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Abstract: We establish a link between the multisymplectic and the covariant phase
space approach to geometric field theory by showing how to derive the symplectic form
on the latter, as introduced by Crnković-Witten and Zuckerman, from the multisym-
plectic form. The main result is that the Poisson bracket associated with this symplectic
structure, according to the standard rules, is precisely the covariant bracket due to Peierls
and DeWitt.

1. Introduction

One of the most annoying flaws of the usual canonical formalism in field theory is
its lack of manifest covariance, that is, its lack of explicit Lorentz invariance (in the
context of special relativity) and more generally its lack of explicit invariance under
space-time coordinate transformations (in the context of general relativity). Of course,
this defect is built into the theory from the very beginning, since the usual canonical
formalism represents the dynamical variables of classical field theory by functions on
some spacelike hypersurface (Cauchy data) and provides differential equations for their
time evolution off this hypersurface: thus it presupposes a splitting of space-time into
space and time, in the form of a foliation of space-time into Cauchy surfaces. As a result,
canonical quantization leads to models of quantum field theory whose covariance is far
from obvious and in fact constitutes a formidable problem: as a well known example, we
may quote the efforts necessary to check Lorentz invariance in (perturbative) quantum
electrodynamics in the Coulomb gauge.

These and similar observations have over many decades nourished attempts to develop
a fully covariant formulation of the canonical formalism in classical field theory, which
would hopefully serve as a starting point for alternative methods of quantization. Among
the many ideas that have been proposed in this direction, two have come to occupy a
special role. One of these is the “covariant functional formalism”, based on the concept
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of “covariant phase space” which is defined as the (infinite-dimensional) space of solu-
tions of the equations of motion. This approach was strongly advocated in the 1980’s
by Crnković, Witten and Zuckerman [1–3] (see also [4]) who showed how to construct
a symplectic structure on the covariant phase space of many important models of field
theory (including gauge theories and general relativity), but the idea as such has a much
longer history. The other has become known as the “multisymplectic formalism”, based
on the concept of “multiphase space” which is a (finite-dimensional) space that can be
defined locally by associating to each coordinate qi not just one conjugate momentum pi

but n conjugate momenta p
µ
i (µ = 1, . . . , n), where n is the dimension of the underly-

ing space-time manifold. In coordinate form, this construction goes back to the classical
work of De Donder and Weyl in the 1930’s [5, 6], whereas a global formulation was
initiated in the 1970’s by a group of mathematical physicists, mainly in Poland [7–9]
but also elsewhere [10–12], and definitely established in the 1990’s [13, 14]; a detailed
exposition, with lots of examples, can be found in the GIMmsy paper [15].

The two formalisms, although both fully covariant and directed towards the same
ultimate goal, are of different nature; each of them has its own merits and drawbacks.

• The multisymplectic formalism is manifestly consistent with the basic principles of
field theory, preserving full covariance, and it is mathematically rigorous because
it uses well established methods from calculus on finite-dimensional manifolds.
On the other hand, it does not seem to permit any obvious definition of the Poisson
bracket between observables. Even the question of what mathematical objects
should represent physical observables is not totally clear and has in fact been the
subject of much debate in the literature. Moreover, the introduction of n conjugate
momenta for each coordinate obscures the usual duality between canonically con-
jugate variables (such as momenta and positions), which plays a fundamental role
in all known methods of quantization. A definite solution to these problems has yet
to be found.

• The covariant functional formalism fits neatly into the philosophy underlying the
symplectic formalism in general; in particular, it admits a natural definition of the
Poisson bracket (due to Peierls [16] and further elaborated by DeWitt [17–19]) that
preserves the duality between canonically conjugate variables. Its main drawback
is the lack of mathematical rigor, since it is often restricted to the formal extrapola-
tion of techniques from ordinary calculus on manifolds to the infinite-dimensional
setting: transforming such formal results into mathematical theorems is a separate
problem, often highly complex and difficult.

Of course, the two approaches are closely related, and this relation has been an impor-
tant source of motivation in the early days of the theory [8]. Unfortunately, however,
the tradition of developing them in parallel seems to have partly fallen into oblivion in
recent years, during which important progress was made in other directions.

The present paper, based on the PhD thesis of the second author [21], is intended to
revitalize this tradition by systematizing and further developing the link between the two
approaches, thus contributing to integrate them into one common picture. It is organized
into two main sections. In Sect. 2, we briefly review some salient features of the multi-
symplectic approach to geometric field theory, focussing on the concepts needed to make
contact with the covariant functional approach. In particular, this requires a digression
on jet bundles of first and second order as well as on the definition of both extended and
ordinary multiphase space as the twisted affine dual of the first order jet bundle and the
twisted linear dual of the linear first order jet bundle, respectively: this will enable us
to give a global definition of the space of solutions of the equations of motion, both in
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the Lagrangian and Hamiltonian formulation, in terms of a globally defined Euler - Lag-
range operator DL and a globally defined De Donder - Weyl operator DH, respectively.
To describe the formal tangent space to this space of solutions at a given point, we also
write down the linearization of each of these operators around a given solution. In Sect. 3,
we apply these constructions to derive a general expression for the symplectic form �

on covariant phase space, à la Crnković-Witten-Zuckerman, in terms of the multisym-
plectic form ω on extended multiphase space. Then we prove, as the main result of this
paper, that the Poisson bracket associated with the form �, according to the standard
rules of symplectic geometry, suitably extended to this infinite-dimensional setting, is
precisely the Peierls-DeWitt bracket of classical field theory [16–19]. Finally, in Sect. 4,
we comment on the relation of our results to previous work and on perspectives for
future research in this area.

2. Multisymplectic Approach

2.1. Overview. The multisymplectic approach to geometric field theory, whose origins
can be traced back to the early work of Hermann Weyl on the calculus of variations [6],
is based on the idea of modifying the transition from the Lagrangian to the Hamiltonian
framework by treating spatial derivatives and time derivatives of fields on an equal foot-
ing. Thus one associates to each field component ϕ i not just its standard canonically
conjugate momentum πi but rather n conjugate momenta π

µ
i , where n is the dimen-

sion of space-time. In a first order Lagrangian formalism, where one starts out from
a Lagrangian L depending on the field and its first partial derivatives, these are obtained
by a covariant analogue of the Legendre transformation

π
µ
i = ∂L

∂ ∂µϕ i
. (1)

This allows to rewrite the standard Euler-Lagrange equations of field theory

∂µ

∂L

∂ ∂µϕi
− ∂L

∂ϕi
= 0 (2)

as a covariant first order system, the covariant Hamiltonian equations or De Donder -
Weyl equations

∂H

∂π
µ
i

= ∂µϕi ,
∂H

∂ϕi
= − ∂µπ

µ
i , (3)

where

H = π
µ
i ∂µϕi − L (4)

is the covariant Hamiltonian density or De Donder-Weyl Hamiltonian.
Multiphase space (ordinary as well as extended) is the geometric environment built by

appropriately patching together local coordinate systems of the form (qi, p
µ
i ) – instead

of the canonically conjugate variables (qi, pi) of mechanics – together with space-time
coordinates xµ and, in the extended version, a further energy type variable that we shall
denote by p (without any index). The global construction of these multiphase spaces,
however, has only gradually come to light; it is based on the following mathematical
concepts:
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• The collection of all fields in a given theory, defined over a fixed (n-dimensional
orientable) space-time manifold M , is represented by the sections ϕ of a given
fiber bundle E over M , with bundle projection π : E → M and typical fiber Q.
This bundle will be referred to as the configuration bundle of the theory since Q

corresponds to the configuration space of possible field values.
• The collection of all fields together with their partial derivatives up to a certain

order, say order r , is represented by the r-jets j rϕ ≡ (ϕ, ∂ϕ, . . . , ∂ rϕ) of sec-
tions of E, which are themselves sections of the r th order jet bundle J rE of E,
regarded as a fiber bundle over M . In this paper, we shall only need first order jet
bundles, with one notable exception: the global formulation of the Euler - Lagrange
equations requires introducing the second order jet bundle.

• Dualization – the concept needed to pass from the Lagrangian to the Hamiltonian
framework via the Legendre transformation – comes in two variants, based on the
fundamental observation that the first order jet bundle J 1E of E is an affine bun-
dle over E whose difference vector bundle �J 1E will be referred to as the linear
jet bundle. Ordinary multiphase space is obtained as the twisted linear dual �J 1©∗E of
�J 1E while extended multiphase space is obtained as the twisted affine dual J 1©�E

of J 1E, where the prefix “twisted” refers to the necessity of taking an additional
tensor product with the bundle of n-forms on M .1

• The Lagrangian L is a function on J 1E with values in the bundle of n-forms
on M so that it may be integrated to provide an action functional which enters the
variational principle. The De Donder - Weyl Hamiltonian H is a section of J 1©�E,
considered as an affine line bundle over �J 1©∗E.

Note that the formalism is set up so as to require no additional structure on the configura-
tion bundle or on any other bundle constructed from it: all are merely fiber bundles over
the space-time manifold M . Of course, additional structures do arise when one is dealing
with special classes of fields (matter fields and the metric tensor in general relativity are
sections of vector bundles, connections are sections of affine bundles, nonlinear fields
such as those arising in the sigma model are sections of trivial fiber bundles with a fixed
Riemannian metric on the fibers, etc.), but such additional structures depend on the kind
of theory considered and thus are not universal. Finally, the restriction imposed on the
order of the jet bundles considered reflects the fact that almost all known examples of
field theories are governed by second order partial differential equations which can be
derived from a Lagrangian that depends only on the fields and their partial derivatives
of first order, which is why it is reasonable to develop the general theory on the basis of
a first order formalism, as is done in mechanics [22, 23].

2.2. The First Order Jet Bundle. The field theoretical analogue of the tangent bundle of
mechanics is the first order jet bundle J 1E associated with the configuration bundle E

over M . Given a point e in E with base point x = π(e) in M , the fiber J 1
e E of J 1E

at e consists of all linear maps from the tangent space TxM of the base space M at x to
the tangent space TeE of the total space E at e whose composition with the tangent map
Teπ : TeE → TxM to the projection π : E → M gives the identity on TxM:

J 1
e E = { γ ∈ L(TxM, TeE) | Teπ ◦ γ = idTxM } . (5)

1 We use an asterisk ∗ to denote linear duals of vector spaces or bundles and a star � to denote affine
duals of affine spaces or bundles. These symbols are appropriately encircled to characterize twisted duals,
as opposed to the ordinary duals defined in terms of linear or affine maps with values in R.
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Thus the elements of J 1
e E are precisely the candidates for the tangent maps at x to (local)

sections ϕ of the bundle E satisfying ϕ(x) = e. Obviously, J 1
e E is an affine subspace

of the vector space L(TxM, TeE) of all linear maps from TxM to the tangent space
TeE, the corresponding difference vector space being the vector space of all linear maps
from TxM to the vertical subspace VeE:

�J 1
e E = { �γ ∈ L(TxM, TeE) | Teπ ◦ �γ = 0 } = L(TxM, VeE) ∼= T ∗

x M ⊗ VeE .

(6)

The jet bundle J 1E thus defined admits two different projections, namely the target
projection τE : J 1E → E and the source projection σE : J 1E → M which is simply
its composition with the original bundle projection, that is, σE = π ◦ τE . The same goes
for �J 1E, which we shall call the linearized first order jet bundle or simply linear jet
bundle associated with the configuration bundle E over M .

The structure of J 1E and of �J 1E as fiber bundles over M with respect to the source
projection (in general without any additional structure), as well as that of J 1E as an
affine bundle and of �J 1E as a vector bundle over E with respect to the target projection,
can most easily be seen in terms of local coordinates. Namely, local coordinates xµ

for M and qi for Q, together with a local trivialization of E, induce local coordinates
(xµ, qi) for E as well as local coordinates (xµ, qi, qi

µ) for J 1E ⊂ L(π∗(T M), T E) and

(xµ, qi, �q i
µ) for �J 1E ⊂ L(π∗(T M), T E). Moreover, local coordinate transformations

xµ → x′ν for M and qi → q ′j for Q, together with a change of local trivialization of E,
correspond to a local coordinate transformation (xµ, qi) → (x′ν, q ′j ) for E where

x′ν = x′ν(xµ) , q ′j = q ′j (xµ, qi) . (7)

The induced local coordinate transformations (xµ, qi, qi
µ) → (x′ν, q ′j , q ′j

ν ) for J 1E

and (xµ, qi, �q i
µ) → (x′ν, q ′j , �q ′j

ν ) for �J 1E are then easily seen to be given by

q ′j
ν = ∂xµ

∂x′ν
∂q ′j

∂qi
qi
µ + ∂xµ

∂x′ν
∂q ′j

∂xµ
, (8)

and

�q ′j
ν = ∂xµ

∂x′ν
∂q ′j

∂qi
�q i

µ . (9)

This makes it clear that J 1E is an affine bundle over E with difference vector bundle

�J 1E = T ∗M ⊗ VE , (10)

in accordance with Eq. (6).2

That the (first order) jet bundle of a fiber bundle is the adequate arena to incorporate
(first order) derivatives of fields becomes apparent by noting that a global section ϕ of E

over M naturally induces a global section j1ϕ of J 1E over M given by

j1ϕ(x) = Txϕ ∈ J 1
ϕ(x)E for x ∈ M .

2 Given any vector bundle V over M , such as T M , T ∗M or any of their exterior powers, one can
consider it as as vector bundle over E by forming its pull-back π∗V . In order not to overload the notation,
we shall here and in what follows suppress the symbol π∗.
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In the mathematical literature, j1ϕ is called the (first) prolongation of ϕ, but it would
be more intuitive to simply call it the derivative of ϕ since in the local coordinates used
above,

j1ϕ(x) = (xµ, ϕi(x), ∂µϕi(x)) ,

where ∂µ = ∂/∂xµ; this is symbolically summarized by writing j1ϕ ≡ (ϕ, ∂ϕ).
Similarly, it can be shown that the linear jet bundle of a fiber bundle is the ade-

quate arena to incorporate covariant derivatives of sections, with respect to an arbitrarily
chosen connection.

2.3. Duality. The next problem to be addressed is how to define an adequate notion of
dual for J 1E. The necessary background information from the theory of affine spaces
and of affine bundles (including the definition of the affine dual of an affine space and of
the transpose of an affine map between affine spaces) is summarized in the Appendix.
Briefly, the rules state that if A is an affine space of dimension k over R, its dual A� is
the space A(A, R) of affine maps from A to R, which is a vector space of dimension
k + 1. Thus the affine dual J 1�E of J 1E and the linear dual �J 1∗E of �J 1E are obtained
by taking their fiber over any point e in E to be the vector space

J 1�
e E = { ze : J 1

e E −→ R | ze is affine } (11)

and

�J 1∗
e E = { �ze : �J 1

e E −→ R | �ze is linear } (12)

respectively. However, as mentioned before, the multiphase spaces of field theory are
defined with an additional twist, replacing the real line by the one-dimensional space
of volume forms on the base manifold M at the appropriate point. In other words, the
twisted affine dual

J 1©�E = J 1�E ⊗∧
n
T ∗M (13)

of J 1E and the twisted linear dual

�J 1©∗E = �J 1∗E ⊗∧
n
T ∗M (14)

of �J 1E are defined2 by taking their fiber over any point e in E with base point x = π(e)

in M to be the vector space

J 1©�
e E = { ze : J 1

e E −→ ∧
n
T ∗

x M | ze is affine } (15)

and

�J 1©∗
e E = { �ze : �J 1

e E −→ ∧
n
T ∗

x M | �ze is linear } (16)

respectively. As in the case of the jet bundle and the linear jet bundle, all these duals
admit two different projections, namely a target projection onto E and a source projec-
tion onto M which is simply its composition with the original projection π .

Using local coordinates as before, it is easily shown that all these duals are fiber
bundles over M with respect to the source projection (in general without any additional
structure) and are vector bundles over E with respect to the target projection. Namely,
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introducing local coordinates (xµ, qi) for E together with the induced local coordinates
(xµ, qi, qi

µ) for J 1E and (xµ, qi, �q i
µ) for �J 1E as before, we obtain local coordinates

(xµ, qi, p
µ
i , p) both for J 1�E and for J 1©�E as well as local coordinates (xµ, qi, p

µ
i )

both for �J 1∗E and for �J 1©∗E, respectively. These are defined by requiring the dual
pairing between a point in J 1�E or J 1©�E with coordinates (xµ, qi, p

µ
i , p) and a point

in J 1E with coordinates (xµ, qi, qi
µ) to be given by

p
µ
i qi

µ + p (17)

in the ordinary (untwisted) case and by
(
p

µ
i qi

µ + p
)

d nx (18)

in the twisted case, whereas the dual pairing between a point in �J 1∗E or in �J 1©∗E with
coordinates (xµ, qi, p

µ
i ) and a point in �J 1E with coordinates (xµ, qi, �q i

µ) is given by

p
µ
i �q i

µ (19)

in the ordinary (untwisted) case and by

p
µ
i �q i

µ d nx (20)

in the twisted case. Moreover, a local coordinate transformation (xµ, qi) → (x′ν, q ′j )
for E as in Eq. (7) induces local coordinate transformations for J 1E and for �J 1E as in
Eqs. (8) and (9) which in turn induce local coordinate transformations (xµ, qi, p

µ
i , p)

→ (x′ν, q ′j , p′ν
j , p ′) both for J 1�E and for J 1©�E as well as local coordinate transfor-

mations (xµ, qi, p
µ
i ) → (x′ν, q ′j , p′ν

j ) both for �J 1∗E and for �J 1©∗E: these are given by

p ′ν
j = ∂x′ν

∂xµ

∂qi

∂q ′j p
µ
i , p ′ = p − ∂q ′j

∂xµ

∂qi

∂q ′j p
µ
i (21)

in the ordinary (untwisted) case and

p′ν
j = det

( ∂x

∂x′
) ∂x′ν

∂xµ

∂qi

∂q ′j p
µ
i , p ′ = det

( ∂x

∂x′
)(

p − ∂q ′j

∂xµ

∂qi

∂q ′j p
µ
i

)

(22)

in the twisted case.
Finally, it is worth noting that the affine duals J 1�E and J 1©�E of J 1E contain line

subbundles J 1 cE and J 1©cE whose fiber over any point e in E with base point x = π(e)

in M consists of the constant (rather than affine) maps from J 1
e E to R and to

∧
n
T ∗

x M ,
respectively, and the corresponding quotient vector bundles over E can be naturally
identified with the respective linear duals �J 1∗E and �J 1©∗E of �J 1E, i.e., we have

J 1�E/J 1 cE ∼= �J 1∗E (23)

and

J 1©�E/J 1©cE ∼= �J 1©∗E (24)

respectively. This shows that, in both cases, the corresponding projection onto the quo-
tient amounts to “forgetting the additional energy variable” since it takes a point with
coordinates (xµ, qi, p

µ
i , p) to the point with coordinates (xµ, qi, p

µ
i ); it will be denoted

by η and is easily seen to turn J 1�E and J 1©�E into affine line bundles over �J 1∗E and
over �J 1©∗E, respectively.
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2.4. The Second Order Jet Bundle. For an appropriate global formulation of the stan-
dard Euler - Lagrange equations of field theory, which are second order partial differential
equations, it is useful to introduce the second order jet bundle J 2E associated with the
configuration bundle E over M . It can be defined either directly, as is usually done, or
by invoking an iterative procedure, which is the method we shall follow here. Starting
out from the first order jet bundle J 1E of E, regarded as a fiber bundle over M , we
consider its first order jet bundle J 1J 1E and define, in a first step, the semiholonomic
second order jet bundle J̄ 2E of E to be the subbundle of J 1J 1E given by

J̄ 2E = { γ ∈ J 1J 1E | τJ 1E(γ ) = J 1τE(γ ) }, (25)

where τJ 1E : J 1J 1E → J 1E is the target projection of J 1J 1E while J 1τE :
J 1J 1E → J 1E is the prolongation of the target projection τE : J 1E → E of J 1E,
considered as a map of fiber bundles over M . As it turns out, J̄ 2E is an affine bundle

over J 1E, with difference vector bundle �̄J 2
E = (T ∗M ⊗ T ∗M) ⊗ VE. Moreover,

it admits a natural decomposition, as a fiber product over J 1E, into a symmetric and
an antisymmetric part: the symmetric part is the second order jet bundle J 2E and is
an affine subbundle of J̄ 2E with difference vector bundle

∨ 2
T ∗M ⊗ VE, while the

antisymmetric part is the vector subbundle
∧2

T ∗M ⊗ VE of �̄J 2
E:

J̄ 2E = J 2E ×
J 1E

(∧2
T ∗M ⊗ VE

)
. (26)

These assertions can be proved by introducing local coordinates (xµ, qi) for E to-
gether with the induced local coordinates (xµ, qi, qi

µ) for J 1E as before to first define
induced local coordinates (xµ, qi, qi

µ, ri
µ, qi

µρ) for J 1J 1E. Simple calculations then
show that the points of J̄ 2E are characterized by the condition qi

µ = ri
µ and the

points of J 2E by the additional condition qi
µρ = qi

ρµ. Moreover, a local coordinate
transformation (xµ, qi) → (x′ν, q ′j ) for E as in Eq. (7) induces a local coordinate
transformation for J 1E as in Eq. (8) which in turn induces a local coordinate transfor-
mation (xµ, qi, qi

µ, ri
µ, qi

µρ) → (x′ν, q ′j , q ′j
ν , r

′j
ν , q

′j
νσ ) for J 1J 1E, given by Eq. (8)

together with

r ′j
ν = ∂xµ

∂x′ν
∂q ′j

∂qi
ri
µ + ∂xµ

∂x′ν
∂q ′j

∂xµ
, (27)

q ′j
νσ = ∂xρ

∂x′σ
∂q

′j
ν

∂qi
µ

qi
µρ + ∂xρ

∂x′σ
∂q

′j
ν

∂qi
ri
ρ + ∂xρ

∂x′σ
∂q

′j
ν

∂xρ
. (28)

Differentiating Eq. (8) with respect to qi
µ, qi and xρ and using the relation

∂2xµ

∂x′σ ∂x′ν = − ∂xρ

∂x′σ
∂xκ

∂x′ν
∂xµ

∂x′λ
∂2x′λ

∂xρ ∂xκ
, (29)

we can rewrite Eq. (28) explicitly in the form

q ′j
νσ = ∂xρ

∂x′σ
∂xµ

∂x′ν
∂q ′j

∂qi
qi
µρ

+ ∂xρ

∂x′σ
∂xµ

∂x′ν
∂2q ′j

∂qi ∂qk
qk
µ ri

ρ + ∂xρ

∂x′σ
∂xµ

∂x′ν
∂2q ′j

∂qi ∂xµ
ri
ρ
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− ∂xρ

∂x′σ
∂xκ

∂x′ν
∂xµ

∂x′λ
∂2x′λ

∂xρ ∂xκ

∂q ′j

∂qi
qi
µ − ∂xρ

∂x′σ
∂xκ

∂x′ν
∂xµ

∂x′λ
∂2x′λ

∂xρ ∂xκ

∂q ′j

∂xµ

+ ∂xρ

∂x′σ
∂xµ

∂x′ν
∂2q ′j

∂xρ ∂qi
qi
µ + ∂xρ

∂x′σ
∂xµ

∂x′ν
∂2q ′j

∂xρ ∂xµ
. (30)

In particular, Eqs. (8) and (27) show that qi
µ = ri

µ implies q
′j
ν = r

′j
ν and similarly,

Eq. (30) shows that if qi
µ = ri

µ, then qi
µρ = qi

ρµ implies q
′j
νσ = q

′j
σν , as required by the

global, coordinate independent nature of the definition of J̄ 2E as a subbundle of J 1J 1E

and of J 2E as a subbundle of J̄ 2E. Moreover, Eq. (30) also shows that if qi
µ = ri

µ, then

the transformation law qi
µρ → q

′j
νσ decomposes naturally into separate transformation

laws qi
(µρ) → q

′j
(νσ ) for the symmetric part and qi

[µρ] → q
′j
[νσ ] for the antisymmetric

part: the former reads

q
′j
(νσ ) = ∂xρ

∂x′σ
∂xµ

∂x′ν
∂q ′j

∂qi
qi
(µρ) + ∂xρ

∂x′σ
∂xµ

∂x′ν
∂2q ′j

∂qi ∂qk
qk
µ qi

ρ

+ ∂xρ

∂x′σ
∂xµ

∂x′ν

(
∂2q ′j

∂xµ ∂qi
qi
ρ + ∂2q ′j

∂xρ ∂qi
qi
µ − ∂xκ

∂x′λ
∂2x′λ

∂xρ ∂xµ

∂q ′j

∂qi
qi
κ

)

− ∂xρ

∂x′σ
∂xκ

∂x′ν
∂xµ

∂x′λ
∂2x′λ

∂xρ ∂xκ

∂q ′j

∂xµ
+ ∂xρ

∂x′σ
∂xµ

∂x′ν
∂2q ′j

∂xρ ∂xµ
, (31)

and is the transformation law for J 2E as an affine bundle over J 1E, whereas the latter
reads simply

q
′j
[νσ ] = ∂xρ

∂x′σ
∂xµ

∂x′ν
∂q ′j

∂qi
qi

[µρ], (32)

and is the transformation law for
∧2

T ∗M ⊗VE as a vector bundle over J 1E. For more
details, see [24, Chapter 5].

The equivalence between the definition of the second order jet bundle given here and
the traditional one is obtained observing that the iterated jet j1j1ϕ of a (local) section ϕ

of E assume values not only in J̄ 2E but even in J 2E, due to the Schwarz rule. Therefore,
second order jets in the traditional sense, that is, classes of (local) sections where the
equivalence relation is the equality between the Taylor expansion up to second order,
are in one-to-one correspondence with these iterated jets of (local) sections. Moreover,
a global section ϕ of E over M naturally induces a global section j2ϕ of J 2E over M

such that in the local coordinates used above

j2ϕ(x) = (xµ, ϕi(x), ∂µϕi(x), ∂µ∂νϕ
i(x)),

where ∂µ = ∂/∂xµ; this is symbolically summarized by writing j2ϕ = (ϕ, ∂ϕ, ∂2ϕ).

2.5. The Legendre Transformation. A Lagrangian field theory is defined by its configu-
ration bundle E over M and its Lagrangian density or simply Lagrangian, which in the
present first order formalism is a map of fiber bundles over E:

L : J 1E −→ ∧
n
T ∗M . (33)

The requirement that L should take values in the volume forms rather than the functions
on space-time is imposed to guarantee that the action functional S : �(E) → R given
by
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S[ϕ] =
∫

M

L(ϕ, ∂ϕ) for ϕ ∈ �(E) (34)

be well-defined and independent of the choice of additional structures, such as a space-
time metric.3 Such a Lagrangian gives rise to a Legendre transformation, which comes
in two variants: as a map

�FL : J 1E −→ �J 1©∗E (35)

or as a map

FL : J 1E −→ J 1©�E (36)

of fiber bundles over E. For any point γ in J 1
e E, the latter is defined as the usual fiber

derivative of L at γ , which is the linear map from �J 1
e E to

∧
n
T ∗

x M given by

�FL(γ ) · �κ = d

dλ
L(γ + λ�κ )

∣
∣
∣
λ=0

for �κ ∈ �J 1
e E , (37)

whereas the former encodes the entire Taylor expansion, up to first order, of L around γ

along the fibers, which is the affine map from J 1
e E to

∧
n
T ∗

x M given by

FL(γ ) · κ = L(γ ) + d

dλ
L(γ + λ(κ − γ ))

∣
∣
∣
λ=0

for κ ∈ J 1
e E . (38)

Of course, �FL is just the linear part of FL, that is, its composition with the bundle pro-
jection η from extended to ordinary multiphase space: �FL = η◦FL. In local coordinates
as before, FL is given by

p
µ
i = ∂L

∂qi
µ

, p = L − ∂L

∂qi
µ

qi
µ, (39)

where L = L d nx. Finally, if L is supposed to be hyperregular, which by defini-
tion means that �FL should be a global diffeomorphism, then one can define the De
Donder - Weyl Hamiltonian H to be the section of J 1©�E over �J 1©∗E given by

H = FL ◦ (�FL)−1 . (40)

In local coordinates as before, this leads to

H = p
µ
i qi

µ − L, (41)

where L = L d nx and H = − H d nx, as stipulated in Eq. (4).
Conversely, the covariant Hamiltonian formulation of a field theory that can be de-

scribed in terms of a configuration bundle E over M is defined by its Hamiltonian density
or simply Hamiltonian, in the spirit of De Donder and Weyl, which in global terms is
a section of extended multiphase space J 1©�E as an affine line bundle over ordinary
multiphase space �J 1©∗E:

H : �J 1©∗E −→ J 1©�E . (42)

3 Strictly speaking, the integration should be restricted to compact subsets of space-time, which leads
to an entire family of action functionals.
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Such a Hamiltonian gives rise to an inverse Legendre transformation, which is a map

FH : �J 1©∗E −→ J 1E (43)

of fiber bundles over E defined as follows. For any point �z in �J 1©∗
e E, the usual fiber

derivative of H at �z is a linear map from �J 1©∗
e E to J 1©�

e E which when composed with
the projection η from J 1©�

e E to �J 1©∗
e E gives the identity on �J 1©∗

e E (since H is a section):
such linear maps form an affine subspace of the vector space of all linear maps from
�J 1©∗
e E to J 1©�

e E that can be naturally identified with the original affine space J 1
e E, as

explained in the Appendix. In local coordinates as before, FH is given by

qi
µ = ∂H

∂p
µ
i

, (44)

where H = − H d nx. Finally, if H is supposed to be hyperregular, which by definition
means that FH should be a global diffeomorphism, then one can define the Lagrangian
L to be given by

L(γ ) =
(
H ◦ (FH)−1

)
(γ ) · γ . (45)

In local coordinates as before, this leads to

L = p
µ
i qi

µ − H, (46)

where L = L d nx and H = − H d nx.
Thus in the hyperregular case, the two processes are inverse to each other and allow

one to pass freely between the Lagrangian and the Hamiltonian formulation. Of course,
this is no longer true for field theories with local symmetries, in particular gauge theories,
which require additional conceptual input.

At any rate, it has become apparent that even in the regular case, the full power of the
multiphase space approach to geometric field theory can only be explored if one uses
the ordinary and extended multiphase spaces in conjunction.

2.6. Canonical Forms. The distinguished role played by the extended multiphase space
is due to the fact that it carries a naturally defined multisymplectic form ω, derived
from an equally naturally defined multicanonical form θ by exterior differentiation: it is
this property that turns it into the field theoretical analogue of the cotangent bundle of
mechanics.4 Global constructions are given in the literature [13–15], so we shall content
ourselves with stating that in local coordinates (xµ, qi, p

µ
i , p) as before, θ takes the

form

θ = p
µ
i dqi ∧ d nxµ + p d nx , (47)

so ω = −dθ becomes

ω = dqi ∧ dp
µ
i ∧ d nxµ − dp ∧ d nx . (48)

4 Note that this statement fails if one uses the ordinary duals instead of the twisted ones.
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Given a Lagrangian L, we can use the associated Legendre transformation FL to pull
back θ and ω and thus define the Poincaré-Cartan forms θL and ωL on J 1E associated
with the Lagrangian L:

θL = (FL)∗θ , ωL = (FL)∗ω . (49)

Similarly, given a Hamiltonian H, we can use it to pull back θ and ω and thus define the
De Donder-Weyl forms θH and ωH on �J 1©∗E associated with the Hamiltonian H:

θH = H∗θ , ωH = H∗ω . (50)

Of course, ωL = − dθL and ωH = − dθH ; moreover, supposing that H ◦ �FL = FL,
we have

θL = (�FL)∗θH , ωL = (�FL)∗ωH . (51)

In local coordinates as before, Eqs. (47) and (48) imply that

θL = ∂L

∂qi
µ

dqi ∧ d nxµ +
(
L − ∂L

∂qi
µ

qi
µ

)
d nx , (52)

θH = p
µ
i dqi ∧ d nxµ − H d nx , (53)

and

ωL =
( ∂2L

∂qj ∂qi
µ

dqi ∧ dqj + ∂2L

∂q
j
ν ∂qi

µ

dqi ∧ dqj
ν

)
∧ d nxµ

+ ∂2L

∂xµ ∂qi
µ

dqi ∧ d nx − d
(
L − ∂L

∂qi
µ

qi
µ

)
∧ d nx , (54)

ωH = dqi ∧ dp
µ
i ∧ d nxµ + dH ∧ d nx . (55)

It is useful to note that the forms θL and θH allow us to give a very simple definition
of the action functional: it is given by pull-back and integration over space-time. Thus
in the Lagrangian framework, the action associated with a section ϕ of E over M is
obtained by taking the pull-back of θL with its derivative which is a section (ϕ, ∂ϕ)

of J 1E over M ,

S[ϕ] =
∫

M

(ϕ, ∂ϕ)∗ θL for ϕ ∈ �(E) , (56)

whereas in the Hamiltonian framework, the action associated with a section (ϕ, π)

of �J 1©∗E over M is simply

S[ϕ, π ] =
∫

M

(ϕ, π)∗ θH for (ϕ, π) ∈ �( �J 1©∗E) . (57)
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2.7. Euler-Lagrange and De Donder-Weyl Operator. The canonical forms introduced in
the previous section are useful for giving a global formulation not only of the variational
principle but also of the corresponding equations of motion: these can be expressed
through the vanishing of certain (generally nonlinear) differential operators which in
turn are derived from (generally nonlinear) fiber bundle maps acting on jets of sections
and defined in terms of the forms ωL and ωH, respectively. Here, we present a simple and
explicit construction of these operators, in the spirit of global analysis [25, 26], which
does not seem to be readily available in the literature, although there do exist various
attempts that go a long way in the right direction; see, e.g., [27] for the Lagrangian case
and [13] for the Hamiltonian case.

Theorem 1. Given a Lagrangian density as in Eq. (33) above, define the corresponding
Euler-Lagrange map to be the map

DL : J 2E −→ V �E (58)

of fiber bundles over J 1E 5 that associates to each 2-jet (ϕ, ∂ϕ, ∂2ϕ) of (local) sections
ϕ of E over M and each vertical vector field V on E the n-form on M given by

DL(ϕ, ∂ϕ, ∂2ϕ) · V = (ϕ, ∂ϕ)∗ (iV ωL) , (59)

where V on the rhs is any vertical vector field on J 1E that projects to the vertical vector
field on E denoted by V on the lhs. Then for any section ϕ of E, DL(ϕ, ∂ϕ, ∂2ϕ) is the
zero section if and only if ϕ satisfies the Euler - Lagrange equations associated to L.

Proof. Let V be a vertical vector field on E, with local coordinate expression

V = V i ∂

∂qi
,

and choose any vertical vector field on J 1E that projects to V , which for the sake of
simplicity will be denoted by the same letter V , with local coordinate expression

V = V i ∂

∂qi
+ V i

µ

∂

∂qi
µ

.

Contracting Eq. (54) with V and then pulling back with (ϕ, ∂ϕ) gives, after some cal-
culation,

(ϕ, ∂ϕ)∗(iV ωL) = ∂ 2L

∂xµ ∂qi
µ

(ϕ, ∂ϕ) V i(ϕ) d nx + ∂ 2L

∂qj ∂qi
µ

(ϕ, ∂ϕ) V i(ϕ) ∂µϕj d nx

+ ∂ 2L

∂q
j
ν ∂qi

µ

(ϕ, ∂ϕ) V i(ϕ) ∂µ∂νϕ
j d nx − ∂L

∂qi
(ϕ, ∂ϕ) V i(ϕ) d nx

=
(

∂µ

(
∂L

∂qi
µ

(ϕ, ∂ϕ)

)

− ∂L

∂qi
(ϕ, ∂ϕ)

)

V i(ϕ) d nx ,

5 Again, we suppress the symbols indicating the pull-back of bundles from E or M to J 1E, and V �E
denotes the twisted dual of VE.
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where it is to be noted that the terms involving the coefficients V i
µ have dropped out.

This leads to the following explicit formula for DL:

DL(ϕ, ∂ϕ, ∂2ϕ) =
(

∂µ

( ∂L

∂qi
µ

(ϕ, ∂ϕ)
)

− ∂L

∂qi
(ϕ, ∂ϕ)

)

dqi ⊗ d nx . (60)

In particular, it is clear that DL depends on ϕ only through the point values of ϕ and its
partial derivatives up to second order, which concludes the proof. �

Theorem 2. Given a Hamiltonian density as in Eq. (42) above, define the corresponding
De Donder-Weyl map to be the map

DH : J 1( �J 1©∗E) −→ V �( �J 1©∗E) (61)

of fiber bundles over �J 1©∗E 6 that associates to each 1-jet (ϕ, π, ∂ϕ, ∂π) of (local)
sections (ϕ, π) of �J 1©∗E over M and each vertical vector field V on �J 1©∗E the n-form
on M given by

DH(ϕ, π, ∂ϕ, ∂π) · V = (ϕ, π)∗ (iV ωH) . (62)

Then for any section (ϕ, π) of �J 1©∗E, DH(ϕ, π, ∂ϕ, ∂π) is the zero section if only if
(ϕ, π) satisfies the De Donder -Weyl equations associated to H.

Proof. Let V be a vertical vector field on �J 1©∗E, with local coordinate expression

V = V i ∂

∂qi
+ V

µ
i

∂

∂p
µ
i

.

Contracting Eq. (55) with V and then pulling back with (ϕ, π) gives

(ϕ, π)∗(iV ωH) = ∂µπ
µ
i V i(ϕ, π) d nx + ∂H

∂qi
(ϕ, π) V i(ϕ, π) d nx

− ∂µϕi V
µ
i (ϕ, π) d nx + ∂H

∂p
µ
i

(ϕ, π) V
µ
i (ϕ, π) d nx .

This leads to the following explicit formula for DH:

DH(ϕ, π, ∂ϕ, ∂π) =
(

∂H

∂qi
(ϕ, π) + ∂µπ

µ
i

)

dqi ⊗ d nx

+
(

∂H

∂p
µ
i

(ϕ, π) − ∂µϕi

)

dp
µ
i ⊗ d nx . (63)

In particular, it is clear that DH depends on (ϕ, π) only through the point values of ϕ

and π and their partial derivatives up to first order, which concludes the proof. �
6 Again, we suppress the symbols indicating the pull-back of bundles from E or M to �J 1�E, and

V �( �J 1�E) denotes the twisted dual of V ( �J 1�E).
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Remark. A slight extension of the above proofs shows that the expressions on the rhs
of Eq. (59) and of Eq. (62) vanish on solutions of the equations of motion even when V

is replaced by an arbitrary (not necessarily vertical) vector field, so that one may also
consider the Euler - Lagrange map as a fiber bundle map

DL : J 2E −→ T �E ,

and the De Donder - Weyl map as a fiber bundle map

DH : J 1( �J 1©∗E) −→ T �( �J 1©∗E) .

However, we refrain from writing down the explicit local coordinate expressions for
this case (which generalize Eq. (60) and Eq. (63), respectively, by including a term
proportional to dxµ ⊗ d nx), since we shall not need this fact here.

2.8. Jacobi Operators. In order to make contact with the functional formalism to be
discussed in the next section, we must also derive explicit expressions for the linear-
ization of the Euler - Lagrange operator and the De Donder - Weyl operator around a
given solution of the equations of motion. This leads to linear differential operators
between vector bundles over M that we shall refer to as Jacobi operators, generalizing
the familiar derivation of the Jacobi equation by linearizing the geodesic equation.

In its Lagrangian version, the Jacobi operator is a second order differential operator

JL[ϕ ] : �(ϕ∗ VE) −→ �(ϕ∗ V �E) , (64)

obtained by linearizing the Euler - Lagrange operator DL around a given solution ϕ of
the equations of motion. Similarly, in its Hamiltonian version, the Jacobi operator is a
first order differential operator

JH[ϕ, π ] : �((ϕ, π)∗ V ( �J 1�E)) −→ �((ϕ, π)∗ V �( �J 1�E)) , (65)

obtained by linearizing the De Donder - Weyl operator DH around a given solution (ϕ, π)

of the equations of motion. (Thus in both cases, the vector bundles involved are obtained
by pulling back the appropriate vertical bundle and its twisted dual with the solution of
the nonlinear equation around which the linearization is performed.) To obtain explicit
expressions, consider an arbitrary variation ϕλ around ϕ and evaluate DL(ϕλ, ∂ϕλ, ∂

2ϕλ)

which, for each λ, is a section of ϕ∗
λ V �E, observing that since ϕ = ϕλ

∣
∣
λ=0 is a solution,

DL(ϕλ, ∂ϕλ, ∂
2ϕλ)

∣
∣
λ=0 is the zero section of ϕ∗ V �E, and setting

δϕ = ∂

∂λ
ϕλ

∣
∣
∣
λ=0

. (66)

Noting that in local coordinates, the value of DL(ϕλ, ∂ϕλ, ∂
2ϕλ) at a point x in M with

coordinatesxµ has coordinates (xµ, ϕi
λ(x), DL(ϕλ, ∂ϕλ, ∂

2ϕλ)i(x)), where the last piece
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is the coefficient of dqi ⊗ d nx in Eq. (60), we get by differentiation with respect to λ,

∂

∂λ
DL(ϕλ, ∂ϕλ, ∂

2ϕλ)

∣
∣
∣
λ=0

= δϕi ∂

∂qi
+
(

∂µ

( ∂2L

∂qj ∂qi
µ

(ϕ, ∂ϕ) δϕj + ∂2L

∂q
j
ν ∂qi

µ

(ϕ, ∂ϕ) ∂νδϕ
j
)

− ∂2L

∂qj ∂qi
(ϕ, ∂ϕ) δϕj − ∂2L

∂q
j
ν ∂qi

(ϕ, ∂ϕ) ∂νδϕ
j

)

dqi ⊗ d nx .

Similarly, consider an arbitrary variation (ϕλ, πλ) around (ϕ, π) and evaluate
DH(ϕλ, πλ, ∂ϕλ, ∂πλ) which, for each λ, is a section of (ϕλ, πλ)

∗ V �( �J 1�E), observ-
ing that since (ϕ, π) = (ϕλ, πλ)

∣
∣
λ=0 is a solution, DH(ϕλ, πλ, ∂ϕλ, ∂πλ)

∣
∣
λ=0 is the

zero section of (ϕ, π)∗ V �( �J 1�E), and setting

(δϕ, δπ) = ∂

∂λ
(ϕλ, πλ)

∣
∣
∣
λ=0

. (67)

Again, noting that in local coordinates, the value of DH(ϕλ, πλ, ∂ϕλ, ∂πλ) at a point x

inMwith coordinatesxµ has coordinates (xµ,ϕi
λ(x),(πλ)

µ
i (x),DH(ϕλ, πλ, ∂ϕλ, ∂πλ)i(x),

DH(ϕλ, πλ, ∂ϕλ, ∂πλ)
i
µ(x)), where the last two pieces are the coefficients of

dqi ⊗ d nx and of dp
µ
i ⊗ d nx in Eq. (63), we get by differentiation with respect

to λ,

∂

∂λ
DH(ϕλ, πλ, ∂ϕλ, ∂πλ)

∣
∣
∣
λ=0

= δϕi ∂

∂qi
+ δπ

µ
i

∂

∂p
µ
i

+
(

∂2H

∂qj ∂qi
(ϕ, π) δϕj + ∂2H

∂pν
j ∂qi

(ϕ, π) δπν
j + ∂µ δπ

µ
i

)

dqi ⊗ d nx

+
(

∂2H

∂qj ∂p
µ
i

(ϕ, π) δϕj + ∂2H

∂pν
j ∂p

µ
i

(ϕ, π) δπν
j − ∂µ δϕi

)

dp
µ
i ⊗ d nx .

In order to show how to extract the Jacobi operators from these expressions, by means
of a globally defined prescription, we apply the following construction [10]. Let F be
a fiber bundle over M , with bundle projection πF,M : F → M , and W be a vector
bundle over F with bundle projection πW,F : W → F , which is then also a fiber bun-
dle (but not necessarily a vector bundle) over M with respect to the composite bundle
projection πW,M = πF,M ◦ πW,F : W → M . Thus W admits two different kinds of
vertical bundles, VF W and VMW , with fibers defined by (VF )wW = ker TwπW,F and
(VM)wW = ker TwπW,M for w ∈ W ; obviously, the former is contained in the latter as
a vector subbundle. Moreover, since W is supposed to be a vector bundle over F , there
is a canonical isomorphism VF W ∼= π∗

W,F W . On the other hand, consider the vertical
bundle V F of F which can be pulled back to W to obtain a vector bundle π∗

W,F (V F)

over W , with fibers defined by (π∗
W,F (V F))w = Vf F = ker Tf πF,M for w ∈ W with

f = πW,F w. Note also that the tangent map to the bundle projection πW,F , which
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by definition has kernel VF W , maps VMW onto V F , so we have the following exact
sequence of vector bundles over W :

0 −→ VF W ∼= π∗
W,F W −→ VMW −→ π∗

W,F (V F) −→ 0 .

The crucial observation is now that this exact sequence admits a canonical splitting
over the zero section 0 : F → W , given simply by its tangent map. Indeed, its tan-
gent map Tf 0 : Tf F → T0(f )W at any point f ∈ F takes the vertical subspace
Vf F to the M-vertical subspace (VM)0(f )W and so restricts to a vertical tangent map
Vf 0 : Vf F → (VM)0(f )W whose composition with the restriction of the tangent
map T0(f )πW,F : T0(f )W → Tf F to (VM)0(f )W gives the identity on Vf F . Thus
the image of Vf 0 is a subspace of (VM)0(f )W that is complementary to the subspace
(VF )0(f )W = Wf and provides a surjective linear map σf : (VM)0(f )W → Wf of
which it is the kernel. At the level of bundles, this corresponds to a surjective vector
bundle homomorphism σ : VMW

∣
∣
0 → W .

Applying this construction to the situation at hand, take F = E in the Lagrangian
case and F = �J 1�E in the Hamiltonian case, setting W = V �F in both cases. The
fact that the Euler - Lagrange or De Donder - Weyl operator is being linearized around
a solution ϕ or (ϕ, π) of the equations of motion then means that we are evaluating
its derivative, which a priori takes the variation δϕ or (δϕ, δπ) to a vector field on W

along M which is vertical with respect to the projection of W onto M , precisely over the
zero section, so we can apply the operator σ just introduced to project it down to a sec-
tion of W over M itself. This operation completes the definition of the Jacobi operators,
namely

JL[ϕ] · δϕ = σ

(
∂

∂λ
DL(ϕλ, ∂ϕλ, ∂

2ϕλ)

∣
∣
∣
λ=0

)

, (68)

and

JH[ϕ, π ] · (δϕ, δπ) = σ

(
∂

∂λ
DH(ϕλ, πλ, ∂ϕλ, ∂πλ)

∣
∣
∣
λ=0

)

. (69)

The local coordinate expressions are the ones derived above, that is,

JL[ϕ] · δϕ =
{

∂2L

∂q
j
ν ∂qi

µ

(ϕ, ∂ϕ) ∂µ∂νδϕ
j

+
(

∂µ

( ∂2L

∂q
j
ν ∂qi

µ

(ϕ, ∂ϕ)
)

+
( ∂2L

∂qj ∂qi
ν

− ∂2L

∂qi ∂q
j
ν

)
(ϕ, ∂ϕ)

)

∂νδϕ
j

+
(

∂µ

( ∂2L

∂qj ∂qi
µ

(ϕ, ∂ϕ)
)

− ∂2L

∂qj ∂qi
(ϕ, ∂ϕ)

)

δϕj

}

dqi ⊗ dnx, (70)

and

JH[ϕ, π ] · (δϕ, δπ)

=
(

∂2H

∂qj ∂qi
(ϕ, π) δϕj + ∂2H

∂pν
j ∂qi

(ϕ, π) δπν
j + ∂µ δπ

µ
i

)

dqi ⊗ d nx

+
(

∂2H

∂qj ∂p
µ
i

(ϕ, π) δϕj + ∂2H

∂pν
j ∂p

µ
i

(ϕ, π) δπν
j − ∂µδϕi

)

dp
µ
i ⊗ d nx. (71)
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3. Functional Approach

Let us begin by recalling the definition of the Poisson bracket between functions on
a symplectic manifold with symplectic form ω. First, one associates to each (smooth)
functionf a (smooth) Hamiltonian vector field Xf , uniquely determined by the condition

iXf
ω = df . (72)

Then the Poisson bracket of two functions f and g is defined to be the function {f, g}
given by

{f, g} = − iXf
iXgω = df (Xg) = − dg(Xf ) . (73)

The goal of this section is to show that formally, the same construction applied to covar-
iant phase space links the Witten symplectic form to the Peierls bracket.

3.1. Covariant Phase Space. In contrast to the traditional non-covariant Hamiltonian
formalism of field theory, where phase space is a “space” of Cauchy data, covariant
phase space, denoted here by S, is the “space” of solutions of the equations of motion,
or field equations. Of course, one cannot expect these two interpretations of phase space
to be equivalent in complete generality, since it is well known that, for nonlinear equa-
tions, time evolution of regular Cauchy data may lead to solutions that, within finite
time, develop some kind of singularity. An even more elementary prerequisite is that the
underlying space-time manifold M must admit at least some Cauchy surface � : this
means that M should be globally hyperbolic.

Thus our basic assumption for the remainder of this paper will be that the underlying
space-time manifold M should be globally hyperbolic. Globally hyperbolic space-times
are the natural arena for the mathematical theory of hyperbolic (systems of) partial differ-
ential equations, in which the Cauchy problem is well posed. There are by now various
and apparently quite different definitions of the concept of a globally hyperbolic space-
time, but they have ultimately turned out to be all equivalent; see Chapter 8 of [28] for
an extensive discussion. For our purposes, the most convenient one is that M admits a
global time function whose level surfaces provide a foliation of M into Cauchy surfaces,
providing a global diffeomorphism M ∼= R × �. As an immediate corollary, we can
define the concept of a (closed/open) time slice in M: it is a (closed/open) subset of M

which under such a global diffeomorphism corresponds to a subset of the form I × � ,
where I is a (closed/open) interval in R.

In the Lagrangian as well as in the Hamiltonian approach to field theory, the equa-
tions of motion are derived from a variational principle, that is, their solutions are the
stationary points of a certain functional S called the action and defined on a space of
sections of an appropriate fiber bundle over space-time which is usually referred to as
the space of field configurations of the theory and will in what follows be denoted by C.
More concretely, C is the space �(F) of smooth sections φ of a fiber bundle F over M: in
the Lagrangian approach, F is the configuration bundle E, whereas in the Hamiltonian
approach, F is the multiphase space �J 1 ©∗E, regarded as a fiber bundle over M .

Formally, we shall as usual think of C as being a manifold (which is of course infi-
nite-dimensional). As such, it has at each of its points φ a tangent space TφC that can
be defined formally as a space of smooth sections, with appropriate support properties,
of the vector bundle φ∗ VF over M , i.e., TφC ⊂ �∞(φ∗ VF). The cotangent space T ∗

φ C
will then be the space of distributional sections, with dual support properties, of the
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twisted dual vector bundle φ∗ V �F over M , i.e., T ∗
φ C ⊂ �−∞(φ∗ V �F). It contains

as a subspace the corresponding space of smooth sections, where the pairing between
a smooth section of φ∗ VF and a smooth section of φ∗ V �F (with appropriate sup-
port conditions) is given by contraction and integration of the resulting form over M .
Similarly, the second tensor power T ∗

φ C ⊗T ∗
φ C of T ∗

φ C can be thought of as the space of
distributional sections, again with dual support properties, of the second exterior tensor
power 7 φ∗ V �F � φ∗ V �F of φ∗ V �F ; it contains as a subspace the corresponding
space of smooth sections, where the pairing between a pair of smooth sections of φ∗ VF

and a smooth section of φ∗ V �F � φ∗ V �F (with appropriate support conditions) is
given by contraction and integration of the resulting form over M × M .

Regarding the support conditions to be imposed, the first two options that come
to mind would be to require that either the elements of TφC or the elements of T ∗

φ C
should have compact support, which would imply that the support of the elements of the
corresponding dual, T ∗

φ C or TφC, could be left completely arbitrary:

Option 1 . TφC = �∞(φ∗ VF) , T ∗
φ C = �−∞

c (φ∗ V �F). (74)

Option 2 . TφC = �∞
c (φ∗ VF) , T ∗

φ C = �−∞(φ∗ V �F). (75)

There is a third option that makes use of the assumption that M is globally hyperbolic.
To formulate it, we introduce the following terminology. A section of a vector bundle
over M is said to have spatially compact support if the intersection between its support
and any (closed) time slice in M is compact, and it is said to have temporally compact
support if its support is contained in some time slice. Then, as in Ref. [8], we require
the elements of TφC to have spatially compact support and the elements of T ∗

φ C to have
temporally compact support:

Option 3 . TφC = �∞
sc (φ∗ VF) , T ∗

φ C = �−∞
tc (φ∗ V �F). (76)

Obviously, for each of these three options, the two spaces listed above are naturally dual
to each other. 8

These constructions can be applied to elucidate the nature of functional derivatives
of functionals on C, such as the action. Namely, given a (formally smooth) functional
F : C → R, its functional derivative at a point φ is the linear functional on TφC which,
when applied to δφ , yields the directional derivative of F at φ along δφ , defined by the
requirement that for any one-parameter family of sections φλ of F such that φλ

∣
∣
λ=0 = φ ,

F ′[φ] · δφ = d

dλ
F [φλ]

∣
∣
∣
λ=0

if δφ = ∂

∂λ
φλ

∣
∣
∣
λ=0

.

Then F ′[φ] is a distributional section of φ∗ V �F with appropriate support properties
(dual to those required for TφC). In local coordinates, its action on δφ can (formally and
at least when the intersection of the two supports is contained in the coordinate system
domain) be written in the form

F ′[φ] · δφ =
∫

M

d nx
δF
δφ

[φ](x) · δφ(x). (77)

7 If V and W are vector bundles over M , V � W is defined to be the vector bundle over M × M with
fibers given by (V � W)(x,y) = Vx ⊗ Wy , for all x, y ∈ M .

8 Here and in what follows, the symbols �c , �sc and �tc indicate spaces of sections of compact,
spatially compact and temporally compact support, respectively.
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The expression (δF/δφ)[φ], sometimes called the variational derivative of F at φ , is
then a distributional section of φ∗ V ∗F (over the coordinate system domain). In the
Lagrangian framework,

δF
δφ

[φ](x) = δF
δϕi

[ϕ](x) dqi ,

whereas in the Hamiltonian framework,

δF
δφ

[φ](x) = δF
δϕi

[ϕ, π ](x) dqi + δF

δπ
µ
i

[ϕ, π ](x) dp
µ
i .

Similarly, the second functional derivative of F at φ is the symmetric bilinear functional
on TφC which, when applied to δφ1 and δφ2, can be defined by the requirement that for
any two-parameter family of sections φλ1,λ2 of F such that φλ1,λ2

∣
∣
λ1,λ2=0 = φ ,

F ′′[φ] · (δφ1, δφ2) = ∂2

∂λ1 ∂λ2
F [φλ1,λ2 ]

∣
∣
∣
λ1,λ2=0

if

δφ1 = ∂

∂λ1
φλ1,λ2

∣
∣
∣
λ1,λ2=0

, δφ2 = ∂

∂λ2
φλ1,λ2

∣
∣
∣
λ1,λ2=0

.

Then F ′′[φ] is a distributional section of φ∗ V �F � φ∗ V �F with appropriate support
properties (dual to those required for TφC ⊗ TφC). In local coordinates for M × M

induced from local coordinates for M , its action on (δφ1, δφ2) can (formally and at least
when the intersection of the supports is contained in the coordinate system domain) be
written in the form

F ′′[φ] · (δφ1, δφ2) =
∫

M

d nx

∫

M

d ny
δ2F
δφ2 [φ](x, y) · (δφ1(x), δφ2(y)). (78)

The expression (δ2F/δφ2)[φ], sometimes called the variational Hessian of F at φ , is
then a distributional section of φ∗ V ∗F �φ∗ V ∗F (over the coordinate system domain).
In the Lagrangian framework,

δ2F
δφ2 [φ](x, y) = δ2F

δϕi δϕj
[ϕ](x, y) dqi ⊗ dqj ,

whereas in the Hamiltonian framework,

δ2F
δφ2 [φ](x, y)

= δ2F
δϕi δϕj

[ϕ, π ](x, y) dqi ⊗ dqj + δ2F
δϕi δπν

j

[ϕ, π ](x, y) dqi ⊗ dpν
j

+ δ2F

δπ
µ
i δϕj

[ϕ, π ](x, y) dp
µ
i ⊗ dqj + δ2F

δπ
µ
i δπν

j

[ϕ, π ](x, y) dp
µ
i ⊗ dpν

j .

Of course, for the integrals in Eqs. (77) and (78) to make sense, even when interpreted
in the sense of pairing distributions with test functions, we must make some assumption
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about support properties, which leads us back to the options stated in Eqs. (74)–(76).
Option 1: when F is arbitrary, we have to restrict the sections δφ, δφ1, δφ2 of φ∗ VF

considered above to have compact support (which can be achieved if the sections φλ,
φλ1,λ2 of F are supposed to be independent of the parameters outside a compact subset).
Option 2: when F is local, which we understand to mean that its functional depen-
dence on the fields is non-trivial only within a compact region, or equivalently, that its
functional derivative F ′[φ] at each φ has compact support, the sections δφ, δφ1, δφ2
of φ∗ VF considered above may be allowed to have arbitrary support; this is the case
for local observables defined as integrals of local densities over compact regions of
space-time and, in particular, over compact regions within a Cauchy surface � (energy,
momentum, angular momentum, charges, etc. within a finite volume). Option 3: when
F is local in time, which we understand to mean that its functional dependence on the
fields is non-trivial only within a time slice, or equivalently, that its functional derivative
F ′[φ] at each φ has temporally compact support, we have to restrict the sections δφ,
δφ1, δφ2 of φ∗ VF considered above to have spatially compact support (which can be
achieved if the sections φλ, φλ1,λ2 are supposed to be independent of the parameters
outside a spatially compact subset); this is the case for global observables defined as
integrals of local densities over time slices and, in particular, over a Cauchy surface �

(total energy, total momentum, total angular momentum, total charges, etc.).
Finally, covariant phase space S is defined to be the subset of C consisting of the

critical points of the action:

S = {φ ∈ C | S ′[φ] = 0} . (79)

Formally, we can think of S as being a submanifold of C whose tangent space at any
point φ of S will be the subspace TφS of the tangent space TφC consisting of the
solutions of the linearized equations of motion (where the linearization is to be per-
formed around the given solution φ of the full equations of motion), which are precisely
the sections of φ∗ VF belonging to the kernel of the corresponding Jacobi operator
J [φ] : �(φ∗ VF) −→ �(φ∗ V �F) :

TφS = ker J [φ] . (80)

3.2. Symplectic structure. Our next goal is to justify the term “covariant phase space”
attributed to S by showing that, formally, S carries a naturally defined symplectic form
�, derived from an equally naturally defined canonical form � by formal exterior differ-
entiation. According to Crnković, Witten and Zuckerman [1–3] (see also [4]), the sym-
plectic form � can be obtained by integration of a “symplectic current”, which is a closed
(n− 1)-form on space-time, over an arbitrary spacelike hypersurface �. Here, we show
that this “symplectic current” can be derived directly from the multisymplectic form ω

or, more explicitly, from the Poincaré - Cartan form ωL in the Lagrangian approach and
the De Donder - Weyl form ωH in the Hamiltonian approach.

We begin with the definition of � and � in terms of θ and ω, which is achieved by a
mixture of contraction and pull-back: given a point φ in C (a smooth section φ of F ) and
smooth sections δφ, δφ1, δφ2 of φ∗ VF , insert δφ into the first of the n arguments of θ

or δφ1 and δφ2 into the first two of the n + 1 arguments of ω and apply the definition of
the pull-back with φ (which amounts to composition with the derivatives ∂φ of φ) to the
remaining n − 1 arguments to obtain (n − 1)-forms on space-time which are integrated
over �. Note that these integrals exist if we assume that δφ and either δφ1 or δφ2 have
spatially compact support, since this will intersect � in a compact subset.
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Explicitly, in the Lagrangian framework, we have

�φ(δφ) =
∫

�

(ϕ, ∂ϕ)∗ θL(δϕ, ∂ δϕ) (81)

and

�φ(δφ1, δφ2) =
∫

�

(ϕ, ∂ϕ)∗ ωL(δϕ1, ∂ δϕ1 , δϕ2, ∂ δϕ2), (82)

where the notation is the same as that employed in Eq. (56): φ = ϕ is a section of E

over M and j1ϕ = (ϕ, ∂ϕ) is its (first) prolongation or derivative, a section of J 1E

over M , while δφ = δϕ, δφ1 = δϕ1, δφ2 = δϕ2 are variations of φ = ϕ, all sections of
V E over M , and δj1ϕ = (δϕ, ∂ δϕ), δj1ϕ1 = (δϕ1, ∂ δϕ1), δj1ϕ2 = (δϕ2, ∂ δϕ2) are
the induced variations of j1ϕ = (ϕ, ∂ϕ), all sections of V (J 1E) ∼= J 1(V E) over M .
In local coordinates,

δϕ = ∂

∂λ
ϕλ

∣
∣
∣
λ=0

= δϕi ∂

∂qi

and

δj1ϕ = ∂

∂λ
j1ϕλ

∣
∣
∣
λ=0

= δϕi ∂

∂qi
+ ∂µδϕi ∂

∂qi
µ

,

whereas θL and ωL are given by Eqs. (52) and (54). Then

�φ(δφ) =
∫

�

dσµ

∂L

∂qi
µ

(ϕ, ∂ϕ) δϕi (83)

and

�φ(δφ1, δφ2) =
∫

�

dσµ J
µ
φ (δφ1, δφ2) (84)

with the “symplectic current” J given by

J
µ
φ (δφ1, δφ2) = ∂2L

∂qj ∂qi
µ

(ϕ, ∂ϕ) (δϕi
1 δϕ

j
2 − δϕi

2 δϕ
j
1 )

+ ∂2L

∂q
j
ν ∂qi

µ

(ϕ, ∂ϕ) (δϕi
1 ∂νδϕ

j
2 − δϕi

2 ∂νδϕ
j
1 ) , (85)

or equivalently

J
µ
φ (δφ1, δφ2) = −

( ∂2L

∂qj ∂qi
µ

(ϕ, ∂ϕ) δϕ
j
1 + ∂2L

∂q
j
ν ∂qi

µ

(ϕ, ∂ϕ) ∂νδϕ
j
1

)
δϕi

2

+
( ∂2L

∂qj ∂qi
µ

(ϕ, ∂ϕ) δϕ
j
2 + ∂2L

∂q
j
ν ∂qi

µ

(ϕ, ∂ϕ) ∂νδϕ
j
2

)
δϕi

1 . (86)



Covariant Poisson Brackets in Geometric Field Theory 397

The same results can be obtained even more directly in the Hamiltonian framework,
in which we have

�φ(δφ) =
∫

�

(ϕ, π)∗ θH(δϕ, δπ) (87)

and

�φ(δφ1, δφ2) =
∫

�

(ϕ, π)∗ ωH(δϕ1, δπ1 , δϕ2, δπ2), (88)

where the notation is the same as that employed in Eq. (57): φ = (ϕ, π) is a section of
�J 1 ©∗E over M while δφ = (δϕ, δπ), δφ1 = (δϕ1, δπ1), δφ2 = (δϕ2, δπ2) are variations

of φ = (ϕ, π), all sections of V ( �J 1 ©∗E) over M . In local coordinates,

δϕ = ∂

∂λ
ϕλ

∣
∣
∣
λ=0

= δϕi ∂

∂qi
, δπ = ∂

∂λ
πλ

∣
∣
∣
λ=0

= δπ
µ
i

∂

∂p
µ
i

,

whereas θH and ωH are given by Eqs. (53) and (55). Then

�φ(δφ) =
∫

�

dσµ π
µ
i δϕi (89)

and

�φ(δφ1, δφ2) =
∫

�

dσµ J
µ
φ (δφ1, δφ2) (90)

with the “symplectic current” J given by

J
µ
φ (δφ1, δφ2) = δϕi

1 δπ
µ

2,i − δϕi
2 δπ

µ
1,i . (91)

Incidentally, these formulas show that, just like in mechanics, the canonical form � and
the symplectic form � do not depend on the choice of the Hamiltonian H.

Another important result, duly emphasized in the literature [1–4], is the fact that on
covariant phase space S, the symplectic form � does not depend on the choice of the
hypersurface � used in its definition, since for any solution φ of the equations of motion
and any two solutions δφ1, δφ2 of the linearized equations of motion, the “symplectic
current” Jφ(δφ1, δφ2) is a closed form on space-time. To prove this, assume that φ is
a point in S and observe that a tangent vector δφ in TφC belongs to the subspace TφS
if and only if δφ, as a section of φ∗ VF , satisfies the pertinent Jacobi equation, which
reads

∂µ

( ∂2L

∂qj ∂qi
µ

(ϕ, ∂ϕ) δϕj + ∂2L

∂q
j
ν ∂qi

µ

(ϕ, ∂ϕ) ∂νδϕ
j
)

= ∂2L

∂qj ∂qi
(ϕ, ∂ϕ) δϕj + ∂2L

∂qi ∂q
j
ν

(ϕ, ∂ϕ) ∂νδϕ
j (92)

in the Lagrangian framework and

∂µ δπ
µ
i = − ∂2H

∂qj ∂qi
(ϕ, π) δϕj − ∂2H

∂pν
j ∂qi

(ϕ, π) δπν
j ,

∂µ δϕi = ∂2H

∂qj ∂p
µ
i

(ϕ, π) δϕj + ∂2H

∂pν
j ∂p

µ
i

(ϕ, π) δπν
j (93)
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in the Hamiltonian framework. Thus if δφ1 and δφ2 both satisfy the Jacobi equation, we
have

∂µJ
µ
φ (δφ1, δφ2) = − ∂µ

( ∂2L

∂qj ∂qi
µ

(ϕ, ∂ϕ) δϕ
j
1 + ∂2L

∂q
j
ν ∂qi

µ

(ϕ, ∂ϕ) ∂νδϕ
j
1

)
δϕi

2

−
( ∂2L

∂qj ∂qi
µ

(ϕ, ∂ϕ) δϕ
j
1 + ∂2L

∂q
j
ν ∂qi

µ

(ϕ, ∂ϕ) ∂νδϕ
j
1

)
∂µδϕi

2

+ ∂µ

( ∂2L

∂qj ∂qi
µ

(ϕ, ∂ϕ) δϕ
j
2 + ∂2L

∂q
j
ν ∂qi

µ

(ϕ, ∂ϕ) ∂νδϕ
j
2

)
δϕi

1

+
( ∂2L

∂qj ∂qi
µ

(ϕ, ∂ϕ) δϕ
j
2 + ∂2L

∂q
j
ν ∂qi

µ

(ϕ, ∂ϕ) ∂νδϕ
j
2

)
∂µδϕi

1

= −
( ∂2L

∂qj ∂qi
(ϕ, ∂ϕ) δϕ

j
1 + ∂2L

∂qi∂q
j
ν

(ϕ, ∂ϕ) ∂νδϕ
j
1

)
δϕi

2

−
( ∂2L

∂qj ∂qi
µ

(ϕ, ∂ϕ) δϕ
j
1 + ∂2L

∂q
j
ν ∂qi

µ

(ϕ, ∂ϕ) ∂νδϕ
j
1

)
∂µδϕi

2

+
( ∂2L

∂qj ∂qi
(ϕ, ∂ϕ) δϕ

j
2 + ∂2L

∂qi∂q
j
ν

(ϕ, ∂ϕ) ∂νδϕ
j
2

)
δϕi

1

+
( ∂2L

∂qj ∂qi
µ

(ϕ, ∂ϕ) δϕ
j
2 + ∂2L

∂q
j
ν ∂qi

µ

(ϕ, ∂ϕ) ∂νδϕ
j
2

)
∂µδϕi

1

in the Lagrangian framework and

∂µJ
µ
φ (δφ1, δφ2) = ∂µδϕi

1 δπ
µ

2,i + δϕi
1 ∂µδπ

µ
2,i − ∂µδϕi

2 δπ
µ

1,i − δϕi
2 ∂µδπ

µ
1,i

=
( ∂2H

∂qj ∂p
µ
i

(ϕ, π) δϕ
j
1 + ∂2H

∂pν
j ∂p

µ
i

(ϕ, π) δπ ν
1,j

)
δπ

µ
2,i

− δϕi
1

( ∂2H

∂qj ∂qi
(ϕ, π) δϕ

j
2 + ∂2H

∂pν
j ∂qi

(ϕ, π) δπ ν
2,j

)

−
( ∂2H

∂qj ∂p
µ
i

(ϕ, π) δϕ
j
2 + ∂2H

∂pν
j ∂p

µ
i

(ϕ, π) δπ ν
2,j

)
δπ

µ
1,i

+ δϕi
2

( ∂2H

∂qj ∂qi
(ϕ, π) δϕ

j
1 + ∂2H

∂pν
j ∂qi

(ϕ, π) δπ ν
1,j

)

in the Hamiltonian framework: obviously, both of these expressions vanish.
Of course, independence of the choice of hypersurface holds only for � but not for �.

In fact, if M1,2 is a region of space-time whose boundary is the disjoint union of two
hypersurfaces �1 and �2, then ��2 = ��1 , but

��2 − ��1 = δSM1,2 , (94)

where SM1,2 is the action calculated by integration over M1,2 and δ is the functional
exterior derivative, or variational derivative, on S.



Covariant Poisson Brackets in Geometric Field Theory 399

3.3. Poisson bracket. Given a relativistic field theory with a regular first-order Lagrang-
ian, one expects each of the corresponding Jacobi operators J [φ] (φ ∈ S) to form a
hyperbolic system of second-order partial differential operators. A typical example is
provided by the sigma model, where E is a trivial product bundle M × Q, with a given
Lorentzian metric g on the base manifold M , as usual, and a given Riemannian metric
h on the typical fiber Q. Its Lagrangian is

L = 1
2

√
|g| gµν hij qi

µ qj
ν ,

so that the coefficients of the highest degree terms of the Jacobi operator J [ϕ] are

∂2L

∂q
j
ν ∂qi

µ

(ϕ, ∂ϕ) = 1
2

√
|g| gµν hij (ϕ) ,

which clearly exhibits the hyperbolic nature of the resulting linearized field equations.
A general feature of hyperbolic systems of linear partial differential equations is the

possibility to guarantee existence and uniqueness of various types of Green functions.
In the present context, what we need is existence and uniqueness of the retarded Green
function G−

φ , the advanced Green function G+
φ and the causal Green function Gφ for

the Jacobi operator J [φ], for each φ ∈ S. By definition, the first two are solutions of the
inhomogeneous Jacobi equations

Jx[φ] · G±
φ (x, y) = δ(x, y) , Jy[φ] · G±

φ (x, y) = δ(x, y) , (95)

or more explicitly,

Jx[φ]km G± ml
φ (x, y) = δl

k δ(x, y) , Jy[φ]km G± lm
φ (x, y) = δl

k δ(x, y) , (96)

where Jz[φ] denotes the Jacobi operator with respect to the variable z, characterized
by the following support condition: for any x, y ∈ M , G−

φ (x, y) = 0 when x /∈ J+(y)

and G+
φ (x, y) = 0 when x /∈ J−(y), where J+(y) and J−(y) are the future cone and

the past cone of y, respectively. The causal Green function, also called the propagator,
is then simply their difference:

Gφ = G−
φ − G+

φ . (97)

Obviously, it satisfies the homogeneous Jacobi equations

Jx[φ] · Gφ(x, y) = 0 , Jy[φ] · Gφ(x, y) = 0 . (98)

Note that the symmetry of the Jacobi operator J [φ], stemming from the fact that it
represents the second variational derivative of the action, forces these Green functions
to satisfy the following exchange and symmetry properties:

G± lk
φ (y, x) = G∓ kl

φ (x, y) , Glk
φ (y, x) = − Gkl

φ (x, y) . (99)

It should be pointed out that existence and uniqueness of these Green functions cannot be
guaranteed in complete generality: this requires not only that M be globally hyperbolic
but also that the linearized field equations should form a hyperbolic system. Here, we
shall simply assume this to be the case and proceed from there; further comments on the
question will be deferred to the end of the section.
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Our next step will be to study certain specific (distributional) solutions XF[φ] of the
general inhomogeneous Jacobi equation

J [φ] · XF[φ] = F ′[φ] (100)

for smooth functionals F on covariant phase space which are (at least) local in time.
To eliminate the ambiguity in this equation stemming from the fact that the functional
derivative F ′[φ] on its rhs belongs to the space T ∗

φ S which is only a quotient space of
the image space T ∗

φ C of the Jacobi operator J [φ] (an inclusion of the form TφS ⊂ TφC
induces a natural projection from T ∗

φ C to T ∗
φ S), it is necessary to first of all extend the

given functional F on S to a functional F̃ on C of the same type (smooth and local in
time), whose functional derivative F̃ ′[φ] does belong to the space T ∗

φ C which, as we

recall from Eq. (76), consists of the distributional sections of φ∗ V �F of temporally
compact support. Next, convolution with the retarded and advanced Green function
introduced above produces formal vector fields over S which to each solution φ ∈ S
of the field equations associate (distributional) sections X−

F̃
[φ] and X+

F̃
[φ] of φ∗ VF ,

respectively. In local coordinates, their definition can (formally and at least when the
intersection of the two supports is contained in the coordinate domain) be written in the
form

X±
F̃

[φ] k(x) =
∫

M

d ny G± kl
φ (x, y)

δF̃
δφ l

[φ](y) . (101)

Both of them satisfy the inhomogeneous Jacobi equation

J [φ] · X±
F̃

[φ] = F̃ ′[φ] . (102)

Similarly, convolution with the causal Green function leads to another formal vector field
over S which to each solution φ ∈ S of the field equations associates a (distributional)
section X

F̃
[φ] of φ∗ VF . Again, in local coordinates, its definition can (formally and at

least when the intersection of the two supports is contained in the coordinate domain)
be written in the form

X
F̃

[φ] k(x) =
∫

M

d ny Gkl
φ (x, y)

δF̃
δφ l

[φ](y) . (103)

It satisfies the homogeneous Jacobi equation

J [φ] · X
F̃

[φ] = 0 , (104)

since according to Eq. (97)

X
F̃

[φ] = X−
F̃

[φ] − X+
F̃

[φ] . (105)

Note that the convolutions in Eqs. (101) and (103) exist due to our support assump-
tions on F̃ (requiring F̃ ′[φ] to have temporally compact support) and due to the support
properties of the Green functions G±

φ and Gφ .
According to Eq. (104), the prescription of associating to each solution φ ∈ S of the

field equations the section X
F̃

[φ] of φ∗ VF defines a formal vector field on S which is

tangent to S . (It becomes more than just a formal vector field if F̃ is such that X
F̃

[φ]



Covariant Poisson Brackets in Geometric Field Theory 401

belongs to TφS , which requires it to be not just a distributional section but a smooth
section of φ∗ VF and to satisfy appropriate support properties; we shall come back to this
point later on.) The main statement about this formal vector field, to be proved below,
is that (a) it does not depend on the choice of the extension F̃ of F, so we may simply
denote it by XF[φ], and (b) that it is formally the Hamiltonian vector field associated
to F with respect to the symplectic form � discussed in the previous subsection. More
explicitly, we claim that for any solution φ ∈ S of the field equations and any smooth
section δφ of φ∗ VF with spatially compact support which is a solution of the linearized
field equations, we have

�φ(XF[φ], δφ) = F ′[φ] · δφ . (106)

Note that under the assumptions stated, both sides of this equation make sense although
we have originally defined �φ(δφ1, δφ2) only in the case where both δφ1 and δφ2 are
smooth; the extension of this definition, given in the previous subsection, to the case
where one of them is a distribution is straightforward.

To prove this key statement, let us begin by recalling that the symplectic form �

and the symplectic current J of the previous subsection are really defined on C and not
only on S – the only difference is that on C, � is only a presymplectic form so that
J should be more appropriately called the presymplectic current and that J on C is no
longer conserved so that � on C will depend on the choice of the hypersurface �. At any
rate, we can almost literally repeat the calculation performed at the end of the previous
subsection, either in the Lagrangian or in the Hamiltonian formulation, to show that
for any solution φ ∈ S of the field equations and any smooth section δφ of φ∗ VF with
spatially compact support, we have

∂µ J
µ
φ (X±

F̃
[φ], δφ) = ( J [φ]kl X±

F̃
[φ] l ) δφ k − ( J [φ]kl δφ

l) X±
F̃

[φ] k , (107)

so that if δφ is a solution of the linearized field equations,

∂µ J
µ
φ (X±

F̃
[φ], δφ) = δF̃

δφ
[φ] · δφ . (108)

Now since, by assumption, the support of (δF̃/δφ)[φ] is contained in some time slice,
we can choose two Cauchy surfaces �− to the past and �+ to the future of this time
slice and, using that δφ has spatially compact support, integrate Eq. (108) over the time
slice S− between �− and � and similarly over the time slice S+ between � and �+.
Applying Stokes’ theorem, this gives

∫

�

dσµ(x) J
µ
φ (X−

F̃
[φ], δφ)(x) =

∫

�−
dσµ(x) J

µ
φ (X−

F̃
[φ], δφ)(x)

+
∫

S−
d nx

δF̃
δφ

[φ](x) · δφ(x) ,

∫

�

dσµ(x) J
µ
φ (X+

F̃
[φ], δφ)(x) =

∫

�+
dσµ(x) J

µ
φ (X+

F̃
[φ], δφ)(x)

+
∫

S+
d nx

δF̃
δφ

[φ](x) · δφ(x) .
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But the support conditions on G±
φ , together with the fact that the support of (δF̃/δφ)[φ]

lies to the future of �− and to the past of �+, imply that X−
F̃

[φ] vanishes on �−
and similarly that X+

F̃
[φ] vanishes on �+, so the first term on the rhs of each of these

equations is zero. Thus taking their difference and inserting Eq. (105), we get

∫

�

dσµ(x)J
µ
φ (X

F̃
[φ], δφ)(x) =

∫

S−
d nx

δF̃
δφ

[φ](x) · δφ(x)+
∫

S+
d nx

δF̃
δφ

[φ](x) · δφ(x),

and since (δF̃/δφ)[φ] vanishes outside S− ∪ S+,

�φ(X
F̃

[φ], δφ) =
∫

M

d nx
δF̃
δφ

[φ](x) · δφ(x) . (109)

Finally, observe that since δφ is supposed to be a solution of the linearized field equa-
tions (and hence tangent to S), the rhs of this equation does not depend on the choice of
the extension F̃ of F. Therefore, X

F̃
[φ] will not depend on this choice either provided

the symplectic form �φ is weakly non-degenerate. Now using the space-time split of M

over � provided by the tangent vector field ∂t of some global time function t on M

or its dual dt , and identifying solutions δφ of the linearized field equations with their
Cauchy data on �, 9 it can be seen by direct inspection, either of Eqs. (84) and (85) in
the Lagrangian formalism or of Eqs. (90) and (91) in the Hamiltonian formalism, that
the expression �φ(δφ1, δφ2) can only be zero for all δφ2 if δφ1 vanishes, as soon as we
require the Lagrangian L to be regular in time derivatives, that is, to satisfy

det
∂2L

∂q
i
0 ∂q

j
0

�= 0 , (110)

or equivalently, the Hamiltonian to be regular in timelike conjugate momenta, that is, to
satisfy

det
∂2H

∂p0
i ∂p0

j

�= 0 . (111)

Moreover, it can be shown that this statement will remain true if δφ1 is allowed to be
a distributional solution of the linearized field equations with arbitrary support, as long
as δφ2 runs through the space of smooth solutions of the linearized field equations with
spatially compact support.

Let us summarize this fundamental result in the form of a theorem.

Theorem 3. With respect to the symplectic form � on covariant phase space as defined
by Crnković, Witten and Zuckerman, the Hamiltonian vector field XF associated with a
functional F which is local in time is given by convolution of the functional derivative
of F with the causal Green function of the corresponding Jacobi operator.

9 Explicitly, in the Lagrangian formalism, the Cauchy data for δϕ on M are δϕ and δϕ̇ on �, whereas
in the Hamiltonian formalism, the Cauchy data for (δϕ, δπ) on M are δϕ and δπ0 on �.
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Note that in view of the regularity conditions employed to arrive at this conclusion,
the previous construction does not apply directly to degenerate systems such as gauge
theories: these require a separate treatment. See, for example, Ref. [29], which addresses
the question of equivalence between various definitions of Poisson brackets in this con-
text, though not in a completely covariant manner (all brackets considered there are
equal-time Poisson brackets).

Having established Eq. (106), it is now easy to write down the Poisson bracket of
two functionals F and G on S : it is, in complete analogy with Eq. (73), given by

{F, G}[φ] = F ′[φ] · XG[φ] = − G ′[φ] · XF[φ] , (112)

or

{F, G}[φ] =
∫

M

d nx
δF
δφ k

[φ](x) XG[φ] k(x) = −
∫

M

d nx
δG
δφ k

[φ](x) XF[φ] k(x) .

(113)

Inserting Eq. (103), we arrive at the second main conclusion of this paper, which is an
immediate consequence of the first.

Theorem 4. The Poisson bracket associated with the symplectic form � on covariant
phase space as defined by Crnković, Witten and Zuckerman, according to the standard
prescription of symplectic geometry, suitably adapted to the infinite-dimensional setting
encountered in this context, is precisely the field theoretical bracket first proposed by
Peierls and brought into a more geometric form by DeWitt:

{F, G}[φ] =
∫

M

d nx

∫

M

d ny
δF
δφ k

[φ](x) Gkl
φ (x, y)

δG
δφ l

[φ](y) . (114)

Of course, for the expressions in Eqs. (112)–(114) to exist, it is not sufficient to
require F and/or G to be local in time. In fact, if we want to use conditions that (a) are
sufficient to guarantee existence of this Poisson bracket without making use of specific
regularity and support properties of the propagator, (b) are the same for F and G and (c)
are reproduced under the Poisson bracket, we are forced to impose quite rigid assump-
tions: the functionals under consideration must be assumed to be both regular and local,
in the sense that their functional derivative at any point φ of S must be a smooth section
of φ∗ V �F of compact support (this will force the corresponding Hamiltonian vector
field to be a smooth section of φ∗ VF of spatially compact support).

On the other hand, it must be pointed out that this Poisson bracket, which we might
call the Peierls - DeWitt bracket, has all the structural properties expected from a good
Poisson bracket: bilinearity, antisymmetry, validity of the Jacobi identity and validity of
the Leibniz rule with respect to plain and ordinary multiplication of functionals. This can
be seen directly by noting that the first two properties and the Leibniz rule are obvious,
while the Jacobi identity expresses the propagator identity for the causal Green function.
But it is of course much simpler to argue that all these properties follow immediately
from the above theorem, in combination with standard results of symplectic geometry.
Moreover, the Peierls-DeWitt bracket trivially satisfies the fundamental axiom of field
theoretic locality: functionals localized in spacelike separated regions commute. All this
suggests that the Peierls-DeWitt bracket is the correct classical limit of the commutator
of quantum field theory. Therefore, it ought to play an outstanding role in any attempt
at quantizing classical field theories through algebraic methods, a popular example of
which is deformation quantization.
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The basic complication inherent in the algebraic structure provided by the Peierls-
DeWitt bracket is that it is inherently dynamical: the bracket between two functionals
depends on the underlying dynamics. This could not be otherwise. In fact, it is the price
to be paid for being able to extend the canonical commutation relations of classical field
theory, representing a non-dynamical equal-time Poisson bracket, to a covariant Poisson
bracket. The dynamical nature of covariant Poisson brackets is simplified (but still not
trivial) for free field theories, where the equations of motion are linear, implying that the
Jacobi operator J [φ] and its causal Green function Gφ do not depend on the background
solution φ.

Finally, we would like to remark that the main mathematical condition to be imposed
in order for the constructions presented here to work is that linearization of the field
equations around any solution φ should provide a hyperbolic system of partial differ-
ential equations on M , for which existence and uniqueness of the Green functions G±

φ

and Gφ can be guaranteed. There are various definitions of the concept of a hyperbolic
system that can be found in the literature, but the most appropriate one seems to be that of
regular hyperbolicity, proposed by Christodoulou [30–32] in the context of Lagrangian
systems, according to which the matrix

uµ uν ∂2L

∂q
i
µ ∂q

j
ν

should (in our sign convention for the metric tensor) be positive definite for timelike
vectors u and negative definite for spacelike vectors u: a typical example is provided
by the sigma model as discussed at the beginning of this subsection. What is missing
is to translate this condition into the Hamiltonian formalism and to compare it with
other definitions of hyperbolicity for first order systems, such as the traditional one of
Friedrichs.

4. Conclusions and Outlook

The approach to the formulation of geometric field theory adopted in this paper closely
follows the spirit of Ref. [8], in the sense of emphasizing the importance of combin-
ing techniques from multisymplectic geometry with a functional approach. The main
novelties are (a) the systematic extension from a Lagrangian to a Hamiltonian point of
view, preparing the ground for the treatment of field theories which have a phase space
but no configuration space (or better, a phase bundle but no configuration bundle), (b) a
clearcut distinction between ordinary and extended multiphase space, which is neces-
sary for a correct definition of the concept of the covariant Hamiltonian and (c) the use
of the causal Green function for the linearized operator as the main tool for finding an
explicit formula for the Hamiltonian vector field associated with a given functional on
covariant phase space. This explicit formula, together with the resulting identification of
the canonical Poisson bracket derived from the standard symplectic form on covariant
phase space with the Peierls - DeWitt bracket of classical field theory, are the central
results of this paper.

An interesting question that arises naturally concerns the relation between the
Peierls-DeWitt bracket as constructed here with other proposals for Poisson brackets
in multisymplectic geometry. In general the latter just apply to certain special classes of
functionals. One such class is obtained by using fields to pull differential forms f back
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to space-time and then integrate over submanifolds � of the corresponding dimension.
Explicitly, in the Lagrangian framework, f should be a differential form on J 1E, and

F [φ] =
∫

�

(ϕ, ∂ϕ)∗f , (115)

whereas in the Hamiltonian framework, f should be a differential form on �J 1 ©∗E, and

F [φ] =
∫

�

(ϕ, π)∗f . (116)

For the particular case of differential forms f of degree n−1 and Cauchy hypersurfaces
as integration domains �, this kind of functional was already considered in the 1970’s
under the name “local observable” [7], but it was soon noticed that due to certain restric-
tions imposed on the forms f allowed in that construction, the class of functionals so
defined is way too small to be of much use for purposes such as quantization. As it turns
out, these restrictions amount to requiring that f should be a Hamiltonian form, but in
a slightly different sense than that adopted in Refs. [33–36]. Namely, in the Lagrangian
framework, we define an (n − 1)-form f on J 1E to be a Hamiltonian form if there
exists a (necessarily unique) vector field Xf on J 1E, called the Hamiltonian vector field
associated with f , such that

iXf
ωL = df , (117)

whereas in the Hamiltonian framework, we define an (n − 1)-form f on �J 1©∗E to be a
Hamiltonian form if there exists a (necessarily unique) vector field Xf on �J 1©∗E, called
the Hamiltonian vector field associated with f , such that

iXf
ωH = df . (118)

What motivates this concept is the possibility to use the multisymplectic analogue of
the standard definition (73) of Poisson brackets in mechanics for defining the Poisson
bracket between the corresponding functionals [8]. However, as in all other variants of
the same definition [33–36], it turns out that in contrast to mechanics where f is simply
a function, the validity of Eq. (117) or Eq. (118) imposes strong constraints not only on
the vector field Xf but also on the form f ; for example, Eq. (118) restricts the coeffi-
cients both of Xf and of f in adapted local coordinates to be affine functions of the
multimomentum variables p

µ
i . This implies that the class of functionals F derived from

Hamiltonian (n − 1)-forms f according to Eqs. (115) or Eq. (116) does not close under
ordinary multiplication of functionals.

Fortunately, using the Peierls - DeWitt bracket between functionals, we may dispense
with the restriction to Hamiltonian forms. In fact, this line of reasoning was already fol-
lowed by the authors of Ref. [8], where both the symplectic form on the solution space
and the corresponding Poisson bracket between functionals on the solution space, with
all its structurally desirable properties, are introduced explicitly. What remained unno-
ticed at the time was that this bracket is just the Peierls - DeWitt bracket of physics and
that incorporating the theory of “local observables” into this general framework results
in the transformation of a definition, as given in Ref. [7], into a theorem which, in mod-
ern language, states that the Peierls - DeWitt bracket {F, G } between two functionals
F and G derived from Hamiltonian (n − 1)-forms f and g, respectively, is the func-
tional derived from the Hamiltonian (n − 1)-form {f, g}. An explicit proof, based on
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the classification of Hamiltonian vector fields and Hamiltonian (n − 1)-forms similar
to the results of Refs. [34–36], has been given recently [37]; details will be published
elsewhere.

Of course, there is a priori no reason for restricting this kind of investigation to forms
of degree n − 1, since physics is full of functionals that are localized on submanifolds
of space-time of other dimensions, such as: values of observable fields at space-time
points (dimension 0), Wilson loops (traces of parallel transport operators around loops)
in gauge theories (dimension 1), etc. This problem is presently under investigation.
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Appendix: Affine Spaces and Duality

In this appendix, we collect some basic facts of linear algebra for affine spaces which
are needed in this paper but which do not seem to be readily available in the literature.

A (nonempty) set A is said to be an affine space modelled on a vector space V if there
is given a map

+ : A × V −→ A

(a, v) �−→ a + v
(119)

satisfying the following two conditions:

• a + (u + v) = (a + u) + v for all a ∈ A and all u, v ∈ V .
• Given a, b ∈ A, there exists a unique v ∈ V such that a = b + v.

Elements of A are called points and elements of V are called vectors, so the map (119)
can be viewed as a transitive and fixed point free action of V (as an Abelian group) on A,
associating to any point and any vector a new point called their sum. Correspondingly,
the vector v whose uniqueness and existence is postulated in the second condition is
often denoted by a − b and called the difference of the points a and b.

For every affine space A, the vector space on which it is modelled is determined
uniquely up to isomorphism and will usually be denoted by �A.

A map f : A → B between affine spaces A and B is said to be affine if there exists
a point a ∈ A such that the map �fa : �A → �B defined by

�fa(v) = f (a + v) − f (a) (120)

is linear, that is, �fa ∈ L( �A, �B). It is easily seen that this condition does not depend on
the choice of the reference point: in fact, if the map �fa is linear for some choice of a,
then the maps �fa′ are all equal as a′ varies through A, so it makes sense to speak of the
linear part �f of an affine map f . Denoting the set of all affine maps from A to B by
A(A, B), we thus have a projection

l : A(A, B) −→ L( �A, �B)

f �−→ �f . (121)

(A useful property of this correspondence is that f is injective/ surjective/bijective if
and only if �f is.) This construction is particularly important in the special case where
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B is itself a vector space, rather than just an affine space. Given an affine space A and
a vector space W , the set A(A, W) of affine maps from A to W is easily seen to be a
vector space: in fact it is simply a linear subspace of the vector space Map(A, W) of all
maps from A to W . Moreover, the projection

l : A(A, W) −→ L( �A, W)

f �−→ �f (122)

is a linear map whose kernel consists of the constant maps from A to W . Identifying
these with the elements of W itself, we obtain a natural isomorphism

A(A, W)/W ∼= L( �A, W) , (123)

or equivalently, an exact sequence of vector spaces, as follows:

0 −→ W −→ A(A, W)
l−→ L( �A, W) −→ 0 . (124)

In the general case, one shows that given two affine spaces A and B, the set A(A, B) of
affine maps from A to B is again an affine space, such that

−−−−−→
A(A, B) = A(A, �B), and

that the projection (121) is an affine map.
Concerning dimensions, we may choose a reference point o in A which provides not

only an isomorphism between A and �A but also a splitting

s : L( �A, W) −→ A(A, W) (125)

of the exact sequence (124), explicitly given by

s(t) a = t (a − o) , (126)

which induces an isomorphism between A(A, W) and W ⊕ L( �A, W), showing that

dim A(A, W) = dim W + dim L( �A, W) . (127)

Choosing W to be the real line R, we obtain the affine dual A� of an affine space A:

A� = A(A, R) . (128)

Observe that this is not only an affine space but even a vector space which, according
to Eq. (124), is a one-dimensional extension of the linear dual �A∗ of the model space �A
by R, that is, we have the following exact sequence of vector spaces:

0 −→ R −→ A� l−→ �A∗ −→ 0 . (129)

In particular, according to Eq. (127), its dimension equals 1 plus the dimension of the
original affine space:

dim A� = dim A + 1 . (130)

More generally, we may replace the real line R by a (fixed but arbitrary) one-dimen-
sional real vector space R (which is of course isomorphic but in general not canonically
isomorphic to R) to define the twisted affine dual A©� of an affine space A:

A©� = A(A, R) . (131)
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Again, this is not only an affine space but even a vector space which, according to
Eq. (124), is a one-dimensional extension of the linear dual �A∗ of the model space �A
by R, that is, we have the following exact sequence of vector spaces:

0 −→ R −→ A©� l−→ �A©∗ −→ 0 . (132)

Obviously, the dimension is unchanged:

dim A©� = dim A + 1 . (133)

Moreover, we have the following canonical isomorphism of vector spaces:

A©� ∼= A� ⊗ R , (134)

and more generally, for any vector space W ,

A(A, W) ∼= A� ⊗ W . (135)

Finally, as already noted in the preceding paragraph, each point of A defines a splitting
of the exact sequence (132), so we obtain a map from A to the set of such splittings,
which is itself an affine space modelled on the bidual �A∗∗ of �A. This map is affine and its
linear part is the negative of the canonical isomorphism between �A and �A∗∗, implying
that the space of splittings of the exact sequence (132) can be naturally identified with A

itself – a fact which is used in the construction of the inverse Legendre transformation.
The concept of duality applies not only to spaces but also to maps between spaces:

given an affine map f : A → B between affine spaces A and B, the formula

(f �(b�))(a) = b�(f (a)) for b� ∈ B�, a ∈ A (136)

yields a linear map f � : B� → A� between their affine duals B� and A�. As a result,
the operation of taking the affine dual can be regarded as a (contravariant) functor from
the category of affine spaces to the category of vector spaces. This functor is compatible
with the usual (contravariant) functor of taking linear duals within the category of vector
spaces in the sense that the following diagram commutes:

B� f �

−→ A�

↓ ↓
�B∗ �f ∗

−→ �A∗

(137)

Concluding this appendix, we would like to point out that all the concepts introduced
above can be extended naturally from the purely algebraic setting to that of fiber bun-
dles. For example, affine bundles are fiber bundles modelled on an affine space whose
transition functions (with respect to a suitably chosen atlas) are affine maps. Moreover,
functors such as the affine dual are smooth (see Ref. [38] for a definition of the concept
of smooth functors in a similar context) and therefore extend naturally to bundles (over
a fixed base manifold M). In particular, this means that any affine bundle A over M has
a naturally defined affine dual, which is a vector bundle A� over M .
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