.10 Radiation by a Moving Point Charge:
Liénard-Wiechert Potentials

In this section we want to determine the electromagnetic potentials and fields gen-
erated by an arbitrary moving point particle with charge q: these can be given
in closed form. From Chapter 6.2 we know that the solution of the field equa-
tion (7.159) for the potentials in the Lorentz gauge and with retarded boundary
conditions can be obtained by convolution of the source with the retarded Green
function of the wave operator, that is,2

Aµ(x) =
κµ0

4π

∫
d 4x′ Gret(x− x′) jµ(x′) , (7.182)

2The normalization of the Green functions of the wave operator used here, which is natural in
the context of a relativistically covariant theory, deviates from that used in Chapter 6 by a factor
of c.
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where
2Gret(x− x′) = 4π δ(x− x′) (7.183)

and explicitly
Gret(x− x′) = 2 θ(x0 − x′0) δ((x− x′)2) . (7.184)

Substituting eq. (7.177) and using eq. (3.27), we get

Aµ(x) =
q

2πκcε0

∫
dτ d4x′ θ(x0 − x′0) δ((x− x′)2) uµ(τ) δ(x′ − x(τ))

and can perform the integration over x′:

Aµ(x) =
q

2πκcε0

∫
dτ θ(x0 − x0(τ)) δ((x− x(τ))2) uµ(τ) . (7.185)

The remaining integration over τ can be performed as well, observing that the
argument of the δ function, viewed as a function of τ , has precisely two simple
zeroes, namely at the points τret and τadv given by3

x0 − x0(τret) = |x− x(τret)| , x0(τadv)− x0 = |x(τadv)− x| . (7.186)

Obviously, τret and τadv are precisely the parameter values that correspond to the
intersection points between the particle’s world line and the backward and forward
light cone attached to the point x, respectively; the four-velocity and the four-
acceleration at these intersection points will be denoted by uret and aret and by
uadv and aadv, respectively. Moreover, we also introduce the four-scalars

ρret =
1
c
uret · (x− xret) , ρadv =

1
c
uadv · (xadv − x) , (7.187)

and for reasons to become clear soon, the four-vectors

nret =
x− xret

ρret
− uret

c
, nadv =

xadv − x
ρadv

− uadv

c
. (7.188)

(Observe that x−xret and xadv−x are positive lightlike four-vectors whereas uret

and uadv are positive timelike four-vectors; therefore, ρret > 0 and ρadv > 0.) In
the momentary rest frame of the point particle, we have

uµret = (c, 0) , xµ − xµret = (ρret, ρretn) , nµret = (0,n) .

uµadv = (c, 0) , xµadv − xµ = (ρadv, ρadvn) , nµadv = (0,n) .
(7.189)

(Cf. Fig. 7.7.) Then

d

dτ
(x− x(τ))2

∣∣∣
τ=τret

= − 2c ρret 6= 0

d

dτ
(x− x(τ))2

∣∣∣
τ=τadv

= + 2c ρadv 6= 0
(7.190)

and thus
3The indices “ret” and “adv” stand for “retarded” and “advanced”, respectively.
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Fig. 7.7: Calculating the potentials generated by a moving point charge (one
space dimension is suppressed)

δ
(
(x− x(τ))2

)
=

δ(τ − τret)
2c ρret

+
δ(τ − τadv)

2c ρadv
. (7.191)

Due to the θ-function, only the retarded contribution remains, and we arrive at
the so-called Liénard-Wiechert potentials

Aµ(x) =
κµ0 q

4π
uµret
ρret

. (7.192)

To determine the corresponding field strengths, it must be observed that τret de-
pends implicitly on x, and therefore the same holds for xret, uret, aret, ρret and
nret. Thus we first differentiate the equation that determines τret with respect to x

0 = ∂µ
(
(x− xret)

2
)

= 2ηκλ (xκ − xκret) ∂µ(xλ − xλret)

= 2(xµ − xµret) − 2ηκλ (xκ − xκret)
dxλ

dτ

∣∣∣
τ=τret

∂µτret

= 2(xµ − xµret) − 2(x− xret) · uret ∂
µτret ,

obtaining

∂µτret =
xµ − xµret
cρret

. (7.193)

This implies

∂µxνret =
dxν

dτ

∣∣∣
τ=τret

∂µτret = uνret
xµ − xµret
cρret

,

∂µuνret =
duν

dτ

∣∣∣
τ=τret

∂µτret = aνret
xµ − xµret
cρret

,
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or
∂µxνret = (nµret + uµret/c)u

ν
ret/c , (7.194)

∂µuνret = (nµret + uµret/c) a
ν
ret/c , (7.195)

as well as

∂µρret =
1
c
ηκλ

(
(∂µuκret)(x

λ − xλret) + uκret(η
µλ − ∂µxλret)

)
=

1
c
uµret +

1
c2
ηκλ

(
aκret(x

λ − xλret) − uκretu
λ
ret

)
(nµret + uµret/c) ,

i.e.,

∂µρret = − nµret +
1
c2
ρret (aret ·nret) (nµret + uµret/c) . (7.196)

Hence we get

∂µAν(x) =
κµ0 q

4π
ρret(∂µuνret)− (∂µρret)u

ν
ret

ρ2
ret

=
κµ0 q

4π

(
(nµret + uµret/c) aνret

cρret

+
nµretu

ν
ret

ρ2
ret

− (aret ·nret) (nµret + uµret/c)uνret
c2ρret

)
,

so finally

Fµν(x) =
κµ0 q

4πρ2
ret

(nµretu
ν
ret − nνretu

µ
ret)

+
κµ0 q

4πcρret

(
1
c

(uµreta
ν
ret − uνreta

µ
ret) + (nµreta

ν
ret − nνreta

µ
ret) (7.197)

− 1
c

(aret ·nret) (nµretu
ν
ret − nνretu

µ
ret)
)
.

We also want to write down the non-relativistic form of these formulae. To this
end, we set

r = x− xret , r = |r| , n = r/r (7.198)

and obtain
uµret = γretc (1,βret) ,

aµret = γ2
ret

(
γ2
ret βret ·aret , aret + γ2

ret (βret ·aret)βret

)
,

ρret = γret(r − βret ·r) = γretr (1− βret ·n) ,

nµret =
(

1
γret (1− βret ·n)

− γret ,
n

γret (1− βret ·n)
− γretβret

)
,

and after a short calculation

aret ·nret = − γret

aret ·n
1− βret ·n

+ γ3
ret (βret ·aret) .
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This implies for the scalar potential

φ(x) =
q

4πε0
1
r

1
1− βret ·n

(7.199)

and for the vector potential

A(x) =
κµ0 q

4π
1
r

cβret

1− βret ·n
, (7.200)

whereas the electric field E(x) and the magnetic field B(x) can after some calcu-
lation be shown to be given by the following expressions:

E(x) =
q

4πε0
1
r2

n− βret

γ2
ret (1− βret ·n)3

+
q

4πε0
1
r

n× ((n− βret)× aret)
c2 (1− βret ·n)3

,

(7.201)

B(x) =
1
κc
n×E(x) . (7.202)

Thus the field strengths decompose into velocity fields that do not depend on the
acceleration and fall off at infinity like 1/r2 and acceleration fields or radiation
fields that depend linearly on the acceleration and fall off at infinity like 1/r.

Further insight into the properties of the Liénard-Wiechert potentials and the
corresponding field strengths can be gained by investigating the Poynting vector
that results from eqns (7.201) and (7.202). We do not want to go into this in more
detail and just present the result for the total power PRad radiated through a closed
surface located at infinity (and at rest with respect to the chosen inertial system):

PRad =
q2

6πε0c3
a2

ret − (βret × aret)
2

(1− β2
ret)3

= − q2a2
ret

6πε0c3
. (7.203)

This is the correct relativistic generalization of the non-relativistic Larmor formula
(6.70): all one has to do is to replace in that formula the square of the ordinary
acceleration by the negative square of the four-acceleration. In particular, the
result is a four-scalar and thus independent of the choice of reference frame.

For a more thorough treatment of radiation by moving point charges we refer
to [Jackson, Chap. 14].

7.11 Relativistic Hydrodynamics

To conclude this chapter, we want to show briefly that hydrodynamics – for practi-
cal applications the most important classical field theory besides electrodynamics –
can also be naturally extended to the relativistic domain. Such an extension is of
concrete interest in astrophysics, where fluxes of matter at high velocities do occur
in the vicinity of compact objects such as neutron stars or black holes.
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As in the case of electrodynamics, the relativistic formulation of hydrodynamics
requires transforming the basic dynamical variables of the non-relativistic theory
into four-scalars or into components of four-vectors or four-tensors. To this end,
we begin by replacing, as in the case of a single point particle, the ordinary non-
relativistic velocity field v by the four-velocity field u, that is, the timelike four-
vector field with components

uµ = γ (c,v) , uµ = γ (c,−v) , (7.204)

where
γ =

1√
1− v2/c2

. (7.205)

Thus u satisfies the normalization condition

ηµνu
µuν = c2 , (7.206)

which after differentiation implies the transversality of the four-velocity gradient:

uν ∂µu
ν = 0 . (7.207)

Similarly, the procedure for formulating continuity equations for extensive quanti-
ties can be carried over to the relativistic theory with no essential modifications.
Every extensive quantity a comes with an associated current four-vector density
jµa and an associated source density qa, the first being a timelike or lightlike four-
vector field with components

jµa = (ρac, ja) , jaµ = (ρac,−ja) (7.208)

and the second being a four-scalar field; together, they satisfy the relativistically
covariant continuity equation

∂µj
µa = qa . (7.209)

The full tensorial nature of jµa and of qa, however, can only be inferred from that
of a itself: if a is a four-scalar, such as electric charge, jµa will be a four-vector
field and qa will be a four-scalar field, if a is a four-vector, such as four-momentum
(energy + momentum), jµa will be a rank 2 four-tensor field and qa will be a four-
vector field, etc.. For conserved quantities such as these and in closed systems, of
course, we have qa = 0.

Another important aspect which can be carried over to the relativistic the-
ory without difficulties is the splitting into convective and conductive parts which
however must here be performed for the entire current four-vector density:

jµa = jµaconv + jµacond . (7.210)

As in the non-relativistic theory, the convective part is due to transport along
with the fluid whereas the conductive part describes transport of the quantity a
in the absence of fluid flow. This means that in the momentary rest frame of the
fluid, the spatial components of the convective part must vanish, implying that in
an arbitrary inertial frame, the convective part will be given by projection along
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the four-velocity field u and the conductive part by projection orthogonal to the
four-velocity field u:

jµaconv =
1
c2
uµuν jaν . (7.211)

jµacond =
(
ηµν − 1

c2
uµuν

)
jaν . (7.212)

If u itself is not a four-scalar but rather a four-vector or four-tensor, the decompo-
sition into components parallel and orthogonal to u should also be performed with
respect to the other indices.

These considerations can in particular be used to derive the energy-momentum
tensor of relativistic hydrodynamics, starting out from the expressions (2.14) for the
momentum density and, in particular, (2.15) with (2.21) for the momentum flux
density of non-relativistic hydrodynamics. In these, the transition to the relati-
vistically covariant form is easily performed and leads to the postulate that the
energy-momentum tensor of hydrodynamics is composed of two parts, namely a
convective part,

Tµνconv = ρ uµuν , (7.213)

and a conductive part,

Tµνcond = p
( 1
c2
uµuν − ηµν

)
+ σ′µν , (7.214)

so that
Tµν =

(
ρ+

p

c2

)
uµuν − pηµν + σ′µν , (7.215)

where ρ denotes the mass density and p denotes the scalar pressure, as measured
in the momentary rest frame of the fluid, that is, from a Lorentz system in which
the fluid (at the given point) is at rest. σ′ is the friction tensor, whose conductive
nature is expressed through the orthogonality relation

uµ σ
′µν = 0 . (7.216)

Finally, just as in non-relativistic hydrodynamics, it is required that (for normally
flowing fluids without ”‘internal”’ angular momenta or torques) the friction tensor
must be symmetric:

σ′µν = σ′ νµ . (7.217)

The same must then hold for the full energy-momentum tensor:

Tµν = T νµ . (7.218)

In the momentary rest frame of the fluid, the spatial components of the four-
velocity field u vanish and the energy-momentum tensor assumes the simple form

TµνRF =


ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 +


0 0 0 0
0
0 σ′

0

 . (7.219)
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For comparison with the non-relativistic expressions one must however use a differ-
ent Lorentz system in which the absolute value v of the velocity v of the fluid (at
the given point) does not vanish but is small as compared to the velocity of light c,
so that one may perform an expansion in powers of β = v/c and truncate after the
first non-trivial term. It is easy to see that this reproduces the known expressions
for the non-relativistic momentum density and momentum flux density, whereas
the energy denstiy T 00 = T00 = ρE receives an additional contribution from the
pressure. Indeed, neglecting the friction term, we get

ρE = ρc2γ2 + p (γ2 − 1) ,

and therefore after expansion up to second order

ρE = ρc2 +
(
ρ+

p

c2

)
v2 .

For normal fluids and under usual conditions, however, one has p � ρc2, so that
this contribution can be neglected.

External forces acting on the fluid will be represented by a four-force density fµ,
so that the energy-momentum balance can be written in the standard relativistic
form:4

fµ = ∂νT
µν . (7.220)

After insertion of the explicit form (7.215) of the energy-momentum tensor, this
relation assumes the following form

∂µ

((
ρ+

p

c2

)
uµuν

)
− ∂νp + ∂µσ

′µν = fν . (7.221)

Making use of eq. (7.206) and eq. (7.207), we can decompose this equation into its
components along u and transversal to u. The longitudinal component is simply
obtained by contraction with u, with the result

∂µ
(
(ρc2 + p)uµ

)
− uν ∂νp + uν ∂µσ

′µν = uνf
ν , (7.222)

or
∂µ
(
ρc2uµ

)
+ p ∂µu

µ + uν ∂µσ
′µν = uνf

ν . (7.223)

The transversal components are obtained by inserting eq. (7.222) back into eq.
(7.221) and rearranging terms:(
ρ+

p

c2

)
uµ ∂µu

ν −
(
ηµν − 1

c2
uµuν

)
∂µp +

(
ηµν − 1

c2
uµuν

)
ηλµ ∂κσ

′κλ

=
(
ηµν − 1

c2
uµuν

)
fµ .

(7.224)

This is the equation of motion of relativistic hydrodynamics.
Further information can only be gained by making hypotheses about the specific

form of the friction tensor. The two simplest choices, whose non-relativistic version
has already been discussed in Chapter 2, are the following:

4The difference in sign as compared to eq. (7.179) stems from the fact that we are now con-
sidering forces acting on the fluid and not forces exerted by the fluid.
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• Ideal Fluid or Perfect Fluid: No friction.

σ′µν = 0 . (7.225)

In this case, the equation of motion (7.224) is the correct relativistic gener-
alization of the Euler equation (2.24).

• Newtonian Fluid: Friction tensor proportional to the transverse part of the
four-velocity gradient.
Projecting the symmetrized four-velocity gradient

∂µuν + ∂νuµ

to its component orthogonal to the four-velocity field u and using the con-
straint (7.207) gives the expression

(∂⊥u)µν = ∂µuν + ∂νuµ − 1
c2
uκ ∂κ(uµuν) , (7.226)

which can be further split into a tracefree part and a part proportional to
the transverse unit tensor:

(∂⊥0 u)µν = (∂⊥u)µν − 2
3

(
ηµν − 1

c2
uµuν

)
∂κu

κ . (7.227)

(∂⊥1 u)µνtr = 2
3

(
ηµν − 1

c2
uµuν

)
∂κu

κ . (7.228)

Then
σ′µν = η (∂⊥0 u)µν + 3

2 ζ (∂⊥1 u)µν , (7.229)

where the coefficients η and ζ are, as in the non-relativistic theory, the vis-
cosity and the volume viscosity of the fluid, respectively.
In this case, the equation of motion (7.224) is the correct relativistic gener-
alization of the Navier-Stokes equation (2.42).

To conclude, we want to add a few comments on the different role that is played,
in particular, by the concept of mass when it comes to comparing non-relativistic
and relativistic physics. In non-relativistic physics, mass is a separate conserved
quantity, independent from other conserved quantities such as energy or momen-
tum, and moreover it can only be transported by convection and not by conduction.
But in the transition to relativistic physics, it completely loses its particular status.
Indeed, it may at first sight seem plausible to formulate a relativistic version of
the non-relativistic conservation law for mass, replacing the ordinary mass density
by the rest mass density and requiring this to be a four-scalar field. However,
this procedure fails due to the fact that rest mass is not an extensive quantity.
(For example, the rest mass of a helium kernel is less than the sum of the rest
masses of two protons and two neutrons.) Therefore, a conservation law (or even
a continuity equation) for rest mass cannot exist. And indeed, the naive rela-
tivistic generalization of this conservation law, namely the equation ∂µ(ρuµ) = 0,
is simply wrong. Rather, eq. (7.223) shows that even in the absence of external
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forces and of friction, the rest mass current density ρuµ is not conserved: the work
done by the pressure can change the energy inside a given volume. The explanation
is, of course, that in relativistic physics, mass is equivalent to energy which, math-
ematically, is not a four-scalar but rather the time component of a four-vector and
which, physically, is a sum of various contributions that are subject to exchange:
one of them is the rest energy of the particles that make up the fluid, but – in
contrast to the non-relativistic theory – this is not separately conserved.

In this situation, it seems reasonable to replace mass density by particle number
density since this will be conserved even in the relativistic theory, at least as long
as particle number changing processes of creation, annihilation or transformation
may be disregarded. Under this assumption, the particle number density n, as
measured in the momentary rest frame of the fluid, will be conserved in the sense
that the particle number current four-vector density nµ = nuµ satisfies

∂µ (nuµ) = 0 . (7.230)

Expanding the first term in eq. (7.222) by n and inserting eq. (7.230) gives

uµ ∂µ

(ρc2 + p

n

)
− 1
n
uν ∂νp +

1
n
uν ∂µσ

′µν =
1
n
uνf

ν , (7.231)

or after transforming the friction term using eq. (7.216) and eq. (7.226)

uµ ∂µ

(ρc2 + p

n

)
− 1
n
uν ∂νp =

1
n
uνf

ν +
1

2n
(∂⊥u)µν σ′µν . (7.232)

In the language of thermodynamics, this equation is a statement about the variation
of the enthalpy per particle along the flow lines. Taking into account the identity

dH = T dS + V dp

(which holds for constant particle number), it means that the variation of the
entropy per particle along the flow lines is given by

T uµ∂µ

( S
N

)
=

1
n
uνf

ν +
1

2n
(∂⊥u)µν σ′µν . (7.233)

In particular, for Newtonian fluids,

T uµ∂µ

( S
N

)
=

1
n
uνf

ν

+
1

2n

(
η (∂⊥0 u)µν(∂⊥0 u)µν + 3

2 ζ (∂⊥1 u)µν(∂⊥1 u)µν
)
.

(7.234)

Observe that the second term, being a sum of squares, cannot be negative (pro-
vided, of course, that the viscosity coefficients η and ζ are non-negative). Thus if
the four-force density is orthogonal to the four-velocity field,5 this shows that fric-
tion generates entropy: the entropy along the flow lines is constant for ideal fluids
and monotonically increasing for Newtonian fluids – in perfect agreement with the
second fundamental theorem of thermodynamics.

5This happens, e.g., for electromagnetic forces, where fµ is proportional to uνF µν , so that
due to the antisymmetry of the electromagnetic field tensor, uµfµ must vanish.


