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Abstract: The recently derived current algebra of classical non-linear sigma models
on arbitrary Riemannian manifolds is extended to include the energy-momentum
tensor. It is found that in two dimensions the energy-momentum tensor θμv, the
Noether current j μ associated with the global symmetry of the theory and the
composite field j appearing as the coefficient of the Schwinger term in the current
algebra, together with the derivatives of j μ and j , generate a closed algebra. The
subalgebra generated by the light-cone components of the energy-momentum tensor
consists of two commuting copies of the Virasoro algebra, with central charge c = 0,
reflecting the classical conformal invariance of the theory, but the current algebra
part and the semidirect product structure are quite different from the usual Kac-
Moody/Sugawara type construction.

In a recent paper [1], we have derived the current algebra for classical non-linear
sigma models defined on Riemannian manifolds. This algebra is quite simple to write
down and yet does not seem to belong to any of the algebras which are well known
in mathematical physics, mainly because it involves non-standard (in particular, non-
central) extensions of loop algebras [4].

On the other hand, the classical non-linear sigma model in two dimensions is
conformally invariant, so its energy-momentum tensor must satisfy the classical
version of the standard commutation relations of conformal field theory, that is, under
Poisson brackets its light-cone components must generate two commuting copies of
the Witt algebra (the Virasoro algebra with vanishing central charge). We shall verify
that this is indeed the case. Moreover, we shall derive the Poisson bracket relations
between the energy-momentum tensor on the one hand and the Noether currents on
the other hand. The resulting total algebra exhibits, in a concrete field-theoretical
model with continuous internal symmetries, the possibility of reconciling conformal
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invariance, expressed through a chiral energy-momentum tensor algebra, with a non-
chiral current algebra, at least at the classical level.

Thus consider the classical two-dimensional non-linear sigma model, whose
configuration space is the space of (smooth) maps φ from a given two-dimensional
Lorentz manifold Σ to a given Riemannian manifold M, with metric g, while the
corresponding phase space consists of pairs (φ, π) with φ as before and π a (smooth)
section of the pull-back φ*(T*M) of the cotangent bundle of M to Σ via φ. The
action, written in terms of isothermal local coordinates xμ on Σ and of arbitrary local
coordinates uι on M, reads

S=\Jd2x ημ»gXJ(φ) dμφ%φi , (1)

where the ημι/ are the coefficients of the standard Minkowski metric. Thus using a
dot to denote the time derivative and a prime to denote the spatial derivative, we have

and the canonical Poisson brackets are
j = 0 , {π (x), π^y)} = 0 ,

The energy-momentum tensor θμu of the theory is most conveniently derived by
variation of the Lagrangian with respect to the metric on Σ. (For details, see e.g. [3,
p. 64ff] or [5, p. 504fJ.) It reads

θμ* = 9ij{ψ) dμφ%φ> - \ ημX
Xgτj{φ) drfdrf , (4)

and it is obviously traceless:

We also assume that the theory exhibits a global invariance under some internal
symmetry group, represented by a (connected) Lie group G acting on M by isometries,
and we shall write g for the corresponding Lie algebra and XM e X(M) for the
fundamental Killing vector field on M associated with a given generator X £ g
of G:

m) (6)
dt t=o

Then the Noether current j μ , taking values in the dual g* of 0, and the scalar field j ,

taking values in the second symmetric tensor power of g*, are given by [1]

(jμ,X) = -{XM)i{φ)dμφ
i (7)

for X G 0, and

(j, X ® Y) = gijiφiXUφίY^φ) (8)

for X, Y € fl. ((•, •) denotes the natural pairing between a vector space and its dual.)
Now the energy-momentum tensor algebra reads (note θn = θm)

δ'& - V). (9)
{θm(x), θOi(y)} = (θm(x) + θm(y)) δ'(x - y), (10)

{θoι(x),θoι(y)} = (θm(x) + θoι(y))δ'(x - y), (11)
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while the current algebra is [1]

{(jo(x), X), (jo(y), Y)} = ~(jo(x), IX, Y])δ(x - y), (12)

{(jo(x), X), O',(y), Y)} = -0Ί(s), [*, K]>δ(ar - y)

' (13)

- y), (14)

(the remaining Poisson brackets vanish), and the mixed Poisson brackets are

(15)

\x - y)

- y), (16)

(17)

(18)

- 1 0 , (19)

- v) • (20)

In higher dimensions, the current algebra [Eqs. (12-14)] and the mixed Poisson
brackets [Eqs. (15-20)] remain essentially unchanged, while the energy-momentum
tensor algebra [Eqs. (9-11)] is substantially modified and in fact no longer closes.

In order to prove Eqs. (9-20) in d = 2 and at the same time explain what goes
wrong for d > 2, consider the classical non-linear sigma model over a d-dimensional
Lorentz manifold Σ, with metric h, where the formulae for the action and for the
energy-momentum tensor, Eqs. (1) and (4), are replaced by

(21)
" J ~

and by

respectively, while most of the other relations given above, namely Eqs. (2,3) and
(7,8), remain as they stand. For simplicity, we shall carry out our calculations
for the case where Σ is d-dimensional Minkowski space, that is, /i = r\ =
diag(l, — 1,..., — 1), which is obviously sufficient when d — 2, due to the existence
of isothermal local coordinates. The generalization to arbitrary d-dimensional Lorentz
manifolds does not present any new features. To further simplify the calculation, we
introduce an auxiliary field θμu according to

μ v υ μ

l d . Ψ J > (23)

so that

where θ is the trace of θ :

(25)
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In componentsι,

i j

J , (26)

(27)

^ % W < (28)

and

0oo = 5(0oo + 0τr>' ( 2 9 )

#0α = θOa , (30)

^ = i/? + 5 M ^ o o - ^ 7 ) (3D

In addition, a composite field containing second (covariant) derivatives of φ,

DAV1 = dμdvψ' + Γι

kι(ψ) dμφ
kdvΨ

ι (32)

will appear:

Note that the θκ^μι/) with two indices equal can be expressed as derivatives of the

®μ(μv) = \ d»hμ ( π 0 summation), (34)

K(μμ) = dμhv ~ \ d^8μμ (π° summation). (35)

Now we are ready to write down the Poisson brackets involving the auxiliary field
θμv. The mixed Poisson brackets are

& = 0. (36)

, (J7(y),X)} = 2(jo(x),X)dΊδ(x - y)

- 2((d0jΊ - ΘΊJO) (x), X)6(x - y), (37)

- y), (38)

7 - y)

- {(dJΊ - dΊJa) (x), X)δ(x - y), (39)

- j/) + 0>(«), *}dα<S(a: - y), (40)

(41)

- y), (42)

y), (43)

(44)

1 We use letters from the beginning of the greek alphabet to denote spatial indices, running from 1 to
d— 1. In this case no distinction is made between upper and lower indices, and the usual summation
convention for Euclidean space remains in force
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and the Poisson brackets between the θ read

{Θ00(x),θ00(y)}=0, (45)

{̂ oo(̂ )» θoJy)} = Φm(x) + θm(y))dj{x - y), (46)

{θooix), θaβ(y)} = 2θOa(x) dβδ(x -y) + 2θoβ(x) dj(x - y)

+ 4θO{aβ)(x)δ(x-y), (47)

{θOa(x), θoβ(y)} = θOβ(x) dj(x -y) + θOa(y) dβ6(x - y), (48)

{%(x), θaβ(y)} = θΊa(x) dβδ(x -y) + θΊβ(x) dj(x - y)

+ 2θΊ{aβ)(x)δ(x-y), (49)

{θaβ(x),θΊδ(y)} = 0. (50)

The proof goes by explicit computation, using the formulae

(dμJv,x) = -(XM)MDμdvψ
ι - {XM)3]Mdμψ

ιd^ , (51)

and

(fix) - f(y)) δ'(x -y) = -f'(x) δ(x - y),

together with the following relations,

valid for any Killing vector field Z on M (we omit the argument x or y as soon as
there is a factor δ(x — y)):

= igV-K^ΦtXfoδix -y)- (dkg^)τ^3X
k

Mδ{x - y)

= (2^πfc(aiXJJf) - (gikdkX
3

M + g^d.X^π^^δix - y)

= 0,

J / ( a : - y)

+ 2(0,tYM)fc)ί^7rjaγ¥Pfc5(a; - y)

-2πi(x)Xt

M(φ(x))dΊδ(x-y)

+ 2((a,(IM) f e) - ( 9 t ( I M ) , ) ) 5 " i J 9 1 / % - y)

2(jo(x),X)dΊδ(x -y)- 2((XM\b - (XM)jH)d^dy6(x - y)

2{jo(x), X)dΊδ(x -y) + 2((dΊJ0 - d0JΊ) (x), X)δ(x - y),
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{ θ O a ( x ) , { j o ( y ) , X ) } = - { π ^ d ^ i x l ^

ix ~y) + (d.X^θ^π^ix - y)

= -πi(x)Xt

M(φix))dJ(x-y)

= (jo(x),X)dJ(x~y),

= -daΨ

i{x)(XM)i{ψ{y))dΊδ(x - y)

+ (di(XM)k)daφ
idΊψ

kδ(x-y)

= {ja(x),X)dΊδ(x - y) - ((XM)j|3. - {X^^d^d^δix - y)

= (ja(x), X)dΊδ{x - y) + (ΦΊJa - dJΊ) (x), X)δ(x - y),

(dkgij)daφ
idβφ>Xk

Mδ(x-y)

gij(ψ(x))dβψ
J{x)Xi

M(ψ(y))daδ(x - y)

gij(ψ{x)) daψ
i{x)Xj

M{φ{y)) dβδ(x - y)

gij{φ(.x))dβφ
i(x)Xi

M{φix))daδ(x - y)

9ij(φ(.xy) daΨ

i(x)Xi

M(φ{x)) dβδ(x - y)

* V % ^ 3 - y)

= (ja(x), X)d0δ(x - y) + (jβ(x), X)daδ(x - y),

= -{9ιJ(φ(x)) daψ\x) dβψi(x), (XM)k(φ(y)) dΊ

= 0,

m(x), (J(y\X® Y)} = {g^iφix^Tt^π^g

= -iφ^^XltYl^d^δix - y)

= -2{d0j{x),X®Y)δ{x-y),

= -(di(gklX
k

MYJw))daφ
ιδ(x-y)

= -{daj(x),X®Y)δ(x-y),

{θaβ(x),{j(y),X®Y)}

= {giMx» 5 α ^ W V ( z ) , gkl(φ{y))Xk

M(φ(y))Yι

M(φ(.y))}
= 0.

= {gii(φ(.x))πi(x)τrj(.x),gkl(φ(y))irk(y)πι(y)}

gkl^j^k-κι - g^id^ήπ^π^δix - y)

= 0,
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(z)Aa(y)} = {9ij(<p(xy)πi(.x)πj(x),πk(y)daφ
k<y)}

= 2gi^φ(x))πj(x)πι(y)daδ(x - y)

= +gυ(φ(x)) TTj(x) π^x) daδ(x - y) + g^n^^ δ(x - y)

δ(x - y)

3 - y) - <? i j9απ-π, δ(x - y)

(dkg
ιj)πιπjdaφ

kδ(x-y)

{θm(x), θaβ(y)} = {gtj(φ(x)) πt(x) π3(x), gkl(φ(y)) daψ
k(y) dβψ

ι(y)}

= -Ig^φ^πfi^d^δix - y)

+ 2g^(ψ(x))gu(φ(y)) π^x) dβφ
ι(y) daδ(x - y)

+ 2gij(φ(x)) 9kι(ψ(y)) ̂ (x) daφ
k(y) dβδ(x - y)

dβδ{x -y) + 2π,(x) dβΨ\x) θaδ(x - y)

- y) + 4rkld^kd^l6(x - y)

= 2θOa(x) dβδ(x -y) + 2θOβ(x) dj(x - y)

+ 4%aβ)(χ) δ(χ - y),

{θOa(x),θoβ(y)} = {πi(x)daφ\x),πk(y)dβφ
k<y)}

= daΨ\x) π,(y) dβδ(x - y) + πt(x) dβψ\y) dj(x - y)

= +daφ\y) πiiy) dβδ(x -y)- π^d^δix - y)

+ π^x) dβψ\x) daδ(x - y) + -Kidad^l6(x - y)

= θoβ{x) daδ(x -y) + θOa(y) dβδ(x - y),

{θθΊ(x),θaβ(y)} = {τi(x)dΊψ\x),gkι{ψ{y))daψ
k{y)dβφ

ι{y)}

= -Φig^d^d^dβψ^ix - y)

+ dΊψ\x) gu(ψ(y)) dβψ\y) dj(x - y)

+ dΊφ\x) gki(ψ(y)) daψ\y) dβδ(x - y)

= +dΊφ
i(x)giι(φ(x))dβψ

ι(x)daδ(x - y)

+ dΊφ\x)gki(φ(x))daφ
k(x)dβδ(x - y)

+ 2gιjdΊφ
ιDodβφ>δ(x-y)

§ dβδ(x -y) + θΊβ(x) daδ(x -y) + 2§Ί(aβ)(x) δ(x - y),

= {gtj(ψ{x)) daψ\x) dβφi{x), gkl(ψ(y)) dΊψ
k{y) dsψ\y)}

= 0.
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Using the relations (29-31), the mixed Poisson brackets involving the θμι/ can now

be easily derived from those involving the θ :

{θooix), (jo(y), X)} = (jjx), X)daδ{x - y), (52)

{0oo(*)> UΊ(y),X)} = (jo(x),X)dΊδ(x - y)

- ((d0JΊ - dΊJ0) (x), X)δ(x - y), (53)

{θOa(χ), (My), X}} = OΌW. X)djiχ - y), (54)

{^oαW. 07(y)> x)} = OαW. ^>5Ύ<5(^ - y)

- (ΦJΊ - 0Ίja) (x), X)δ(x - y), (55)

MV), X)} = OαCc). X)^«(a; - y) + (^(x),X)daδ(x - y)

-Saβ(jΊ(x),X)dΊδ(x-y), (56)

Ί - dΊJ0) (x), X)6(x - y), (57)

), X ® ^>*(^ - V), (58)

( i d ) , (j(y), X®Y}} = -{dj(x), X ® Y)δ(x - y), (59)

{θaβ(x), (j(y), X®Y)} = -δa0(doj(x), X ® Y)δ(x - ί/). (60)

To compute the pure energy momentum tensor algebra, we use

{θm(x),θm(y)} = \ {θω(x),θΊΊ(y)} + \ {θΊΊ(x),θm(y)}

= +%(x) dΊδ(x -y) + §0(Ίl)(x) δ(x - y)

- θθΊ(y) dΊδ(y -x)- θQ{Ίη)(y) δ(y - x)

\ {θ

- θaΊ{y) 3Ίδ{y -x)- θa{ΊΊ){y) δ(y - x)

and obtain

{0ooW,

{0oo(aO, (

+
_ 1

~ 2

+

θoo(y)}

%aiy)}

%βiy)}

θaΊ(x) dΊδ(x - y)

Φaoiϊ) + θmiv) -
θaΊ(x)dΊδ(x-y)

10(y)dJ(x-y) + >

= iθθΊiχ) + θθΊ(y]

= θooiy)dj(x-ι

= θoβ(x) daδ(x -

+ ±dJΊΊ(x)δ(x-y)

θΊΊ(x) + θΊΊ(y))daδ(x-y)

θaΊ{x)dΊδ(x-y),

))θ7δ(x-y),

>j) + θaΊ(x)dΊδ(x-y),

y) + θOaiy) dβδ(x- y),

(61)

(62)

(63)

plus three other Poisson bracket relations which contain the composite field θκ(^μι/):
these are rather complicated and not very enlightening, so we shall not write them
down explicitly. When d = 2, Eqs. (52-60) and (61-63) clearly reduce to Eqs. (15-20)
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and (9-11), respectively; moreover, at least two of the three indices of the composite
field <9κ(μzy) are necessarily equal, to that, according to Eqs. (34) and (35), it can be
completely eliminated in favor of derivatives of the energy-momentum tensor, and the
resulting formulas turn out to carry no information beyond Eqs. (61-63) given above.
When d > 2, however, there is no way to eliminate this composite field, so the algebra
does not close. Moreover, repeating the process of computing Poisson brackets will
give rise to new composite fields built from products of higher (covariant) derivatives
of φ. We suspect that a finite number of such additional fields will suffice to close
the algebra (when derivatives are included), but we have not analyzed the question
any further.

Returning to the two-dimensional case, it remains to be shown that Eqs. (9-11)
give rise to a chiral Witt algebra. To do so, we first switch to light-cone components,

0 + + = 5 (0oo + 0oi). (64)

θ__ = i (0oo-0O i). (65)

(note that θ+_ = 0), and then convert the equal-time Poisson bracket relations (9-11)
to commutation relations valid on the light cone: this requires invoking the equations
of motion for the energy-momentum tensor. These are nothing but the conservation
law

d_θ++ = 0, <9+<9__ = 0, (66)

so θ++ depends only on x+ and θ depends only on x~\ then Eqs. (9-11) become

{0+ +(z+), θ++{y+)} = + ( # + + ( x + ) + θ++{y+)) δ\x+ - y+), (67)

{0__CO, 0—(2Γ)} = - ( 0 — . C O + 0__(2Γ)) δ'{χ- - y~), (68)

{θ++(x+),θ__(y-)} = 0. (69)

When expressed in Fourier components this becomes the well-known Witt algebra
for 6>++ and for θ .

For the currents, on the other hand, this procedure cannot be carried out in the
same way, because the conservation law for the currents is, in light-cone components,

which by itself is not sufficient to convert equal-time Poisson brackets to light-cone
Poisson brackets.

The net result is that the total algebra is a semidirect product of a chiral Witt
algebra with a non-chiral (non-Kac-Moody) current algebra.

The most important question to be answered next is how the algebraic structure
derived above changes when passing from the classical theory to the quantum
theory. Some changes are to be expected due to the phenomenon of dynamical mass
generation, which will give the energy-momentum tensor a non-vanishing trace and
destroy the chiral nature of the energy-momentum tensor algebra. Our hope is that
the non-chiral current algebra should give a clue as to what this non-chiral energy-
momentum tensor algebra should be, and ideally that there should exist some non-
chiral analogue of the Sugawara construction - which, as is well known, e.g., for the
Wess-Zumino-Novikov-Witten models or for certain massless fermionic theories [2],
actually derives the chiral energy-momentum tensor algebra of conformal field theory
from the corresponding chiral current algebra (two commuting copies of the relevant
(untwisted) affine Kac-Moody algebra).



328 M. Forger, J. Laartz, U. Schaper

References

1. Forger, M., Laartz, J., Schaper, U.: Current algebra of classical non-linear sigma models. Commun.
Math. Phys. 145, 397-402 (1992)

2. Goddard, P., Olive, D.: Kac-Moody and Virasoro algebras in relation to quantum physics. Int. J.
Mod. Phys. A 1, 303-414 (1986)

3. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge: Cambridge
University Press 1973

4. Laartz, J.: The extension structure of 2D massive current algebras. Mod. Phys. Lett. A 7, 3309-
3318 (1992)

5. Misner, C.W., Thome, K.S., Wheeler, J.A.: Gravitation. San Francisco: Freeman 1973

Communicated by G. Felder




