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Abstract. The two-dimensional non-linear σ model on a Riemannian sym-
metric space M = G/H is coupled to fermions with quartic self-interactions. The
resulting hybrid model is presented in a gauge-dependent formulation, with a
bosonic field taking values in G and a fermionic field transforming under a
given representation of the gauge group H. General criteria for classical
integrability are presented: they essentially fix the Lagrangian of the model but
leave the fermion representation completely arbitrary. It is shown that by a
special choice for the fermion representation (derived from the adjoint
representation of G by an appropriate reduction) one arrives naturally at the
supersymmetric non-linear σ model on M = G/H. The issue of quantum
integrability is also discussed, though with less stringent results.

1. Introduction and Summary

Generalized non-linear σ models, also called chiral models, are prime examples of
field theories with non-trivial dynamical content which have a geometric origin,
and it is well known that they are in many respects closely related to non-abelian
gauge theories. (For some of the many aspects of this relation, see for example
[1-4].) One of the most attractive features of these models is that classically they
provide examples of integrable systems in two-dimensional space-time. Namely, it
is known that the non-linear equations of motion are precisely the compatibility
conditions for a certain linear system of first-order partial differential equations
(Lax pair) containing a spectral parameter, and that this hidden symmetry gives
rise to infinite series of local as well as non-local conservation laws [5-7], whenever
the field takes values in a Riemannian symmetric space M = G/H [8-10]. (For
reviews, see for example [11, 12].) In the quantum theory, these integrability
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properties persist in some models but are spoiled by anomalies in others [13-15,
17-20], the general criterion for quantum integrability being that the stability
group H is simple. More precisely, this condition guarantees conservation of the
first quantum non-local charge [20], which is sufficient to prove factorization of
the S-matrix into two-body amplitudes [14] that can be calculated exactly [21];
see also [22].

The analogies between non-linear σ models and non-abelian gauge theories
suggest that they can and should be extended to incorporate fermionic matter
fields. One natural way of doing that is to couple the fermions and the bosons
supersymmetrically [23-25], and it has been proved that (classical) integrability of
the model (more precisely, the existence of a hidden symmetry and of non-local
conservation laws1) continues to hold in that case [26, 27], On the other hand, it
has been observed in the <E,Pn~ι model [16, 17], and later in the Grassmannian
model [18], that this remains true when fermions and bosons are coupled
minimally rather than supersymmetrically. General criteria for integrability of
non-linear σ models with fermions, however, have so far not been given.

The purpose of the present paper is to fill this gap, i.e., to supply such criteria. It
is organized as follows.

In Sect. 2, which can be skipped at a first reading, we recapitulate the general
method of coupling matter fields to non-linear σ models. Briefly, σ model fields are
maps q from space-time to a given Riemannian manifold M, called the target
space, and matter fields are sections Φ of a certain Hermitian complex (or
Riemannian real) vector bundle S®q*V over space-time: this bundle arises by
taking the tensor product of an appropriate spinor or tensor bundle S over space-
time with the pull-back q*V to space-time, via the σ model field q, of a given
Hermitian complex (or Riemannian real) vector bundle V over M, called the target
bundle. (Yes, it is as simple as that!) We shall concentrate here on the special
features that appear when the target space is a Riemannian homogeneous (= coset)
space M = G/H, and the target bundle is an associated vector bundle V= GxHV0,
derived from a given unitary (or orthogonal) representation of the stability group
H on a given finite-dimensional complex (or real) vector space Fo. (That seems to
complicate things further, but we shall see that, in fact, it does not.) One of these
special features is that instead of σ model fields q taking values in M, which are
often handled in terms of (arbitrarily chosen, local) co-ordinates for M, we can use
σ model fields g taking values in G, defined modulo H. Similarly, instead of matter
fields Φ that are sections of S®q*V, which are often handled in terms of (arbitrarily
chosen, local) co-ordinates for M and trivializations for V, we can use matter fields
φ that are sections of S® Vo (i.e., ordinary vector-valued functions if S is trivial, e.g.,
if space-time is flat), defined modulo H. This procedure is a direct generalization of
that in the pure model [8-12, 28], and, of course, it also works only locally (since
the principal H-bundle G-+G/H is usually non-trivial). However, the field-
theoretical investigations that we have in mind involve only local aspects of
geometry, and our gauge dependent formulation of the model, with gauge group
H, is perfectly adapted to that kind of problem. (In particular, it gets rid of the
aforementioned differential geometric complications.)

1 Higher local conservation laws for non-linear σ models with fermions seem not to have been
investigated so far, and we shall disregard them in this paper
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In Sect. 3, which forms the core of the paper, we assume the target space to be a
Riemannian symmetric space M = G/H (which is the well-known criterion for the
bosonic sector to be integrable [8,12]), and we investigate under what additional
conditions the corresponding non-linear σ models with Dirac (or Majorana)
fermions are classically integrable2. As it turns out, we may allow the fermionic
fields to transform under an arbitrary unitary (or orthogonal) representation of the
gauge group H, carried by the space Vo, but once this representation has been
chosen, the Lagrangian of the model is almost entirely fixed by the requirement of
integrability. More specifically, in terms of an invariant scalar product ( , ) on the
Lie algebra g of G, and an orthonormal basis of vectors va in Vo, the total
Lagrangian L is the sum of three terms: the pure non-linear σ model Lagrangian,
(g~1Dμg,g~1Dμg), the Dirac Lagrangian with minimal coupling, ί/lχlβχ, and a
quartic self-interaction term, LF, which in turn is the sum of a "gauge covariant
type" Thirring term, {χayμχ

b){χbyliχa), with a fixed coefficient, and a "gauge
invariant type" Thirring term, (χayμX

a)(χbyμXb)> with a n arbitrary coefficient. In
particular, L is conformally invariant as well as chirally invariant (although these
symmetries may, of course, be broken at the quantum level, e.g., by anomalies). The
resulting model is therefore a hybrid: its bosonic sector (obtained in the limit where
χ = 0) is an integrable non-linear σ model, and its fermionic sector (obtained in the
limit where g = 1) is an integrable fermionic theory of Thirring and/or chiral Gross-
Neveu type (the latter due to Fierz identities)3. Moreover, the supersymmetric
non-linear σ model on M = G/H is a special case: it arises by discarding the "gauge
invariant type" Thirring term in the Lagrangian, and choosing Vo = m, which leads
to V= TM. (Here, m = gθί) is the orthogonal complement of I) in g, corresponding
to the coset space structure M = G/H.) Other choices for the fermion represen-
tation, however, will in general lead to integrable non-linear σ models that can-
not possibly be supersymmetric, as can be seen by simply counting bosonic
versus fermionic degrees of freedom.

In Sect. 4, we analyze the issue of integrability at the quantum level. In contrast
with the situation in the pure model [20], the presence of fermion fields leads to a
plethora of possible composite operators appearing in the short-distance expan-
sion for the (matrix) commutator of two Noether currents. For the general case, we
have not been able to determine these composite operators, let alone the
coefficients that multiply them, to a degree sufficiently explicit to allow for defining
a quantum version of the first non-local charge and for deciding whether it is
conserved or not. It is known, however, that this can be done in certain models,
namely in the CP"~x models and, more generally, in the Grassmannian models. In
fact, it has been shown [15, 18] that to all orders in the ί/n expansion, the first
quantum non-local charge can be defined, that in the pure model it has an
explicitly calculable anomaly, and that in the fermionic models this anomaly is
cancelled by the Adler-Bardeen anomaly from the fermionic sector. The deeper
reasons for this miraculous anomaly cancellation, however, remain obscure, and
the question certainly deserves further investigation.

2 We do not consider non-linear σ models with chiral fermions, thus avoiding all problems with
anomalies that might otherwise render the quantum theory ill-defined [29]. Moreover, our
results seem to indicate that integrability forces the model to be chirally invariant; cf. the
discussion in the penultimate paragraph of Sect. 3
3 The ordinary (non-chiral) Gross-Neveu model can be made to fit into the picture as well
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2. Differential Geometric Setting
of Non-Linear σ Models with Matter Fields

To begin with, we recall that a pure non-linear σ model is specified by its target
space, which is just a given Riemannian manifold M 4. A (classical) field
configuration is then simply a map q from space-time to M. Similarly, a non-linear
σ model with matter fields is specified by its target space and its target bundle: the
former is again a given Riemannian manifold M, and the latter is a Hermitian
complex (or Riemannian real) vector bundle V over M, together with a fixed
compatible linear connection Dv on it5. A (classical) field configuration is then a
pair (q, Φ\ where q is again a map from space-time to M and Φ, or rather each of its
spinor or tensor components, is a section of q*V, the pull-back of V to space-time
via q. (We note here that the operation of pulling back may be applied to vector
bundles [30, Vol. 1, p. 48f.] as well as to linear connections [30, Vol. 2, p. 324f.],
thus producing a Hermitian complex (or Riemannian real) vector bundle q* V over
space-time, together with a compatible linear connection Dy

q on it. The intuitive
content of this operation is simple. For bundles, the procedure amounts to a simple
relabelling of base points, i.e., the fibre of q* V at any point in space-time is identical
with the fibre of V at the image point in M under q. For connections, the relation is
similar: namely, parallel transport in q* V with respect to Dζ, along a given curve in
space-time, is identical with parallel transport in V with respect to Dv, along the
image curve in M under q.)

The most important case, and the only one that we shall be dealing with in this
paper, arises when M is homogeneous and V is an associated bundle. More
specifically, let M be the quotient space M = G/H of some connected Lie group G,
with Lie algebra g, modulo some compact subgroup HcG, with Lie algebra ί) C g.
Then M is reductive [31, Vol. 2, pp. 190 and 199], which means that there exists an
Ad(ijΓ)-invariant subspace m of g such that g is the (vector space) direct sum of ί)
and m:

8 = ί)θm. (2.1)

Then we have the commutation relations

[ϊ),m]cm. (2.2)

The decomposition of elements Xeg corresponding to (2.1) will be written as
follows:

(2.3)

We also assume that the given left-invariant Riemannian metric ( , ) on M can be
obtained, by restriction, from some bi-invariant pseudo-Riemannian metric ( , )
on G for which the direct decomposition (2.1) is orthogonal. (This amounts
essentially to requiring that M be naturally reductive; we refer to [2, 12] for a
detailed discussion.) Next, we have the natural projection ρ from G to M

4 We exclude indefinite metrics because they would lead to theories that violate the positive
energy condition
5 If the theory is to contain matter fields of different spins with different internal symmetry
properties, one is forced into using more than one target bundle. Such generalizations will not be
considered here
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(Q(g) = gH\ which defines a principal H-bundle ρ:G-+M over M, where H acts on
the total space G simply by right multiplication [31, Vol. 1, p. 55], [30, Vol. 2, pp.
83 and 194]. This bundle carries additional structures, namely a natural left action
of G [given by g0 g = gog, go-gH = (gog)H for gθ9 g e G], as well as a canonical
G-in variant connection, given by any of the following:

(a) for any g e G, the horizontal space HorgGcTgG at g is the left translate of
raCg by g, just as the vertical space YQVgGcTgG at g is the left translate of ί)Cg

by Q\
(b) the connection form A is the vertical part of the left G-in variant Maurer-

Cartan form on G, i.e.

A = (g-Hg\. (2.4)

Therefore, starting from a unitary (or orthogonal) representation of H on some
finite-dimensional complex (or real) vector space VQ, we can construct the
associated Hermitian complex (or Riemannian real) vector bundle π : GxHV0-+M
over M [30, Vol. 2, pp. 198ff.], whose total space GxHV0 consists of equivalence
classes [g, υ] of pairs (g9 v) e GxV0 with6

there exists heH such that

g2 = gιh a n d v2 = h~1-vί. (2.5)

This bundle carries additional structures, inherited from the corresponding
structures on the principal bundle from which it originates, namely an associated
left action of G (given by go-[g,v] = [jgog9v]: go-(gH) = (gog)H for go,geG,
v G Fo), as well as an associated G-invariant linear connection DVo [30, Vol. 2,
p. 406f.]. We may therefore choose V=GxHV0, Dv = DVo.

A particular, and important, example arises from letting

V0 = m, (2.6)

which carries an orthogonal representation of H obtained from the adjoint
representation of G on g by an appropriate restriction. It can be shown without
much effort that (up to natural identifications), V is the tangent bundle of M and
Dv is the Levi-Civita connection:

V= TM. (2.7)

As will become clear at the end of Sect. 3, this choice leads to the supersymmetric
non-linear σ model on M; see also [24, 25].

Returning to the general case, we can now extend the gauge dependent
formulation of pure non-linear σ models [8-12, 28] to include matter fields.
Indeed, this approach is based on (locally) lifting the M-valued field q to a gauge
dependent G-valued field g by setting

g(x) = g(x)H. (2.8)

6 The dot symbolizes the action of elements of// on vectors in Vo under the given representation
of H, as well as the action of elements of I) on vectors in Vo under the corresponding (derived)
representation of ί)
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Similarly, we shall (locally) write the matter field Φ, whose spinor or tensor
components are sections of q*V, in terms of a gauge dependent matter field φ,
whose spinor or tensor components are functions with values in the vector space
Vθ9 by setting

Φ(x) = [flr(x),#x)]. (2.9)

By construction, the fields q and Φ remain invariant when the fields g and φ are
subjected to gauge transformations

g->gh and φ-*h~1 φ (2.10)

with H-valued fields h. On the other hand, the fields q and Φ transform naturally
under global symmetry transformations, as expressed through the given left action
of G on M and on V9 and in terms of the fields g and φ, this transformation law takes
the form

g->gog and φ-+φ (2.11)

with goeG space-time-independent.
As we are ultimately interested in the question of integrability, we shall assume

throughout the rest of this paper that M is not only Riemannian homogeneous but
in fact Riemannian symmetric; otherwise, the model would not be integrable even
in the pure model limit (where Φ Ξ 0 , ^ Ξ 0 ) [8-12]. Essentially, this means that in
addition to (2.2), we also have the commutation relation

[m,m]CΪ). (2.12)

Without much loss of generality [9, 12], we may also assume - whenever
convenient - that M is either of the compact type or of the non-compact type, and
that G is simply connected or that G has finite centre, respectively, so that H will be
compact and connected [32, pp. 320f. and 252f.]. For a survey of the properties of
these spaces and their classification, see [10, 12], [31, Vol. 2, Chap. 10], and, of
course, [32] in particular, we refer the reader to the tables in [32, pp. 516 and 518].

3. Non-Linear σ Models with Fermions

We now come to the central subject of this paper, namely the construction of non-
linear σ models with fermionic matter fields, and the question of their (classical)
integrability in two space-time dimensions. The dynamical variables of such a
model are a scalar field taking values in a given Riemannian manifold (bosonic
sector), plus a Dirac spinor field with spinor components taking values in a given
Hermitian complex vector bundle V over M (fermionic sector). As explained in
Sect. 2, we shall assume M to be a Riemannian symmetric space M = G/H and V to
be the associated bundle V= GxHV0 derived from a given unitary representation of
the stability group H o n a given complex vector space VQ. The dynamical variables
of the model will therefore (locally) be represented by a scalar field g = g(x) taking
values in G and a Dirac spinor field χ = χ(x) with spinor components taking values
in Fo; these transform according to

g-^gh, i-*h~γ χ (3.1)
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under gauge transformations (the gauge group being H) and according to

g-*9o9 > X->X (3.2)

under global symmetry transformations (the global symmetry group being G).
[For the time being, we shall not need to specify whether our spinors are built on
commuting or on anticommuting c-numbers, essentially because the relation
between complex conjugation and multiplication, when written in the form

(λμ)* = μ*λ*, (3.3)

is valid both for commuting and anticommuting c-numbers λ, μ. The distinction
will, however, become important when Dirac spinors are replaced by Majorana
spinors; we shall have more to say on this later on.]

Continuing our assembly of conventions, we shall suppose all fields to be
defined over two-dimensional flat Minkowski space, with metric tensor gμy,
determinant tensor sμv and light-cone co-ordinates ξ,η given by goo=+l,
0 i i = - 1 > β o i = - l > βio=+l> ξ = (x° + xί)/2, η = (x°-xί)/2, but the whole
analysis that follows can certainly be extended to general two-dimensional space-
times (space- and time-oriented Lorentz manifolds). As far as Dirac's y-matrices
are concerned, we shall work in a chiral Majorana representation, i.e., a
representation of the anticommutation relations

yμyv+yvyμ=29μv (3.4)

by complex (2 x 2)-matrices which are unitary,

yμ=yμ" o r yo=y^ yί = - y i , (3.5)

and satisfy two additional conditions: first,

(3-6)

is diagonal, and second, charge conjugation .c is simply complex conjugation .*,
defined componentwise; this means that the y-matrices must be purely imaginary.
A possible realization is

The invariant scalar product of ordinary spinors ψ, φ is as usual:

ψψ = Ψ + 7oΦ' (3.8)

This implies that

(ψyβΦ)*=Φyμψ, (wΦT=ΦΨ , (ψysΦ)* = - Φysψ, (3.9)

where (3.3) has been used, and that

(3.10)

where ε = + l or ε= — 1, according to whether the spinor components are
commuting or anticommuting c-numbers. Note also that (3.6) implies the
following important identity, which is at the heart of integrability in the fermionic
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sector:

-y5yμ=£μvgvκyκ=yμy5> W v ^ ^ - y s (3 n )

Next, we proceed to define various composite fields made up from the basic
fields g and χ. For example, the bosonic sector provides vector fields Λμ and kμ,
taking values in ί) and in m, respectively, defined as in the pure model [8-12],

A^ig-'d^, k^ig-^n (3.12)

[cf. (2.1) and (2.3)]. On the other hand, the fermionic sector gives rise to various
fields which are bilinear in the spinors and are built by inserting either generators
of the representation or operators which commute with all such generators. More
specifically, we define a vector field Bμ, a scalar field B and a pseudoscalar field £ 5 ,
all of which take values in ί), by requiring that for all Te ί),

(Bμ,T)=-~χyμT.χ, ( f l , Γ ) = - ^ χ Γ χ, (B5,T)=~χy5T χ, (3.13)

where ( , ) denotes the non-degenerate Ad(//)-invariant inner product on ί)
obtained from the given non-degenerate Ad (G)-invariant inner product ( , ) on g
by restriction. More explicitly, in terms of an arbitrary basis of generators 7} e ί),
with gjk = (Tp Tk) and (gjk) = (gjky

ί, this means that

(3.14)

B5=B>5Tj, B{=l-gJkχy5Tk χ.

Similarly, we define a vector field Cμ, a scalar field C and a pseudoscalar field C5, all
of which are isoscalars, as follows:

Cμ=^χyμχ9 C=-χχ, C5 = -χy5χ. (3.15)

More generally, if the given unitary representation of H on Vo is reducible and

(3.16)

is the orthogonal direct decomposition of Vo into irreducible subspaces V^r) under
H, then writing π(

o

r) for the orthogonal projection of Vo onto V$\ we define vector
fields C{

μ\ scalar fields C(r), and pseudoscalar fields C(

5

r), all of which are isoscalars,
as follows:

[Note that the generators Γeί) being represented by anti-Hermitian linear
transformations on Fo and the projection operators π(

o

r) being Hermitian linear
transformations on Vθ9 (3.9) shows that the expressions in (3.13), (3.15), and (3.17)
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are real, so that Bμ, B, and B5 all take values in the stability algebra ί), rather than
just its complexification, while Cμ, C, and C 5 and the C(

μ\ C(r\ C(

5

r) all are real
isoscalars, rather than just complex ones.] Now as in the pure model, Aμ is a gauge
potential [Aμ-^h~1Aμh + h~ίdμh under gauge transformations (3.1)], while the
other m-valued and ί)-valued fields are gauge covariant [kμ->h~ ιkμh, Bμ-*h~1Bμh,
B-^h'^^Bh, B5-^h~iB5h under gauge transformations (3.1)], and the isoscalar
fields are gauge invariant; moreover, all these composite fields remain invariant
under global symmetry transformations (3.2). We therefore introduce the gauge
field

Av']9 (3.18)

and the covariant derivatives

Dμθ = Sμg - gAμ, DμDvg = δμDvg - DvgAμ, (3.19)

χ, (3.20)

L (3.21)

Bvli9 (3.22)

DμB = 3μB + lAμ9 B] , DμB5 = BμB5 + [Aμ, B5] . (3.23)

Conjugating the gauge covariant and globally invariant fields kμ, Bμ, B, B5μ, and Fμv

by means of the bosonic field g, we obtain the following gauge invariant and
globally covariant composite fields:

^ (3-24)

, (3.25)

gBsg-\ (3.26)

and
G^gF^g-1. (3.27)

Note that

jμ= -Όμgg'^. (3.28)

Moreover, as a consequence of the symmetric space structure of M, we have the
identities [8-12]

ίkμ,kv-] = -Fμv, (3.29)

and

flΛ-^=°. ( 3 3°)

which, after conjugation by g, take the form

DWv] = - ( v , (3.31)

and

djv-δjμ + 2[jμ,jv-] = θ, (3.32)

respectively.
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With all these preliminaries out of the way, we can write down the general
conformally invariant Lagrangian for this type of model: it reads

\ ^ L F , (3.33)

where the fermionic self-interaction term takes the form

LF = α / v (βμ, Bv) + b(B, B) + b5(B5,B5) + cg"vCμCv + dC2 + d5C
2 (3.34)

with coupling constants α, b, i>5, c, d, d5 [cf. (3.15)], or more generally,

LF = ag»\Bμ9 Bv) + b(B, B) + b5(B5, B5)

+ Σ {Cr^Cpcy + drsC^Os) + (rf5)rsC?C(|>} (3.35)

with coupling constants α, 6, bs, crs, drs, (d5) r s, symmetric in r and s [cf. (3.17)]. [It
should be noted that representing LF in this form contains a certain amount of
redundancy since one may use Fierz identities to relate, e.g., C2 -f C\ to gμv(Bμ, Bv)
and (B, B) + (B5, B5) to gμvCμCv. The specific form of any such relation, however,
depends on the group H and on the representation of H on Fo.] The resulting
equations of motion split into a bosonic field equation,

gμ\DμK ~ £ A + [Bμ, KD = 0, (3.36)

and a fermionic field equation,

Ψl = < ? Λ ' % + fo£' X + ib5y5B5 - χ + icg'vyμχCv + idχC - d5y5χC5 (3.37)

[from (3.34)], or more generally,

+ Σ {ic^vAW* + ίdrA
}χC(s) - (d5)»y s^Z^} (3.38)

[from (3.35)]. Moreover, we note that as a consequence of the fermionic field
equation, the composite field Bμ has vanishing covariant divergence,

g^DμBv = 0, (3.39)

while its covariant curl is, in general, considerably more complicated: namely, in
terms of an arbitrary basis of generators 7} e I), with gjk = (7}, Tk) and (gjk) = (gjk) ~ \

+ b5g
kι(χlTpTk]+-χ)(χy5Trχ)

-2d{χy5Tj-χ)(χχ)

) (3.40)
Γ f n ^ Ί n

[ίrom (3.37)], or more generally,
48f\DμBv-aίBμ, Bvl 7})= -bgu(χy5[Tj, T J + Z)(χT, χ)

+ Σ 2(d5)rs(χπ<o

r)7} χ)(χr5π
(

o

s)χ) (3.41)
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[from (3.38)], where [•,•]+ denotes the anticommutator with respect to the given
representation of H on Vo. (The proof of (3.39)—(3.41) proceeds by straightforward
calculation, making use of the total antisymmetry of the structure constants cjkl,
defined by cjkι = gjmc^ and [Tfc, T{\ = c% Tm, and of (3.11) we leave it to the reader
to fill in the details.) In particular, it follows that a sufficient condition for the
equation

DμBv - DvBμ - 2a[_Bμ, B v ] = 0 (3.42)

to hold is that

b = 0 = b5, d = 0 = d5 (3.43)

in (3.34), or more generally,

b = 0 = b5, drs = 0 = (d5)rs (3.44)

in (3.35). (More precisely, it suffices that LF may be rewritten in this form by making
use of Fierz identities.) Next, the Noether current of the theory corresponding to
the global symmetry under G [cf. (3.2)] is precisely the gauge invariant and
globally covariant vector field

Jμ=jμ+jf (3.45)

(which explains the notation j^f, standing for "matter field contribution to the
Noether current"). Its conservation,

gμvdμJ, = 09 (3.46)

is easily checked to be a consequence of (and in fact equivalent to) the bosonic field
Eq. (3.36). More specifically, combining (3.36) and (3.39) gives two equations, of
which (3.46) is the sum, namely

ί ί])=o» (3 4 7 )
Λ f]) = O. (3.48)

If in addition, (3.42) also holds, then

<yr - 3 JT+[/„ J Ή - ΌJϊi - Ή% jf]=o (3.49)

Our goal is now to find conditions on the fermionic self-interaction term LF

that will guarantee the model to be classically integrable. By classical integrability
we shall mean the existence of a non-trivial one-parameter family of g-valued
"gauge potentials" Aμ(λ) (λ e R) which a) are linear combinations

Aμ(λ) = R(λ)κJκ + S(λ)κ

μjif (3.50)

of the two contributions j μ and jf to the Noether current Jμ, with field-
independent coefficients R(λ) and S(Λ), and b) satisfy the requirement that by
virtue of the equations of motion, the g-valued "gauge fields" Fμv(λ) (λ e R) vanish
identically, where, of course,

Fμv(λ) = dμAv(λ) - dγAμ(λ) + lAμ(λ), Av(λy\ . (3.51)



134 E. Abdalla and M. Forger

As usual, this condition is equivalent to the integrability, for any value of the
parameter λ9 of the following linear system of first-order differential equations,

μ μ λ ) , (3.52)

where Uiλ) is a G-valued field which serves as a generating functional for an infinite
sequence of non-local charges.

To analyze this situation, we return to (3.50) and note first that Lorentz
covariance forces the (2 x 2)-matrices R(λ) and S(λ) to take the form

S)
Then, after some calculation, we obtain from (3.32), (3.47), and (3.48).

tTFμΛλ) = (β-δ + aδ- βγ)(λ) g^{jμ, j f ]

-βδ)(λ) ε"vDμ, ffl +¥ϊ2 - δ2\λ) ε<"[/f, f ]

Thus we should have

β-δ + aδ-βγ = 0, <x2-βz~2a = 0.

If in addition, (3.42) also holds, then (3.49) shows that the last two equations
plus the two equations 1

7 = ay-βδ=--(y2-δ2)

will make εμvFμv(λ) vanish. We are therefore left with four equations for four
unknowns which turn out to have a solution if and only if

- 2 α = l . (3.54)

In that case, the ansatz β= — sinhA gives

α = l + coshλ, )8=-sinhλ, y=\(l- cosh 2λ), ^ = +isinh2/l (3.55)

(either sign is possible).
To summarize, we have shown that the model under consideration, with total

Lagrangian L given by

^ ^ 0 l - L F (3.33)

will be integrable if (by making use of Fierz identities if necessary) the fermionic
self-interaction term LF can be brought into the form

CμCv (3.56)

with an arbitrary coupling constant c [cf. (3.15), (3.34)], or more generally,

LF = -{g»\Bμ, Bv) + ΣcrsQ^Cγcγ (3.57)
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with arbitrary coupling constants crs [cf. (3.17), (3.35)]. In fact, we have for this case
established the integrability, for any value of the parameter λ, of the following
linear system of first-order differential equations [26, 27]

) = jja){{ι τ Cosh(λ))jμ - smh(λ)εμvg™jκ

vg^} (3.58)

(either sign is possible). As a consequence, there exists a whole one-parameter
family of g-valued "Noether currents" Jμ

λ) (λ e R), given by

+ ύnh(λ)sμvg™jκ

+ smh(2λ)sμvg
vκjM} Uw~ι (3.59)

(either sign is possible). Their conservation,

gμvdμJ™ = 0, (3.60)

follows from the identity (3.32), from (3.47)-(3.49), and from (3.58). In light-cone co-
ordinates ξ, η, and with the convention y = ± e + A, the linear system (3.58) becomes

y ) ; 4 + i ( r ) j f } , , ,
(3.61)

while the definition (3.59) becomes

-% + y-2j»}VM-\
2jf}uM-1 ( 1 6 2 )

Now just as in the pure model [6, 8-12], expanding (3.60) around λ = 0 gives an
infinite series of g-valued conservation laws which (except for the very first) are
non-local. In particular, the first non-local charge is given by

β ( 1 )(ί) = J dyidy2θ(yi - y2) [J0(ί, y,\ J 0(ί, y2)]

(t9y). (3.63)

Its conservation (i.e., time-dependence) can also be checked directly from (3.46)
and the equation

9μ( Jv +7"f) ~ dv(Jμ +j f) + 2[ Jμ9 J v ] = 0, (3.64)

which follows from combining (3.32) with (3.49) and (3.54).
Throughout the preceding discussion, we have been working with Dirac

spinors which transform according to a given unitary representation of i ί on a
complex vector space Fo, but there are, of course, situations where one wants to
replace these by Majorana spinors which transform according to a given
orthogonal representation of H on a real vector space Wo. This can be achieved,
e.g., by viewing Majorana spinors as Dirac spinors satisfying an additional reality

c o n s t r a i n t ' x*=x; (3.65)

then Vo is the complexification of Wo, and the unitary representation of H on Vo is
the complex extension of the orthogonal representation of H on Wo. Therefore, the
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generators Te ί) are represented by real antisymmetric linear transformations on
Vo, and the projection operators π(

o

r) are real symmetric linear transformations on
Vo, so that combining (3.10) with (3.65) and (3.14), (3.15), and (3.17), we get

gμvdμ(χyvχ)9 Bμ = 0, B5 = 0, C = 0 or C<'> = 0

for commuting Majorana spinors. (3.66)

fl = 0, Cμ = 0 or Cf = 0, C 5 =0 or C^ = 0

for anticommuting Majorana spinors. (3.67)

But this shows that the case of commuting Majorana spinors is dynamically trivial
(the fermions have trivial kinetic Lagrangian and moreover they decouple from the
bosons), so only the case of anticommuting Majorana spinors is physically
acceptable. This situation is, of course, reversed if the //-in variant symmetric scalar
product on Wo used to contract the internal symmetry indices of the Majorana
spinors is replaced by an //-invariant antisymmetric scalar product, i.e., an
//-invariant symplectic form, on Wo - which can be done if, and only if, the real
dimension of Wo is even, say dim Wo = 2N. In other words, δab is replaced by εab, and
the SO(2iV)-symmetry of the fermionic sector is replaced by an Sρ(2JV,R)-
symmetry this is a well-known procedure in handling the ordinary Gross-Neveu
model [33, 34]. However, H is compact, so the image of H under the given
representation on Wo must then be contained in a maximal compact subgroup of
Sp(2JV,R), which is a U(N). But this means that we are effectively dealing with
Dirac spinors which transform according to a unitary representation of H on Wo,
which is really a complex vector space of complex dimension N. [Of course, the
fermionic model by itself could be required to have a full Sp(2iV, IR)-symmetry, but
without reducing this symmetry to a U(ΛΓ)-symmetry, it could not be coupled to
a non-linear σ model, or to a gauge theory, without using a non-compact stability
group //, i.e., without violating the positive energy condition.]

In view of these arguments, we shall from now on disregard commuting
Majorana spinors and deal exclusively with anticommuting Majorana spinors.
(There are, of course, several other good reasons to consider commuting spinors,
even in the Dirac case, as being physically irrelevant, but we shall not dwell on
them here.) Then it is clear that the fermionic self-interaction term LF in the
Lagrangian L [cf. (3.33)—(3.35)] can be rewritten in the form

LF = agμ\Bμ9 Bv) + b5(B5,B5) + dC2 (3.68)

[cf. (3.34)], or more generally,

LF = ag"v(Bμ9 By) + b5(B5, B5) + Σ drsC
{r)C^ (3.69)

[cf. (3.35)], and according to (3.67), this is manifestly chirally invariant.
An interesting aspect of the results obtained in this section is that integrability

of the model under consideration apparently forces its Lagrangian to be chirally
invariant even in the Dirac case. One may object that this conclusion seems to be
contradict the well-established integrability of the ordinary Gross-Neveu model
[33, 34]. A closer look, however, reveals that integrability of the ordinary Gross-
Neveu model requires an extension from JV-component Dirac spinors, with U(iV)-
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symmetry, to 2ΛΓ-component Majorana spinors, with Sp (2iV, R)-symmetry (for
commuting spinors) respectively SO(2ΛΓ)-symmetry (for anticommuting
spinors): this happens because the fermionic current jf takes values in the Lie
algebra sp(2JV,IR) respectively so (2iV), and not in the Lie subalgebra u(JV). But
on this level, chiral invariance is obvious. In fact, the ordinary Gross-Neveu model
has a hidden chiral invariance, hidden by the phenomenon that the corresponding
y5 does not commute with the complex structure needed to reduce the 2N real
components to N complex components, but apparent when one doubles the
number of complex components.

To conclude this section, let us have a look at the integrable non-linear σ model
on an irreducible Riemannian symmetric space M = G/H with (anticom-
muting Majorana) fermions, which according to (3.33), (3.56), and (3.67) has
Lagrangian

l l0 \g»\Bμ,Bv), (3.70)

in the orthogonal representation of H on the real vector space

W0 = m, (3.71)

derived from the adjoint representation of G on cj by restriction [cf. (2.1)]. We claim
that this is precisely the supersymmetric non-linear σ model on M = G/H. Namely,
the variation of the fields g and χ under an infinitesimal supersymmetry
transformation, parametrized by an anticommuting Majorana spinor ε, is

δεg = gεχ (3.72)

δβχ=-ijfcε. (3.73)

Moreover, if M = G/H is a Hermitian symmetric space, rather than just a
Riemannian one, then there exists a generator / in the centre of the stability algebra
t) which, via ad, induces the invariant complex structure on M = G/H [31, p. 261 f.]:

[/,Jf] = O for Xeί), [ J , [ / , X ] ] = - X for l e n t . (3.74)

This generator can be used to show that the model actually admits an N = 2
extended supersymmetry (see also [25, 27]): namely, the variation of the fields g
and χ under an infinitesimal supersymmetry of the second type, again para-
metrized by an anticommuting Majorana spinor ε, is

^ = 0[/,εχ]. (3.75)

^ = + i [ Λ « ε . (3.76)

[The proof that the transformations (3.72) and (3.73) leave the Lagrangian (3.70)
invariant, and that they satisfy the correct commutation relations, is delegated to
an appendix; the corresponding proof for the transformations (3.75) and (3.76) is
entirely analogous.] An alternative approach, systematically developed in [27], is
to start with a superfield

g(x9 θ) = g(x) + θψ(x) +±ΘΘG(x) (3.77)
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and to eliminate the auxiliary field G(x) by using its equation of motion, which
follows from variation of the superspace Lagrangian density. Then setting

ψ=gχ, (3.78)

this superspace Lagrangian density, after integration over the Grassmann
variables, reduces to (3.70).

4. On Quantization of the Non-Local Charge

In order to discuss the fate of the first non-local charge (3.63) in the quantum
theory, we shall proceed along the same lines as in the pure model, which has been
treated in [20].

We begin by collecting a couple of group-theoretical conventions. First of all,
we assume that M = G/H is an irreducible Riemannian symmetric space of the
compact type, and we perform an orthogonal, Ad(if)-invariant direct
decomposition

ί ^ I (4.1)

of g into Ad (H)-invariant irreducible subspaces (some of which may be {0}), where
f)0 is the (at most one-dimensional) centre off), and f)1?..., ί)r are the simple ideals in
I) [20]; the corresponding representations of H or t) on \)t respectively m will be
denoted by Dt respectively D. Moreover, all ί)-valued fields are further decom-
posed according to (4.1), i.e.,

Aμ = Aμ

Q) + Aμ

X)+ ... +A%\ (4.2)

(4.3)

(4.4)

etc., and we set

Gμ% = gF%g~\ (4.5)

fμ

M){V> = gBfg~\ (4.6)

etc. Next, M being of the compact type, we may assume that G is compact semi-
simple7, and we shall fix a representation of G by unitary (N x ΛO-matrices, which
induces a representation of generators in g by anti-Hermitian (N x ΛO-matrices:
this representation is required to be faithful, and for simplicity, the Ad(G)-
invariant scalar product ( , ) on g is supposed to be the corresponding trace form
(up to normalization). We shall also find it convenient to fix an orthonormal basis
of vectors va in Fo, so that the fermionic sector carries a representation of H by
unitary (No x ΛΓ0)-matrices which induces a representation of generators Tin ί) by
anti-Hermitian (ΛΓ0 x ΛΓ0)-matrices Tab (No = dim Vo); this representation of H or f)
will be denoted by Do. In addition, we require that G and g respectively H and I)
(or rather their images under the respective representations) are stable under the
operations .* of complex conjugation and .τ of transposition of matrices: this will

1 Certain non-compact cases can be handled in a similar way cf. the footnote on p. 185 of [20]
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enable us to accommodate, in a natural way, the operation of charge conjugation.
[Note that G respectively H is stable if and only if g respectively ί) is, and that
stabilities under .* and under . τ are mutually equivalent. In particular, on g, .* and
. τ preserve the Ad(G)-invariant scalar product (•,•)•] Finally, we demand that on
f), the two operations of complex conjugation and the two operations of
transposition thus defined in terms of the two given matrix representations are in
fact identical, which means that for generators T in ί),

σ % = (TJ , (Tτ)ab=Tba, (4.7)

so we may simply write TJfc.
With these conventions, the basic fields of the quantized model are the (N x JV)-

matrix fields g, g + (which have dimension 0) 8 and the JV0-vector fields χ, χ (which
have dimension ^), together with their covariant derivatives. In order to give a
definite meaning to products of such operators at the same point (including the
products involved in the definition of the covariant derivatives), we shall assume,
as in the pure model, the existence of a normal product prescription JV\_ ... ], which
is compatible with the constraints and also with the internal symmetries of the
model [cf. (3.1) and (3.2)]; see [20] for more details. Then the existence of a
quantum version of the first non-local charge (3.63), and the question of whether it
is actually time-dependent or not, is governed by a Wilson expansion for the
(matrix) commutator of two currents at nearby (spacelike separated) points

yμ(x + 8), Jv(x - β)] ~ Σ C(ε)^[(P f e(x)] (ε2 < 0), (4.8)
k

where ~ means equality up to terms that go to zero as ε->0, and k labels a
complete set of independent composite local operators of (canonical) dimension
^ 2 . More specifically, these operators oV\Θk{x)~], as well as their conjugates
^r\iβ^kQ+){χ)\ under the bosonic field g, must be products, of (canonical)
dimension ^ 2 , of the fields g, g + , χ, χ and their covariant derivatives, and
contraction of internal symmetry indices among the factors must be performed in
such a way that the resulting product takes values in g and is globally G-covariant
and locally ϋ-invariant (for J^[Θk{x)~\) respectively globally G-invariant and
locally H-covariant (for -Λr[_{g(9kg

Jr){x)~\\ as well as chirally invariant. Therefore,
we arrive at the following list of candidates for admissible gauge covariant
operators, whose gauge invariant counterparts are obtained by conjugating back
with the bosonic field g+ (for simplicity, we have omitted the normal product
symbol):

dimension 0: -
dimension 1:

no fermion fields —• one derivative —> kμ [20],

two fermion fields -> no derivative —> RabXayμX
b, RalχayμX

b \

dimension 2:

no fermion fields —> two derivatives —> D kv, F ^ [20] ,

8 The symbol .+ denotes Hermitian adjunction of matrices; in particular, g 1 =
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two fermion fields —>• one derivative —>

a) derivative acts on fermion fields -> RabDμ(χayvXb\ RalDμ

b) derivative acts on boson fields -> [fcμ, i W ^ v Λ [*

four fermion fields -> no derivative —> Uabcd(χayμχ
b)(χcyvχ

d),

uϊUxayμχ
b)(xcyvχ

d).
[In compiling this list, we have used two facts. First, projecting the matrix product
ΛB or BA of two anti-Hermitian matrices A and B to its anti-Hermitian part will
automatically produce their commutator,

this has been applied to A = kμ and B = Rabχ
ayvχ

b or B = Ralχayvχ
h. Second, due to a

Fierz identity, the chirally invariant product

vabcd((fxb)(xcxd) -
can be rewritten as

Vadcbg
μ\χayμχ

b)(χcyvχ
d)l

The tensors R and S respectively R{1) and S(I) appearing in the list above represent
linear maps from F0*(x)F0 to mc respectively \ft which, in order to achieve
H-covariance, must intertwine the representations D%®DQ and Dc respectively
D;, and take the Hermitian part of V£®V0 to the real part m respectively f);9.
Similarly, the tensors U respectively U{ι) appearing in the list above represent
linear maps from F0*®F0(x)F0*(χ)F0 to mc respectively fy which, in order to
achieve iί-covariance, must intertwine the representations D$ ®D0®Dg (χ)D0

 a n d
Dc respectively Dc

h and take the Hermitian part of F0*®F0®F0*(x)F0 to the real
part m respectively ί) f

9. Explicitly, the reality condition means that

Aab ^ RabA
abem, R^Aabeί)i9

Λab ^ SabA
abem, S^A^eh, (4.9)

Aabcd ̂  uabcdA
abcdem, U^A^^ei)^

A further constraint on these intertwining operators, derived from the condition
that both sides of (4.8) must have the same transformation law under charge
conjugation [which takes, e.g. Jμ to J* = - J j , χayμχ

b to-(χayμχ
b)* = -χbyμχ

a and
χayvDμχ

b to -(χayβμχ
b)* = χbyvDμχ

a~\, is that they intertwine not only the
representations of H or f) but also, up to certain well-defined signs, the operations
.* of complex conjugation and (equivalently .τ of transposition on the various
space involved. More explicitly, this condition reads

s<2*=+s<8,

9 The superscript f denotes complexification
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and (equivalent^) n T _ , n «(i)τ _ , o(o
Kab — "Γ Kba > Kab ~ + Kba ->

TJT _ jj Tj(i)T _ ττ(i)
u
 α&cd — ~

 u
 bade ->

 U
 abed ~ ~

 U
 bade

From these arguments, it is clear that the task of finding a complete set of
independent composite local operators for the right-hand side of the Wilson
expansion (4.8) is reduced to a purely group-theoretical problem: namely that of
determining the complete set of intertwining operators R, S, U, R(i), S{ί\ ί/(ί) which
satisfy the additional conditions (4.9)—(4.11). In particular, one has to know the
multiplicity with which the irreducible representations D and Di occur in the tensor
product representations D%®DQ and Dg®D0(x)D§®D0. When considered in full
generality, this group-theoretical problem is known to be a notoriously com-
plicated one, and we shall not pursue this issue here. Note, however, that we can
always set

S W T f . (4.12)

^ « ) c d 7 f . (4.13)

[Here, we have used a basis of generators 7} in ί), each of which belongs either to the
centre ί)0 of ί) or to precisely one of the simple ideals ί) l 5 . . . , ί)r of ί), so that TJ(ί) is
either 7] or 0, and gjk = (Tj, Tk), (gJk) = (gjkΓ\ c*' = gh*g*clu, [Tm, T^cUf, of
course, the expressions in (4.12) and (4.13) do not depend on the specific choice of
basis made.] In fact, it is easy to check that this gives intertwining operators R{i) and
U{i) which satisfy the additional conditions (4.9)-(4.11); they lead to the following
admissible gauge covariant operators:

dimension 1: Bf = Ra%χay μχ
h •

dimension 2: DμBf = R§Dμ{χayvχ
h),

[BJ?, Bfi = uald{χayμχ
h){Tyvi

d).

Inserting their gauge invariant counterparts into the Wilson expansion (4.8) and
slightly rearranging terms, we get

v(x-ε)]-CJv(C)Jρ(x)+ £ C%(s)j^\x)
ί = 0

+D;%ε)(dσJβ)(x)+

+ £ E%l
i = 0

+ Σ ̂ '
i = 0

+ Σ G ( i > ; f r ( )
i = 0

+ ..., (4.14)
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where the dots indicate additional terms that will be present if there are other
intertwining operators which satisfy the additional conditions (4.9)—(4.11), besides
the ones given by (4.12) and (4.13). (The specific form of such additional terms will
depend on the choice of G, H and the fermion representation Do.)

The expansion (4.14) is still somewhat redundant because the constraints and
the field equations produce relations between the normal products appearing on
the right-hand side of (4.14). For example, the analogues of the classical identities
(3.31) and (3.32) in the quantum theory read

where c 0 is a renormalization-scheme-dependent constant. Similarly, the analogue
of the classical curl equation (3.49) [with (3.54)], split up into components along
the f)ι [cf. (4.1)-(4.6)], in the quantum theory reads

ρ f (4.16)

where the c{[\ c(

2

ι), c(

3

0 are renormalization-scheme-dependent constants, and the
last term in (4.16) is nothing but the Adler-Bardeen anomaly.

We have now reached the point where we can state a criterion for quantum
integrability of our model. Namely, the coefficients in the Wilson expansion (4.14)
and in the identities (4.15) and (4.16) must conspire in such a way that after
insertion of the latter into the former, all unwanted, anomalous terms cancel, i.e.,
we are left with a simplified Wilson expansion

+ D°/M(dσJa)(x)+ Σ DM°/v(ε)(δjfM)(x) (4.17)
Ϊ = 0

[with possibly modified coefficients Cρ

μv, C
(i)ρ

μv, Dσ

μ% D(ί)σ

μ% as compared to (4.14)].
Indeed, if this is the case, we can define the first quantum non-local charge Q as the
limit

β(ί)=limβ,(ί) (4.18)

of a cut-off charge Qδ, which reads

Qs(t) = ί dyιdy2θ(yi - y2) [ J0(ί, yj, J0(ί, y2y\

-Z(δ)iάyJx (t,y)-Σ &\$)idyffVQt, y) (4.19)

[cf. (3.63)], with coefficients Z(δ), Z{i\δ) to be determined in such a way that the
limit in (4.18) exists (at least in a weak sense); it can then be proved by combining
(4.17) with general principles that Q is conserved.
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We shall briefly review the basic arguments of how this is done, mainly because
the original reference [14] contains an error10 and also because it applies to the
pure model only.

We begin by exploiting locality, which tells us that ε being spacelike, the matrix
commutators [Jμ(x 4- ε), Jv(x — ε)] and [Jv(x - ε), Jμ(x + ε)] add up to zero (just as
they would for commuting c-number fields). Therefore,

q v(ε) = - C%( - ε), C%(ε) = - 0%( - β),

DJ?(ε) = - Z>; ( - e), D^(ε) = - &*>%( - ε).

On the other hand, co variance under PT [which is implemented by an antiunitary
operator on Hubert space and defined on the basic field operators by g(x) ->#( — x),
Z(x)->y5X(-x)] requires

CJvOD = - C%( - ε), C%(s) = - C%( -s),

D%(e) = + Dμ% - β), D^v(ε) = + D^( -ε).

In particular, we infer that the C-coefficients are symmetric and the D-coefficients
are antisymmetric in μ and v.

The next step uses covariance under Lorentz transformations and under
parity, which strongly restricts the tensorial nature of the coefficients, leading to

C%{ε) = CX{- ε2)gμvεe + C2( - ε2) (δ% + δ%) + C3( - ε

Dσ

μ'(fi) = Di( - s2)sμvs
σρ + D2( - ε2)(δσ

μεvε* - δσ

vεμε°),

C{i)

μv(ε) = Cψ( - ε2)gμvε* + Cψ( - ε2) (δjβv + δ%) + Cf( -

2)(δσεε* δ σ ε ε ° ) ( 4 < 2 2 )

D^γ(ε) = Dψ( - ε2)εμvε
σ« + Df{ - ε2) {δσ

μεvε* - δσ

vεμε*),

with invariant functions C l 5 C2, C3, D1? D2 and C^0, Cf, Cf, Dψ, Df that remain to
be determined. [The spectrum condition has been used to eliminate terms
containing the invariant functions Θ(±ε1\ such as D1( — ε2)ήgn(ει)εμvg

σQ, for
example.] Conditions on these functions follow from current conservation, i.e.,
from rewriting (4.17) in the form

i = 0

+ Σ (β(ί)ί?(e) + eσ^ ( ί )Wβ))(3jf ( ί ))WJ (4.24)
ί=0

and applying d/dεμ, which must give zero. This forces

D2 = 2D[ + ^, C1 = 6D[-4ε2D/i, C2=-2D'l9 1 1" . 2 \ 2 »

\ε )
(4.25)

4Df,
(4.26)

10 We are indebted to M. Lϋscher for communicating to us an (unpublished) revision [35] of
[14] on which this presentation is largely based
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where c is an arbitrary constant and the prime denotes differentiation with respect
to the positive real variable — ε2. Note that the invariant functions D1 and Dψ are
still undetermined. Their explicit knowledge, however, is not required, because one
can directly show that the limit in (4.18) exists, and that it is time-independent, if
one puts

Z(δ) = 2Dί(δ2/4) + δ2D[(δ2/4) + c, (4.27)

Z{i\δ) = 2Df(δ2/4) + δ2Df\δ2/4). (4.28)

In the literature, it is taken for granted that, modulo terms that go to zero as δ->0,

D1( — ε2) = a\n( — 4μ2ε2) + b, (4.29)

and hence
r> 2\ c — 2a
D2{-ε)=—^->

(4.30)

(In [14], for example, a = — {n — 2)/8π, b = 2a,c = 4a.) Moreover, equations such as
(4.29) and (4.30) have been checked, e.g., in the (DP"" 1 models [15-17] or
Grassmannian models [18], within the l/n expansion. A renormalization group
analysis shows, however, that these equations cannot be exact [35], and probably
there are log log corrections. Fortunately, the definition and the conservation of
the first quantum non-local charge are insensitive to such complications.

Appendix: Proof of Supersymmetry for Integrable Models
with a Special Choice of Fermion Representation

In the following, we shall, for the sake of completeness, give an explicit proof of the
claims made in the last paragraph of Sect. 3. Wherever convenient, we use an
(arbitrarily chosen) orthonormal basis of generators Ta in m and also an
(arbitrarily chosen) orthonormal basis of generators 7} in ί).

To begin with, we note that the fermionic self-interaction term LF in the
Lagrangian (3.70) can be written in the form

with

a, [7}, Γ6])(ΓC, [Γk, ΓJ)

(A.2)

(where we have used, in the last step, a completeness relation, together with the
commutation relation [m, m] C ί)). In other words, the coefficients Rab,cd are
precisely the components of the curvature tensor of M [32, p. 215] which, in
addition to having the usual antisymmetry properties RbafCd= —Rab,cd = Rab,do ίs

cyclic:

β ( A 3 )



Integrable Non-Linear σ Models 145

This property leads to the following special identities:

5Xc-(χayβx
b)fxc}=o, (A.4)

c - (xΊβχ
b)fyac}=o, (A.5)

Rab,cM\Xb)fyμXc=0. (A.6)

In fact, let Γ= 1 or Γ = y5 or Γ = yμ. Then by applying a Fierz identity, we get

iOT x V ̂ f i*
c -ί(xay5χ

b)
i(xayσχ

b)yβryσ7eχ
c}

ϊ{χaxb)fΓyaχ
c +i(xay5χ

b)yaryβy5χ
c

On the other hand, using (A.3) and the Majorana condition on χ [cf. (3.10) and
(3.65)], we can apply a Fierz identity in a different manner:

- ixbyQxα)yQΓχc}

+(fyρχ
b)yρrχ

c}

c+(x%xb)yρΓχc}

ρy
σχc+2{ϊαyQxh)yQΓχc}

Comparing the two expressions, we deduce that

Rαb,cΛ(xαy5Xb)yρΓyρy5χ
c + (fyσχ

b)yρΓyρy Y - Kχαyρχ
b)yρΓχc} = 0,

which, upon inserting Γ = l, Γ = y5, and Γ = yμ (and using yρyμyρ = O) gives (A.4),
(A.5), and (A.6), respectively.

With these technicalities out of the way, we can proceed to compute the
variation of the Lagrangian (3.70) under the infinitesimal supersymmetry trans-
formations (3.72) and (3.73) and to show that the algebra closes on solutions of the
field equations.

First of all, (3.72) implies

Projecting out the components along f) and along m, we get
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Next, we have from (3.73)

y 5χ
a - fy 5β)})

K y5χ
α - χ"γ5ε)}

= g"\Dμkv, εχ)-tfμ{g»XK, Eχ) + ε»\kv, εy5χ)} by (3.30)

= -g"\kv, εD^+id^XK, εχ)-ε»χkv, εγ5χ)},

and therefore, due to

=^ (δεχ$χ + χpδεχ) + l- g^χγ.lδ^, χ],

we obtain

\ \ d^XK iχ) - ^\K, ey 5z)} (A.8)

On the other hand, for any generator T in ί) (with ad(Γ) on m represented by
Tab = (Ta, IT, Tb])= -(Tb, [Γ, ΓJ)= - ΓJ, we have

(δβμ, T) = δε(Bμ, T)=-1-(δεχyμlT, χ\ + χyμ[T, δεχ])

λk\{gμy(εf + χ°ε) + εμv(εy5f - fy5ε)}

f+Tbaεμvg
vλkb

λεγ5f

= (K> IT, εχ]) + (εμy%, [Γ, εγ5χ]),

= Tbak
b

μεf+Tbaεμvg
vλkb

λεγ5f

i.e.,

δεBμ = - lkμ, εχ] - [εμvg*λkλ, έγ5χ], (A.9)

and therefore we obtain

δε(-ig"v(Bμ,Bv))

= - \gμ*iyl\.KSχl,χ]- \^iy,RK,ey5χ],χ]. (A.IO)
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Adding up (A.8) and (A. 10), we are left with a total divergence, since the other terms
add up to

^gμvχyμlίK eχ]> xl - ^μvχyμίίK Wsxl xl

\ 9 τ c ],

which vanishes, according to (A.6).
To check that the algebra closes, we compute

where we have applied a Fierz identity. Using the fermionic field equation (3.37),

[cf. (3.54)], together with

(lBμ, Xl Td) = (Bμ ) [Te, TM= - ^XΎμίίTc, TJ, χ]χc

= - \{Ta, [[Te, TJ,

5, χ], T,) = (S 5 , [Γc, Td])χc=
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and the relations (A.5) and (A.6), we can transform the last term in curly brackets
(or rather its scalar product with any generator Td in m) as follows :

AIA, χ], τd)+(ε^εOy Y([Bμ, χ], τd)}

^ f a ^ χ l Td).

Putting everything together, we arrive at

lδε2,δ8j9 = 2i(ε2y%)Dμg

μ9 χ] - (ε2y 5βi) [ 5 5 ? χ ] ,

[cf. (3.10)], which is the desired result: the first terms in (A.12) and (A.13) represent
the action of translation generators (with translation vector ε2yμsί), while the other
terms represent the action of gauge transformation generators.
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