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Abstract In this manuscript, we propose a mathematical framework to couple tran-
scription and translation in which mRNA production is described by a set of master
equations, while the dynamics of protein density is governed by a random differential
equation. The coupling between the two processes is given by a stochastic perturbation
whose statistics satisfies themaster equations. In this approach, from the knowledge of
the analytical time-dependent distribution of mRNA number, we are able to calculate
the dynamics of the probability density of the protein population.
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1 Introduction

Stochasticity in biological processes, in particular of gene expression, has been studied,
both experimentally and theoretically, at least since the pioneering work of Delbrück
(1940). Recent advances in experimental methods have enabled direct observation
of stochastic features of gene expression, such as temporal fluctuations in individual
cells or steady-state variations across a cell population (Elowitz et al. 2002; Ozbudak
et al. 2002; Blake et al. 2003; Raser and O’Shea 2004; Golding et al. 2005; Cai
et al. 2006; Yu et al. 2006), and data acquisition has experienced a huge improvement
in the last decade. However, theoretical models have not yet been developed to the
point of providing a comprehensive quantitative description for the dynamics of gene
expression. The stationary regime has been exhaustively discussed in the literature,
but studies on time-dependent probability distributions are still scarce (Iyer-Biswas
et al. 2009; Shahrezaei and Swain 2008; Ramos et al. 2011).

In this paper, our main goal is to present and discuss a stochastic description for
mRNA-protein dynamics. More precisely, we propose and solve a hybrid model for
stochastic gene expression, consisting of a master equation (ME) coupled to a random
differential equation (RDE). The ME describes the production of messenger RNA
(mRNA) molecules triggered by a gene with various levels of promoter activity. The
RDE governs the dynamics of protein synthesis: it is a linear ordinary differential
equation randomly perturbed by the Markov jump process underlying the ME. The
ME part of the model is a particular case of a Markov process in a “random envi-
ronment” (Cogburn and Torrez 1981), composed by a birth-and-death process and a
two-state Markovian switching process, in continuous time; see Peccoud and Ycart
(1995) for the interpretation in the context of gene expression. Several variations of
this type of model have been employed for the study of gene expression and have been
extensively discussed in the literature (Kepler and Elston 2001; Pirone and Elston
2004; Hornos et al. 2005; Paulsson 2005). The particular form of the ME part used
in this paper is the one analyzed in Innocentini and Hornos (2007), Innocentini et al.
(2013).

The motivations for such an approach can be justified on mathematical as well
as biological grounds. From a mathematical point of view, the RDE employed here
resembles a Langevin equation, with one crucial difference: the driving stochastic
process is not a singular delta-like noise, but rather a non-singular, well-behaved sta-
tionary stochastic process. Non-white noise-driven Langevin-like equations have been
widely discussed in the literature under different names, such as colored noise (Kam-
pen 2007) or real noise (Arnold 1998).And themathematical advantage in dealingwith
RDEs is that one does not need a sophisticated theory of integration in order to solve
them. As a matter of fact, RDEs are solved by Riemann integration of ordinary differ-
ential equations, sample path by sample path—hence the term “random differential
equation” instead of the more familiar term “stochastic differential equation,” which
is reserved for differential equations associated with a stochastic integration the-
ory (Arnold 1998).

Besides the mathematical benefit, there is a biological motivation in modeling
mRNA transcription by a ME and protein synthesis by a RDE, thus supposing that
the transcription product should be treated as a discrete random variable (number of
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112 G. C. P. Innocentini et al.

mRNA molecules), while the translation product should be treated as a continuous
random variable (density of protein molecules). The reason behind this distinction is
the large gap, typically of several orders of magnitude, between mRNA numbers and
protein numbers in the cell. The hybrid model we propose here attempts to incorporate
the discrepancy between mRNA and protein molecules (which concerns not only their
typical numbers but also their typical lifetimes) from the very beginning, instead of
assuming that it can be ignored. That is why, in conformity with procedures already
adopted implicitly in some of the literature but rarely spelled out [one exception
is Friedman et al. (2006)], we suggest to model protein number by a continuous
probability density rather than a discrete probability distribution.

Admittedly, this amounts to a change of paradigm, but as will be shown here, the
resulting simplifications are so substantial that they allow us to solve the resulting
model without constraints on the values of the parameters. Furthermore, this approach
allows us to evaluate probability densities even for very high protein numbers, with
no extra effort.

2 Model for Transcription and Translation

Let us describe our model in more detail. Gene transcription is described by a pair of
master equations, corresponding to two states {1, 2} of promoter activity, for a birth-
and-death process coupled by a telegraph-like process encoding the switch between
promoter states (generalization to a higher number of promoter states will be left to
future work):

dφ1
n

dt
=k1[φ1

n−1 − φ1
n] + ρ[(n + 1)φ1

n+1 − nφ1
n] − hφ1

n + f φ2
n ,

dφ2
n

dt
=k2[φ2

n−1 − φ2
n ] + ρ[(n + 1)φ2

n+1 − nφ2
n ] + hφ1

n − f φ2
n .

(1)

The discrete random variable n stands for the number of mRNA molecules in the cell
and φ

j
n (t) is the probability for finding the gene in state number j ( j = 1 or 2) with n

mRNA molecules in the cell, at time t ; the resulting total probability will be denoted
by φn(t) = φ1

n(t) + φ2
n(t). Production of mRNA is controlled by the rates k1 and k2,

while its degradation is taken into account by the rate ρ which is independent of the
activity level of the promoter. The switch between the two states is controlled by the
rates h and f . The master equations (1) are mathematically equivalent (up to a change
of notation) to the master equations (4)–(5) of Kepler and Elston (2001), since they
describe the same underlying reactions (birth, death and switching between the two
states). However, the discrete random variable in Kepler and Elston (2001) stands for
protein number, so the state variables and their interpretation are different. Protein
synthesis/degradation is governed by an RDE of the form

d

dt
mt = − Amt + Bnt , (2)
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Protein Synthesis Driven by Dynamical Stochastic… 113

where m is a continuous random variable representing the protein number density in
the cell, A and B are the protein degradation and synthesis rates, respectively, and n is
as before, but now with time dependence following a stochastic Markov jump process
where nt+Δt = nt ± 1 with probability (k1 + k2)Δt for +1 and ρntΔt for −1 (and
nt+Δt = nt with remaining probability): this is consistent with the time evolution of
the total probability distribution φn that follows from Eq. (1). With the assumption
that A and B are constant, our model focuses on the effects of the stochasticity of the
transcription process and neglects the protein production/decay noise.

3 Solutions of the Model

A complete description of nt is achieved by obtaining the time-dependent solutions
of the master equations (1), and this is what we do in the following. However, before
dealingwith themaster equations, let usfirst redefine theparameter space and introduce
the biological quantities of the model, as in Innocentini and Hornos (2007), namely:
the efficiency parameters N1 = k1/ρ and N2 = k2/ρ, the switching parameter ε =
(h + f )/ρ and the occupancy probabilities p1 = f/(h + f ) and p2 = h/(h + f ).
Using the generating function technique (Kampen 2007), the coupledmaster equations
are transformed into a set of PDEs (partial differential equations) for the functions
φ1(z, t) = ∑∞

n=0 φ1
n(t)z

n and φ2(z, t) = ∑∞
n=0 φ2

n(t)z
n :

1

ρ

∂φ1

∂t
=(z − 1)

[

N1φ
1 − ∂φ1

∂z

]

− εp2 φ1 + εp1 φ2,

1

ρ

∂φ2

∂t
=(z − 1)

[

N2φ
2 − ∂φ2

∂z

]

+ εp2 φ1 − εp1 φ2.

(3)

The probability distributions are obtained from the generating functions using

φ1
n(t) = 1

n!
∂nφ1(z, t)

∂zn

∣
∣
∣
∣
z=0

,

φ2
n(t) = 1

n!
∂nφ1(z, t)

∂zn

∣
∣
∣
∣
z=0

,

(4)

Introducing a new set of variables through the transformations μ = (z − 1)e−ρt and
ν = z − 1, Eq. (3) assumes the form

−ν
∂φ1

∂ν
+ νN1φ

1 − εp2 φ1 + εp1 φ2 = 0,

−ν
∂φ2

∂ν
+ νN2φ

2 + εp2 φ1 − εp1 φ2 = 0,

(5)

i.e., this transformation reduces the original set of PDEs to a set of ODEs (ordinary dif-
ferential equations), which have already been solved in Innocentini andHornos (2007);
a similar transformation with the same purpose has been used in Ramos et al. (2011),
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114 G. C. P. Innocentini et al.

Iyer-Biswas et al. (2009). Following Innocentini and Hornos (2007), the solutions of
Eq. (5) are:

φ1(μ, ν) = F(μ) p1e
N1ν M(a, b + 1, η)

− G(μ)(1 − b)η−beN1ν M(a − b, 1 − b, η), (6a)

φ2(μ, ν) = F(μ) p2e
N1ν M(a + 1, b + 1, η)

+ G(μ)(1 − b)η−beN1ν M(1 + a − b, 1 − b, η), (6b)

where F and G are arbitrary functions that must be determined from the initial con-
ditions, where we note that t = 0 corresponds to ν = μ. The symbol M stands for the
Kummer M function (Abramowitz and Stegun 1964) with parameters a = εp2, b = ε

and η = (N2 − N1)ν.
In order to determine F and G we will use matrix and vector notation to rewrite the

solutions of Eq. (6) as �φ(μ, ν) = U (ν) �F(μ), where �φ = (φ1, φ2)T and �F = (F,G)T

(where .T means matrix transposition); then the entries of the matrix U (ν) are

U1,1 = p1 e
N1ν M(a, b + 1, η),

U1,2 = −(1 − b)η−b eN1ν M(a − b, 1 − b, η),

U2,1 = p2 e
N1ν M(a + 1, b + 1, η),

U2,2 = (1 − b)η−b eN1ν M(1 + a − b, 1 − b, η).

(7)

Inverting the relation �φ(μ, ν) = U (ν) �F(μ) gives �F(μ) = U (ν)−1 �φ(μ, ν), and set-
ting ν = μ, we obtain an expression for �F(μ) in terms of the initial conditions. Thus,
we have to compute the inverse of the matrix U (ν), which requires calculating its
determinant. At a first glance, it might appear difficult to find a compact formula for
that, since it involves products ofKummer functions. Fortunately, thewell-known rela-
tions for Kummer functions, especially the one concerning the Wronskian [relations
13.1.20 in Abramowitz and Stegun (1964)], allow us to obtain a simple expression for
this determinant:

det(U (ν)) = e−(N1+N2)νηε

1 − ε
. (8)

Putting everything together, we obtain the time-dependent probability distributions
that solve Eq. (1) and will serve as input to solve Eq. (2).

Considering any given perturbation nt as input, the ODE (2) governing the protein
dynamics is easily solved by applying the standard integral formula from the theory
of ODEs. Introducing the dimensionless parameters τ = ρ t , α = A/ρ and β = B/ρ,
the solution reads

mτ = m0 e
−ατ + β e−ατ

∫ τ

0
nτ ′ eατ ′

dτ ′, (9)

where the integral is an ordinary Riemann integral (applied to the product of a step
function by an exponential function) and m0 = m(0). In the present case, where
both nτ and mτ are stochastic processes, we can interpret this formula as an operator

123

Author's personal copy



Protein Synthesis Driven by Dynamical Stochastic… 115

that maps the process nτ (for mRNA number) to the process mτ (for protein number
density), sample by sample.

Recalling that the ultimate goal is to compute the probability density of the pro-
tein population, say P(τ,m), the traditional method consists in randomly generating
stochastic processes nτ for mRNA number, applying the previous integral formula to
produce corresponding stochastic processesmτ for protein number density and looking
at the resulting statistics. Here, and this is perhaps the central point of the present paper,
we propose a different procedure: since the solution of Eq. (1) has already provided us
with a probability distribution for mRNA number, it suffices to take its push-forward,
in the sense of measure theory, under the operator defined by solving Eq. (9) to directly
obtain the corresponding probability distribution for protein number density, without
having to resort to random process generation. To describe how to compute the push-
forward, let us consider the integral on the rhs of Eq. (9). Dividing the interval [0, τ ]
in p subintervals, we have:

∫ τ

0
nτ ′ eατ ′

dτ ′ =
p−1∑

q=0

∫ τq+1

τq

nτ ′ eατ ′
dτ ′, (10)

where τ0 = 0 and τp = τ . If the partition is sufficiently fine (i.e., for p sufficiently
large), the function nτ will be constant on each subinterval and the integral can be
performed explicitly:

mτ = m0 e
−ατ + β

α
e−ατ

p−1∑

q=0

nτq (e
ατq+1 − eατq ). (11)

Otherwise, i.e., for smaller values of p, Eq. (11) provides only a “rectangular” or
“piecewise constant” approximation of the integral in Eq. (10) since it amounts to
replacing, on each of the subintervals [τq , τq+1], the step function nτ ′ by a constant
(here chosen to be its value at the left endpoint):

∫ τq+1

τq

nτ ′ eατ ′
dτ ′ ≈ nτq

∫ τq+1

τq

eατ ′
dτ ′ = nτq

α

∣
∣
∣
∣

τq+1

τq

. (12)

Of course, a “trapezoidal” or “piecewise linear” approximation is more precise: it
consists in replacing this expression by

∫ τq+1

τq

nτ ′ eατ ′
dτ ′ ≈

∫ τq+1

τq

(aτ ′ + b) eατ ′
dτ ′ = 1

α

(
aτ ′ + b − a

α

)
eατ ′

∣
∣
∣
∣

τq+1

τq

, (13)

where a and b are determined by solving the equations nτq = aτq + b and nτq+1 =
aτq+1 + b.

In order to obtain a sample path for the process mτ using these formulas, it suffices
to represent a sample path for the process nτ by the “shrunk” numerical sequence
(n0, . . . , n p−1), the only modification being that we must now allow consecutive
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116 G. C. P. Innocentini et al.

numbers to differ by more than ±1. Finally, to make our sample space finite, we also
introduce a cutoff L and impose that all nq should be � L . For instance, by choosing
L so large that the probability of nq > L is smaller than 10−20, say, we can certainly
neglect all values higher than L and restrict the set of possible values for nq to the
finite set {0, 1, . . . , L − 1, L}; then the space of sequences has (L + 1)p elements.

Now, Eq. (11) provides a map from this space of sequences (n0, . . . , n p−1) to that
of numbers mτ . Using this mapping, we define the push-forward probability on the
set of possible values of mτ by

P
(
mτ = mτ (n0, . . . , n p−1)

) = Φ(n0; . . . ; n p−1), (14)

where
Φ(n0; . . . ; n p−1) = Φ1(n0; . . . ; n p−1) + Φ2(n0; . . . ; n p−1) (15)

is the total joint probability distribution for finding nq mRNA molecules at times
τq(q = 0, . . . , p − 1), whereas Φ1(n0; . . . ; n p−1) and Φ2(n0; . . . ; n p−1) encode
the joint probability distributions for finding nq mRNA molecules at times τq (q =
0, . . . , p − 1) with the gene in promoter state 1 and 2, respectively. In general, such
joint probability distributions are difficult to obtain, but in our case, the mRNA process
governed by the master equations (1) is Markovian and therefore we can compute
the joint probabilities in terms of conditional probabilities, according to the iterated
Chapman- Kolmogorov equation:

Φ1(n0; . . . ; n p−1) =
2∑

j0,..., jp−2=1

Φ(n p−1, τp−1, 1|n p−2, τp−2, jp−2) . . .

. . . Φ(n1, τ1, j1|n0, τ0, j0) φ
j0
n0(τ0),

Φ2(n0; . . . ; n p−1) =
2∑

j0,..., jp−2=1

Φ(n p−1, τp−1, 2|n p−2, τp−2, jp−2) . . .

. . . Φ(n1, τ1, j1|n0, τ0, j0) φ
j0
n0(τ0),

(16)

where, as before, φ
j0
n0(τ0) is the probability to find the gene in the state j0 and with

n0 mRNA molecules in the cell, at time τ0. The quantity Φ(nq ′ , τq ′ , j ′|nq , τq , j) is
the conditional probability of finding nq ′ mRNA molecules at time τq ′ and with the
gene in state j ′ provided there were nq mRNAmolecules at time τq and with the gene
in state j , where τq < τq ′ , q, q ′ = 1, . . . , p − 1 and j, j ′ = 1, 2. These conditional
probabilities can be obtained from the solutions of themaster equations (6). To this end,
one has to take as initial condition the generating function encoding the information
that, at time τq , the system has exactly nq particles and with probability 1 is in one
of the two promoter states, say 1 or 2. Such a generating function has one component
equal to 0, whereas the other is given by (1 + μ)nq , i.e.,

(φ1(μ, ν), φ2(μ, ν)) = ([1 + μ]q , 0) with ν = μ (17)
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Protein Synthesis Driven by Dynamical Stochastic… 117

for promoter in state 1 and

(φ1(μ, ν), φ2(μ, ν)) = (0, [1 + μ]q) with ν = μ (18)

for promoter in state 2. In the (z, τ ) variables, the non-vanishing component takes the
form (

1 + (z − 1)e−(τ−τq )
)nq

(19)

since here the initial time is τq , rather than 0.
Regarding the validity of Eq. (14), it is important to note that according to the

general definition of the push-forward of probabilities, one should really take the sum
of the probabilities corresponding to all sequences (n0, . . . , n p−1) producing the same
value of mτ . However, Eq. (11) implies that, generically, any two different sequences
will give different values (more precisely, this will be the case if the intermediate
times τ1, . . . , τp−1 are chosen such that the differences of exponentials eατq+1 − eατq ,
q = 0, . . . , p − 1, are linearly independent over the integers).

For the sake of greater clarity, and to illustrate how the conditional probabilities are
obtained from the explicit solution (6) of the master equations with the appropriate
initial conditions (see Eqs. (17), (18) and (19) above), let us consider the simplest
example: p = 2 and L = 1. Here, the sample space has four elements, namely, (0, 0),
(0, 1), (1, 0) and (1, 1), and in general each of these sequences will produce a different
number mτ . Therefore, the probability assigned to each of these values mτ is equal to
the joint probability assigned to the corresponding sequence (n0, n1), summed over
the two possible promoter states,

P(mτ = mτ (n0, n1)) = Φ1(n0; n1) + Φ2(n0; n1). (20)

Specializing Eq. (16) to the case p = 2, we see that these joint probabilities are

Φ1(n0; n1) = Φ(n1, τ1, 1|n0, τ0, 1) φ1
n0(τ0) + Φ(n1, τ1, 1|n0, τ0, 2) φ2

n0(τ0),

Φ2(n0; n1) = Φ(n1, τ1, 2|n0, τ0, 1) φ1
n0(τ0) + Φ(n1, τ1, 2|n0, τ0, 2) φ2

n0(τ0),
(21)

where, as before, the conditional probabilities Φ(n1, τ1, j1|n0, τ0, j0) take into
account the promoter states. To exemplify how these are obtained from the solutions
of themaster equations, let us, by way of example, focus on the conditional probability
Φ(n1 = 5, τ1, j1 = 1|n0 = 10, τ0, j0 = 1). This means that we are considering the
situation where, at time τ0, the system has 10 mRNA molecules and the promoter is
found in the state 1, corresponding to the initial condition

(φ1(μ, ν), φ2(μ, ν)) = ([1 + μ]10, 0) with ν = μ, (22)

or in the (z, τ ) variables,

(φ1(z, τ1), φ
2(z, τ1)) =

([
1 + (z − 1) e−(τ1−τ0)

]10
, 0

)

. (23)
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118 G. C. P. Innocentini et al.

Using Eq. (22) to determine the vector

�F(μ) = U (ν)−1 �φ(μ, ν)

∣
∣
∣
ν=μ

, (24)

substituting the entries of this vector in Eq. (6a) for φ1 and returning to the variables
(z, τ ), we arrive at the generating function, let’s sayΨ (z, τ ), of the conditional proba-
bilitiesΦ(n1, τ1, j1 = 1|n0 = 10, τ0, j0 = 1), fromwhich the conditional probability
under consideration can be obtained by taking derivatives, as follows:

Φ(n1 = 5, τ1, j1 = 1|n0 = 10, τ0, j0 = 1) = 1

5!
∂5Ψ (z, τ )

∂z5

∣
∣
∣
z=0

. (25)

When the system at initial time τ0 is in promoter state 2 rather than 1, we have to
switch the two components in the vector of Eqs. (22) and (23), use the entries of
this vector to determine �F , according to Eq. (24), and again apply Eq. (6a) for φ1

to obtain the generating function for the conditional probability Φ(n1 = 5, τ1, j1 =
1|n0 = 10, τ0, j0 = 2). And finally, to compute the conditional probabilities Φ(n1 =
5, τ1, j1 = 2|n0 = 10, τ0, j0), with j0 = 1 or 2, we proceed in the same way, the only
difference being that instead of using Eq. (6a) for φ1 we use Eq. (6b) for φ2.

From Eq. (14), the probability density for protein number is obtained as the limit

P(τ,m) = lim
L ,p→∞P(mτ (n0, . . . , n p−1)), (26)

where τq+1−τq → 0 as p → ∞ in such a way that the product p (τq+1−τq) remains
finite. The computational implementation of this limit is obtained by approximating
the probability density by a histogram.

Finally, to consider arbitrarily long times, we take advantage of the fact that Eq. (2)
is autonomous and hence its solutions have a composition property, namely:

mτ,τ = id, mτ,τ ′ ◦ mτ ′,τ ′′ = mτ,τ ′′ . (27)

These formulas are obtained from the general solution of the initial value problem
with m(τ ′) = mτ ′ (τ ′ < τ ),

mτ,τ ′ = mτ ′ e−α(τ−τ ′) + β

∫ τ

τ ′
nτ ′′ e−α(τ−τ ′′)dτ,′′ (28)

which defines a family of transformations acting on the set of initial conditions. By
iteration, it follows that the solution may be written as mτ = mτp,τp−1 ◦ · · · ◦ mτ1,τ0 ,
where {τ0 = 0, . . . , τp = τ } is any subdivision of the time interval [0, τ ] and each
mτq+1,τq is given byEq. (28), with the initial conditionm(τq) = mτq having probability
density P(τq ,m), for q = 0, . . . , p − 1.
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Protein Synthesis Driven by Dynamical Stochastic… 119

4 Moments of mRNA Number and Protein Number Distribution

The time-dependent mRNA moments can be obtained directly from the solutions of
Eq. (5) given in Eq. (6), by transforming back to the original (z, τ ) variables and taking
derivatives of these generating functions with respect to the variable z at z = 1:

〈n(r)
τ 〉 j =

(

z
∂

∂z

)r
φ j (z, τ )

∣
∣
∣
z=1

( j = 1, 2). (29)

Alternatively, we can view each of these moments as the solution of its own system
of ordinary differential equations, obtained by applying the operator (z ∂/∂z)r |z=1
directly to the system of partial differential equations (3), rather than its solutions.
This is the procedure we shall adopt in what follows, for the first two moments.

As a preliminary step, we note that taking r = 0 [which amounts to simply evalu-
ating Eq. (3) at z = 1] gives, for the promoter state occupancy probabilities

π j (τ ) =
∑

n≥0

φ
j
n (τ ) = φ j (τ, z = 1) ( j = 1, 2), (30)

the following system of differential equations,

d

dτ
π1 = − εp2 π1 + εp1 π2,

d

dτ
π2 = εp2 π1 − εp1 π2.

(31)

Its solution is immediate,

π1(τ ) = p1 + (π1(0) − p1) e−ετ ,

π2(τ ) = p2 + (π2(0) − p2) e−ετ ,
(32)

provided we take into account that p1 + p2 = 1: this will imply that the constraint
π1(τ ) + π2(τ ) = 1 is conserved (it holds for all τ provided it holds for the initial
condition, i.e., for τ = 0) and allow us to interpret the coefficients p j as the asymptotic
promoter state occupancy probabilities:

p j = lim
τ→∞ π j (τ ) ( j = 1, 2). (33)

4.1 Mean Values

Considering the case r = 1, we apply the operator (z ∂/∂z) to Eq. (3) and evaluate at
z = 1 to obtain, for the mean partial mRNA numbers

〈n(1)
τ 〉 j =

∑

n≥0

n φ
j
n (τ ) =

(
z

∂

∂z

)
φ j (z, τ )

∣
∣
∣
z=1

( j = 1, 2), (34)
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the following system of differential equations,

d

dτ
〈n(1)

τ 〉1 = −(1 + εp2)〈n(1)
τ 〉1 + εp1〈n(1)

τ 〉2 + N1π1(τ ),

d

dτ
〈n(1)

τ 〉2 = −(1 + εp1)〈n(1)
τ 〉2 + εp2〈n(1)

τ 〉1 + N2π2(τ ).
(35)

The corresponding differential equation for the mean total mRNA number

〈n(1)
τ 〉 = 〈n(1)

τ 〉1 + 〈n(1)
τ 〉2 (36)

is obtained by summing over j :

d

dτ
〈n(1)

τ 〉 = −〈n(1)
τ 〉 + N1π1(τ ) + N2π2(τ ). (37)

Note that we can solve this equation without having to solve the full system (35).
Namely, introducing the constants

N̄ = N1 p1 + N2 p2, ΔN = N1 − N2, (38)

we get from Eq. (32)

N1π1(τ ) + N2π2(τ ) = N̄ + ΔN (π1(0) − p1) e
−ετ ,

and this can be used to integrate Eq. (37), after putting it in the form

e−τ d

dτ

(
eτ 〈n(1)

τ 〉) = N1π1(τ ) + N2π2(τ ).

The solution is

〈n(1)
τ 〉 = N̄ +

(
〈n(1)

0 〉 − N̄
)
e−τ + ΔN

1 − ε

(
π1(0) − p1

)(
e−ετ − e−τ

)
, (39)

with the asymptotic value

〈n(1)∞ 〉 = lim
τ→∞〈n(1)

τ 〉 = N̄ . (40)

For later use, we record here the complete solution of the system (35) because it will
be needed at the next stage; it reads

〈n(1)
τ 〉1 = 〈n(1)∞ 〉1 + ε ΔN p1(π1(0) − p1)

1 − ε
e−τ

+ [ε(ΔN p1 − N1) + N1](π1(0) − p1)

1 − ε
e−ετ

− ε ΔN (π1(0) − p1)(π2(0) − p1)

1 + ε
e−(1+ε)τ

(41)
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for the partial mean value when the gene is in the state 1, and

〈n(1)
τ 〉2 = 〈n(1)∞ 〉2 + ε ΔN p2(π1(0)− p1)

1 − ε
e−τ

− [ε(ΔN p1 − N1) + N2](π1(0) − p1)

1 − ε
e−ετ

+ ε ΔN (π1(0) − p1)(π2(0) − p1)

1 + ε
e−(1+ε)τ

(42)

for the partial mean value when the gene is in the state 2, with the asymptotic values

〈n(1)∞ 〉1 = N1 p1 + εN2 p2
1 + ε

, 〈n(1)∞ 〉2 = N2 p2 + εN1 p1
1 + ε

. (43)

The ordinary differential equation governing the mean protein number density is
obtained by averaging Eq. (2) which, in terms of the rescaled variables, gives

d

dτ
〈mτ 〉 = −α 〈mτ 〉 + β 〈n(1)

τ 〉. (44)

The solution of this equation is as in Eq. (9):

〈mτ 〉 = 〈m0〉 e−ατ + β e−ατ

∫ τ

0
〈n(1)

τ ′ 〉 eατ ′
dτ ′. (45)

Using Eqs. (39) and (45), we integrate this to find

〈mτ 〉 = 〈m0〉 e−ατ + N̄
β

α
(1 − e−ατ ) + β

(
〈n(1)

0 〉 − N̄
) (

e−τ − e−ατ

α − 1

)

+ ΔN
β

1 − ε
(π1(0) − p1)

(
e−ετ − e−ατ

α − ε
− e−τ − e−ατ

α − 1

)

.

(46)

with the asymptotic value

〈m∞〉 = lim
τ→∞〈mτ 〉 = N̄

β

α
. (47)

4.2 Variance

Passing to the case r = 2, we apply the operator (z ∂/∂z) to Eq. (3) twice and evaluate
at z = 1 to obtain, for the partial second moments

〈n(2)
τ 〉 j =

∑

n≥0

n2 φ
j
n (τ ) =

(
z

∂

∂z

)2
φ j (z, τ )

∣
∣
∣
z=1

( j = 1, 2), (48)
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the following system of ordinary differential equations,

d

dτ
〈n(2)

τ 〉1 = − 2〈n(2)
τ 〉1 + (2N1 + 1 − εp2)〈n(1)

τ 〉1 + εp1〈n(1)
τ 〉2 + N1π1(τ ),

d

dτ
〈n(2)

τ 〉2 = − 2〈n(2)
τ 〉2 + (2N2 + 1 − εp1)〈n(1)

τ 〉2 + εp2〈n(1)
τ 〉1 + N2π2(τ ).

(49)

The corresponding differential equation for the total second moment

〈n(2)
τ 〉 = 〈n(2)

τ 〉1 + 〈n(2)
τ 〉2 (50)

is obtained by summing over j :

d

dτ
〈n(2)

τ 〉 = − 2〈n(2)
τ 〉+ (2N1 + 1)〈n(1)

τ 〉1 + (2N2 + 1)〈n(1)
τ 〉2 + N1π1(τ )+ N2π2(τ ).

(51)
Equivalently, we can derive a differential equation directly for the variance

V (nτ ) = 〈n(2)
τ 〉 − 〈n(1)

τ 〉2 (52)

by using Eq. (37) to deduce that

d

dτ
〈n(1)

τ 〉2 = 2〈n(1)
τ 〉 d

dτ
〈n(1)

τ 〉 = −2〈n(1)
τ 〉2 + 2〈n(1)

τ 〉(N1π1(τ ) + N2π2(τ ))

and subtracting this result from Eq. (51) to arrive at

d

dτ
V (nτ ) = − 2V (nτ ) + 〈n(1)

τ 〉[1 − 2(N1π1(τ ) + N2π2(τ ))]
+ 2N1〈n(1)

τ 〉1 + 2N2〈n(1)
τ 〉2 + N1π1(τ ) + N2π2(τ ).

(53)

Again, we can solve Eqs. (51) and (53) without having to solve the full system (49),
but here we now need the full solution of the system (35), Eqs. (41) and (42). For the
variance, this solution has the following structure:

V (nτ ) = A1 + B1e
−τ + C1e

−2τ + D1e
−ετ + E1e

−(1+ε)τ + F1e
−2ετ , (54)

with coefficients given by:

A1 = N̄ + (ΔN )2 p1(1 − p1)

1 + ε
,

B1 = − ε ΔN (π1(0) − p1)

1 − ε
,

C1 = − ε (ΔN )2 (π1(0) − p1) [2π1(0) − ε(π1(0) − p2) − 1]
(1 − ε)2(2 − ε)

,

D1 = ΔN (π1(0) − p1)

[
1

1 − ε
+ 2ΔN (1 − 2p1)

2 − ε

]

,

123

Author's personal copy



Protein Synthesis Driven by Dynamical Stochastic… 123

E1 = 2 ε (ΔN )2 (π1(0) − p1) [2π1(0) − ε(1 − 2p1) − 1]
(1 + ε)(1 − ε)2

,

F1 = − (ΔN )2 (π1(0) − p1)2

(1 − ε)2
. (55)

Our final goal will be to analyze the variance of the protein number density,

V (mτ ) = 〈m2
τ 〉 − 〈mτ 〉2. (56)

Using the solution for 〈mτ 〉 in its integral representation, Eq. (45), the expression for
〈mτ 〉2 is

〈mτ 〉2 = 〈m0〉2 e−2ατ + 2β e−2ατ

∫ τ

0
〈m0〉〈n(1)

τ ′ 〉 eατ ′
dτ ′

+ β2e−2ατ

∫ τ

0

∫ τ

0
〈n(1)

τ ′ 〉〈n(1)
τ ′′ 〉 eα(τ ′+τ ′′)dτ ′dτ.′′

(57)

The expression for 〈m2
τ 〉 is obtained by first squaring Eq. (9) and then averaging,

leading to:

〈m2
τ 〉 = 〈m2

0〉 e−2ατ + 2β e−ατ

∫ τ

0
〈m0 nτ ′ 〉 eατ ′

dτ ′

+ β2e−2ατ

∫ τ

0

∫ τ

0
〈nτ ′nτ ′′ 〉 eα(τ ′+τ ′′)dτ ′dτ.′′

(58)

With these expressions at hand and in view of the fact that 〈m0nτ 〉 = 〈m0〉〈n(1)
τ 〉, which

means that the initial condition m0 for protein number is independent of the mRNA
process nτ , we arrive at an explicit expression for the variance of protein number:

V (mτ ) = e−2ατ

⎡

⎢
⎢
⎢
⎣
V (m0) + β2

∫ τ

0

∫ τ

0
eα(s+s′)(〈nsns′ 〉 − 〈n(1)

s 〉〈n(1)
s′ 〉) ds ds′

︸ ︷︷ ︸
Iτ

⎤

⎥
⎥
⎥
⎦

,

(59)
where 〈nsns′ 〉 is the mRNA correlation function. Using the tower property of the
conditional expectation and the Markov property of the solution of the ME, we get,
for s > s′

〈nsns′ 〉 =
∑

n′

∑

n

∑

j

n n′ Φ j (n′, s′; n, s)

=
∑

n′, j ′
n′

⎡

⎣
∑

n, j

n Φ(n, s, j |n′, s′, j ′)

⎤

⎦ φ
j ′
n′ (s′)

=
∑

n′, j ′
n′ 〈n(1)

s−s′ 〉n′, j ′ φ
j ′
n′ (s′),

(60)

where the φ
j ′
n′ (s′) are the components of the solution of the master equations at time

s′, the Φ(n, s, j |n′, s′, j ′) are the conditional probabilities as in Eq. (16) with p = 2,
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and 〈n(1)
s−s′ 〉n′, j ′ = ∑

n≥0 n Φ(n, s, j |n′, s′, j ′) is the mean mRNA number at time s
starting out with n′ mRNA molecules and in promoter state j ′ at time s′. Now the
latter is obtained directly by adapting Eq. (39) to this shifted initial time and these
initial conditions, resulting in

〈n(1)
s−s′ 〉n′, j ′ = N̄+(n′−N̄ ) e−(s−s′)+ ΔN

1 − ε
(δ j ′,1−p1)

(
e−ε(s−s′) − e−(s−s′)

)
, (61)

where δ is the Kronecker symbol (δ j ′, j=1 when j ′ = j and δ j ′, j = 0 when j ′ �= j).
From Eqs. (60) and (61), it follows that, for s > s′,

〈nsns′ 〉 − 〈n(1)
s 〉〈n(1)

s′ 〉
= V (ns′) e

−(s−s′) + ΔN

1 − ε

(〈n(1)
s′ 〉1 − π1(s

′)〈n(1)
s′ 〉) (e−ε(s−s′) − e−(s−s′)).

(62)

From Eqs. (32), (39) and (41), it follows that the quantity 〈n(1)
s 〉1 − π1(s)〈n(1)

s 〉 has
the structure:

〈n(1)
s 〉1 − π1(s)〈n(1)

s 〉 = A2 + B2e
−εs + C2e

−(1+ε)s + D2e
−2εs, (63)

with coefficients:

A2 = ΔN p1(1 − p1)

1 + ε
,

B2 = ΔN (1 − 2p1)(π1(0) − p1),

C2 = ε ΔN [2π1(0) + ε(1 − 2p1) − 1] (π1(0) − p1)

(1 + ε)(1 − ε)
,

D2 = − ΔN (π1(0) − p1)2

1 − ε
. (64)

Using (62),(54),(63), we find, for s > s′

〈nsns′ 〉 − 〈n(1)
s 〉〈n(1)

s′ 〉 =
∑

i

Ki e
ci s+di s′ , (65)

and similarly, for s′ > s,

〈nsns′ 〉 − 〈n(1)
s 〉〈n(1)

s′ 〉 =
∑

i

Ki e
ci s′+di s, (66)

with coefficients Ki , ci , di given in Table 1.
Putting everything together, we are now in a position to evaluate the integral Iτ in
Eq. (59): it has the form
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Table 1 Coefficients in
Eqs. (65) and (66)

i ci di Ki

1 −1 1 A1 − A2ΔN/(1 − ε)

2 −ε ε A2ΔN/(1 − ε)

3 −1 0 B1
4 −1 −1 C1

5 −1 1 − ε D1 − B2ΔN/(1 − ε)

6 −1 −ε E1 − C2ΔN/(1 − ε)

7 −ε 0 B2ΔN/(1 − ε)

8 −ε −1 C2ΔN/(1 − ε)

9 −ε −ε D2ΔN/(1 − ε)

10 −1 1 − 2ε F1 − D2ΔN/(1 − ε)

Iτ =
∑

i

Ki

∫ τ

0

(∫ τ

s′
eci s

′+di s eα(s+s′)ds

)

ds′

+
∑

i

Ki

∫ τ

0

(∫ τ

s
eci s+di s′ eα(s+s′)ds′

)

ds,

(67)

so evaluating these integrals we get

Iτ =
∑

i

[
2Ki e(2α+ci+di )τ

(α + di )(2α + ci + di )
− 2Ki e(α+ci )τ

(α + ci )(α + di )
+ 2Ki

(α + ci )(2α + ci + di )

]

.

(68)
This gives us our final result for the protein number density variance:

V (mτ ) = V (m0)e
−2ατ +

∑

i

2β2Ki e(ci+di )τ

(α + di )(2α + ci + di )

−
∑

i

2β2Ki e(ci−α)τ

(α + ci )(α + di )
+

∑

i

2β2Ki e−2ατ

(α + ci )(2α + ci + di )
,

(69)

with asymptotic value

lim
τ→∞ V (mτ ) = β2

α

∑

ci+di=0

Ki

α + di

= β2

α

[
A1

α + 1
+ A2 ΔN

1 − ε

(
1

α + ε
− 1

α + 1

)]

= β2

α(α + 1)

[

N̄ + (ΔN )2
(α + ε + 1) p1(1 − p1)

(α + ε)(ε + 1)

]

.

(70)

The expression (70) can be compared to the steady-state protein number variance
obtained from the completely discrete protein expression model in Innocentini and
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Hornos (2007). In that model, the protein copy number is treated as a discrete variable,
whereas in the present model it is a continuous variable (density). Consequently, we
expect to lose the contribution to the total variance that stems from discreteness of
the protein birth-and-death process. And indeed, the term 〈m∞〉 = N̄ β

α
present in

the steady-state variance, as computed in Innocentini and Hornos (2007), is missing
from our expression (70). This term corresponds to the Poissonian component added
to the protein variance by the discrete stochastic protein production and degradation
processes. The hybrid model studied here is a good approximation of the full discrete
model studied in Innocentini and Hornos (2007) when the neglected term is much
smaller than the remaining terms in the variance. Considering the worst case, p1 = 0
or p1 = 1, when the switching contribution to the variance vanishes, we obtain the
condition

N̄
β

α
� N̄

β2

α(α + 1)

which can be simplified to:
α + 1 � β. (71)

If the estimate (71) is satisfied then we can consider that the protein density follows
an RDE [Eq. (2)] without losing accuracy of the steady-state variance. Let us recall
that α stands for the mRNA to protein lifetime ratio and β for the average number
of protein molecules produced by an mRNA molecule during its lifetime. In fact,
the estimate (71) means that protein production should be efficient: one mRNA must
produce several proteins. This is natural because the Kramers-Moyal expansion of the
ME, which will lead to an RDE for protein population, works if the protein numbers
are large compared to the mRNA numbers (Crudu et al. 2009, 2012).

5 Results

Following the approach discussed above, we have calculated the time-dependent
probability distributions for mRNA molecules and protein density. More precisely,
the dynamics of the probability distribution for the mRNA population is obtained by
applying Eq. (4) to the exact solution of the master equations (6), written in terms of
the original variables t and z. From that, we can compute, at each instant of time τ , the
push-forward measure under the mapping given by Eq. (11), as defined by Eq. (14).

The result of this calculation is an ensemble of protein density values with their
corresponding probabilities, {(mk

τ ,P(mk
τ )) : k = 1, . . . , (L + 1)p}. Graphically, such

ensembles will be represented by histograms where the probabilities are summed
up within each bin. More precisely, if we fix a bin size and group together all mk

τ

belonging to the same bin, the probability assigned to that bin is simply the sum of all
the probabilities P(mk

τ ) corresponding to the mk
τ in that bin.

In order to estimate the accuracy of our method, we compare the distributions
obtained by our formalism with those from a Monte Carlo (MC) simulation of the
model. We have used the MC simulation to generate trajectories of the mRNA process
nτ . Namely, let the τq be the random times when the birth-and-death process for
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Fig. 1 (Colour figure online) mRNA dynamics in slow (ε = 0.1) and fast (ε = 5) switch regimes.
Remaining parameters: N1 = 5, N2 = 0.5, p1 = 1, p2 = 0

mRNAmolecules produces a change from nτ to nτ ±1. Then, Eq. (11) can be used to
directly compute samples of the protein process mτ . Note that this makes our hybrid
model much easier to simulate than the full discrete mRNA/protein model, since we
avoid the separate simulation of the protein process, which is computationally costly.

As an example of our results, we exhibit in Fig. 1 the time evolution for the
probability distribution of the mRNA population, its mean value and variance. In
all cases, we have used as initial mRNA configuration the generating function
φ(μ) = exp(N2μ), representing the gene with probability one in the off state, that is,
the initial mRNA number follows a Poisson distribution with mean equal to N2. On
the other hand, the occupancy probabilities have been chosen as p1 = 1, p2 = 0, so as
to produce a final equilibrium state which represents the gene in full activity and with
mRNA number following a Poisson distribution with mean equal to N1. Concerning
the switching parameter ε, we have selected two values: ε = 5 representing the “fast
switch regime” and ε = 0.1 representing the “slow switch regime.” Specifically, in
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Fig. 2 (Colour figure online) Dynamical evolution of protein probability density in slow switch (ε = 0.1)
in a and fast switch (ε = 5) in b, and comparison with MC simulation. Remaining parameters: N1 = 5,
N2 = 0.5, p1 = 1, p2 = 0, α = 1/9, β = 10

Fig. 3 (Colour figure online) Dynamical evolution of protein mean value and variance. Slow switch (ε =
0.1) in a and fast switch (ε = 5) in b. Remaining parameters: N1 = 5, N2 = 0.5, p1 = 1, p2 = 0, α = 1/9,
β = 10

Fig. 2 we exhibit, for the two switch regimes, a direct comparison between the dis-
tributions obtained by our method (green histograms) and those from MC simulation
(red curves), and finally, in Fig. 3 we show the mean value and variance of the protein
distribution, comparing the analytical formulas presented in Sect. 4 with the results of
a direct simulation of the model.

The transient behavior of mRNA in the slow switch regime has a two-peak
distribution, whereas otherwise it is unimodal (see Fig. 1, top). The same feature is
present in the protein probability density (see Fig. 2). The bimodality is accompanied
by an increase in the noise in the transient time, captured in the overshoots of Fig. 1,
bottom right, and Fig. 3a. This phenomenon disappears in the fast switch regime, in
accordance with the fact that increasing the gene switch parameter decreases the stan-
dard deviation in mRNA production, which is a well-known effect (Innocentini and
Hornos 2007; Innocentini et al. 2013).
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6 Discussion and Conclusion

The hybrid model presented here shows how to couple transcription and translation
providing a complete picture of the entire dynamical process, without any restrictions
on the parameter space. The randomness of protein synthesis due to the stochastic
nature of transcription is exhibited in the dynamical behavior of the protein probability
density. Themain result is a full time-dependent solution for the probability distribution
ofmRNAaswell as for the density probability for protein numbers—something that, to
the best of our knowledge, has never been achieved before. Moreover, the distributions
for protein number obtained by our method are in excellent agreement with those
derived from MC simulations, at highly reduced computational cost. But there is a
technical issue that must still be overcome. Namely, in order to improve the precision
of our method, we must use joint probabilities with many events overlapping in a
specific time interval (bigger values of p). This becomes difficult when the average
number of mRNA is large, because it will imply in a bigger value for the cutoff L and
thus increase the set of possible values for each nq , making the size of our sample
space, (L + 1)p, become unpractically large. Methods to bypass this difficulty are
presently under investigation.

It is worth mentioning that pure random differential equation (RDE) models—
where the processes of mRNA production and of protein production are treated on
equal footing, using random differential equations for both—have been introduced
in Lipniacki et al. (2006) for the continuous time case and in Ferreira et al. (2009,
2013) for the discrete time case. Similarly, pure master equations (ME) models—
where the processes of mRNA production and of protein production are also treated
on equal footing, but using master euations for both—have been discussed in the
literature before; see, for instance (Innocentini and Hornos 2007; Shahrezaei and
Swain 2008). Both of these approaches are highly interesting and logically perfectly
consistent, but a closer look reveals some drawbacks. On the one hand, using pureRDE
models means that mRNA is represented by a continuous random variable, which is
problematic since the number of mRNA molecules is small, of the order of a few
dozen per gene. On the other hand, pure ME models are hard to solve explicitly and
one has to resort to simulations or appeal to some approximation scheme in order to
simplify the equations and then find expressions for the protein distribution (a discrete
probability distribution) that solve these simplified equations, rather than the original
ones.

Recent experiments allowing real-time observation of the expression of stochastic
protein synthesis in living Escherichia coli or Bacillus subtilis cells, with single mole-
cule sensitivity (Cai et al. 2006; Ferguson et al. 2012), have shown that information
about key parameters of protein expression can be extracted from the steady-state
distribution. Furthermore, measurements of protein concentration can be integrated
with mRNA tagging techniques, such as MS2, that monitor mRNA production. The
model discussed here can be used to extract quantitative information on transcription
and translation processes frommeasured mRNA and protein distributions. In addition,
the ability to compute the shape of the protein distribution may be used to improve
the understanding of stochasticity in biological decision-making processes.
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Future research will also be dedicated to developing the model to include other
phenomenological aspects of gene expression. One modification consists in allowing
the protein synthesis/degradation rates to be randomvariables, thus taking into account
the inherent noise due to the translational process. The model can also be extended to
study eukaryotes, which requires introducing a time-delay accounting for the transport
of mRNA from the nucleus to the cytoplasm. Another modification amounts to adding
a nonlinear term to theRDE, reflecting a decrease in protein number due to other effects
than just degradation, such as complex formation by dimerization: this will introduce
a bifurcation parameter and ultimately implement the observed multi-stability in the
steady state of protein population [the bifurcation theory for RDEs can be found
in Arnold (1998)]. In contrast to multi-stability, the multi-modality originating in the
controllingmechanismof protein synthesis, at the translational level, can be introduced
by allowing the parameter B (orβ) in Eq. (2) to be amatrix, turning theRDE for protein
density into a vector equation. The entries of thismatrixwill encode the different levels
of translational efficiency.

Finally, the model can be used as a building block for constructing mathemati-
cal models of gene regulatory networks. More concretely, the idea is to take several
copies of our model and couple them by allowing the binding/unbinding rates con-
trolling the on/off switch of any gene to become functions of the mean values of the
proteins expressed by the other genes. Traditionally, this coupling is performed through
Hill type functions which convert protein densities into binding/unbinding rates. This
strategy is in accordance with the ubiquitous idea in physics that simple models serve
as building blocks for more complicated ones.
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