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Abstract We consider a general class of mathematical models for stochastic gene
expression where the transcription rate is allowed to depend on a promoter state vari-
able that can take an arbitrary (finite) number of values. We provide the solution of
the master equations in the stationary limit, based on a factorization of the stochastic
transition matrix that separates timescales and relative interaction strengths, and we
express its entries in terms of parameters that have a natural physical and/or biologi-
cal interpretation. The solution illustrates the capacity of multiple states promoters to
generate multimodal distributions of gene products, without the need for feedback.
Furthermore, using the example of a three states promoter operating at low, high, and
intermediate expression levels, we show that using multiple states operons will typi-
cally lead to a significant reduction of noise in the system. The underlying mechanism
is that a three-states promoter can change its level of expression from low to high by
passing through an intermediate state with a much smaller increase of fluctuations
than by means of a direct transition.
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1 Introduction

Modern molecular biology emphasizes the important role of gene networks in the
functioning of living organisms. The components of these networks are DNA and
mRNA sequences, as well as proteins, that interact and function together in co-
ordination. In particular, gene transcription is governed by the enzymatic action
of regulatory proteins, which can enhance or repress the production of mRNA
molecules (Monod and Jacob 1961). Moreover, it has been clear ever since the pi-
oneering theoretical work of Delbrück (1940) that in these processes, fluctuations
are unavoidable and in fact play a decisive role, not only because biochemical re-
actions occur on widely varying time scales but also, and more importantly, be-
cause at least some of the molecules involved come in small numbers. This expec-
tation has been confirmed experimentally using recent advances in fluorescence mi-
croscopy (Ozbudak et al. 2002; Cai et al. 2006; Raj et al. 2006; Elf et al. 2007;
Taniguchi et al. 2010; Ferguson et al. 2012), showing that this “gene expression
noise” is ubiquitous in both prokaryote and eukaryote biology and produces genetic
heterogeneity even from uniform initial conditions, e.g., in clone cell populations.
As a result, reliable control of biological functions requires gene networks to be
endowed with mechanisms not only for error correction but also for noise reduc-
tion.

In order to gain a better understanding of the role that noise plays in genetic net-
works, various mathematical models have been proposed. Some are based on nu-
merical simulations, taking into account the complete set of chemical reactions in-
volved in the process (Gillespie 1977; Arkin et al. 1998; McAdams and Arkin 1997,
1998; Goss and Peccoud 1998; Kierzek et al. 2001). Others use systems of differ-
ential equations for the concentrations of the molecules involved in the process,
where the noise is introduced via the Langevin mechanism (Gardner et al. 2000;
Hasty et al. 2000; Rao et al. 2002; Thattai and van Oudenaarden 2002). In a third
kind of models, often referred to as “microscopic models,” one considers the num-
ber of each type of molecule as a discrete random variable and establishes a set of
master equations for their probability distributions (Paulsson and Ehrenberg 2000;
Thattai and van Oudenaarden 2001; Metzler and Wolynes 2002).

Whatever the approach chosen, all information about the system, including that
about gene expression noise, is contained in the probability distributions of the gene
network variables. Clearly, for computational as well as experimental reasons, it is
often easier to analyze just their first two moments. However, in many situations,
knowing only the mean value and the standard deviation is insufficient to charac-
terize them. A notable situation of this type is multimodality, where the probability
distribution of gene expression has several maxima. Well-known sources of multi-
modality are positive feedback and multistationarity (see, for instance Huang 2009;
Satory et al. 2011 and references therein), but they are not the only ones. Indeed, in
what follows, we shall present another source of multimodality: one that can arise
without feedback.

The first step in the control of gene expression is at the level of transcription.
Gene transcription results from the interaction between regulatory proteins (tran-
scription factors, repressors, activators) and specific regions on the DNA (promot-
ers and cis-regulatory elements such as enhancers, silencers and insulators). Clearly,
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treating the transcription regulatory system as a simple “on/off” process is an over-
simplification (Cases and de Lorenzo 2005; Vicente et al. 1999; Escolar et al. 1999);
a somewhat more realistic model should allow for a larger number of states, each
one with a different probability to initiate transcription (Sánchez and Kondev 2008;
Coulon et al. 2010; Saiz and Vilar 2008; Garcia and Phillips 2011; Kirkilionis et al.
2011). Moreover, the transcription system can switch stochastically between these
states. The multiplicity of discrete transcription states produces multimodal expres-
sion distributions, provided that the sojourn time of the system in each of these states
is larger than, or of the same order of magnitude as, the time needed for the gene
expression to reach equilibrium.

In this paper, we propose a phenomenological model for stochastic gene expres-
sion from a promoter with multiple operational states, generalizing the binary mod-
els (Kepler and Elston 2001; Sasai and Wolynes 2003) where the gene switches
randomly between just an “on” state and an “off” state, characterized by the ab-
sence or presence of a repressor protein in the operator site. It is a microscopic
model in the sense mentioned above, based on a set of coupled master equations
to describe the stochastic dynamics of the system. Contrary to previous papers in-
troducing similar models and solving them numerically (Sánchez and Kondev 2008;
Coulon et al. 2010), we provide an explicit solution for the stationary version of the
master equations, in terms of recursion relations for the coefficients of an appropriate
power series expansion of that solution, allowing to compute these coefficients up to
arbitrary order.

An important property of multimodal gene expression that emerges from our anal-
ysis is that promoters with multimodal expression can adapt to changes in the envi-
ronment by a “mode exchange” strategy. In this strategy, the average expression is
changed by gradually shifting the bulk of the probability distribution from one mode
to another. The existence of intermediate states between the two states of extreme
transcription rates allows to perform this mode exchange with little or no increase of
the expression noise. By analogy, we may compare this strategy to gear changing in
a modern vehicle.

The organization of the paper is as follows. In Sect. 2, we introduce the master
equations for a three states model and explain the terms. In Sect. 3, we redefine the
parameter space in terms of biological quantities. In Sect. 4, we compute the probabil-
ity distribution, mean value, fluctuations, and Fano factor for the three states model.
In Sect. 5, we show how to formulate the model for an arbitrary number of operational
modes and how solutions are obtained in this scenario. Finally, Sect. 6 is dedicated to
discussion and conclusions.

2 The Model

In what follows, we show how to extend the model considered in Kepler and Elston
(2001), Sasai and Wolynes (2003) so as to accommodate three (rather than just two)
operational states of different transcriptional efficiencies. A biological paradigm of
this situation is the lac operon, responsible for the transport and metabolism of lactose
in Escherichia coli, as well as in many other bacteria (Monod and Jacob 1961; Muller-
Hill 1996). In this system, the availability of glucose inhibits the cAMP-CRP activator
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(catabolic repression), whereas the availability of lactose inhibits the LacI repressor.
Thus, when glucose is the only carbon source present in the cell, the operon has
the lowest level of transcription. When lactose is the only carbon source, the operon
transcribes abundantly in order to metabolize the available lactose. An intermediate
level of transcription occurs when both glucose and lactose are present in the cellular
medium. In general, we suppose that there are stochastic transitions between these
three states, with probabilities that are functions of the amounts of glucose and lactose
in the system. Although this model is still too simple to cope with all the details
of the lac operon behavior, it has the advantage of considering the possibility that
lac-induction, i.e., the switching from an “off” to an “on” state, can involve a third
state of intermediate transcriptional activity. Furthermore, catabolic repression is a
strategy to optimize carbon source utilization, widely employed by bacterial phyla.
It is therefore plausible that one can find many other examples of bacterial operons
with several states of transcriptional activity.

With this biological paradigm in mind, let us begin by introducing the stochastic
variable of our model, n, representing the number of mRNA molecules in the cell at
any given instant of time, t . Then we assign to each operational mode the probability
distributions φi

n(t), with i = 1,2,3 (corresponding to the active, intermediate and
basal states of the lac operon). Thus, φi

n(t) is the probability to find the system, at
time t , in the state i with n molecules of mRNA in the cell. The master equations, of
birth and death type, describing the evolution of these probability distributions are:

dφ1
n

dt
= k1

[
φ1

n−1 − φ1
n

] + ρ
[
(n + 1)φ1

n+1 − nφ1
n

]

− h1φ
1
n + h2ε2φ

2
n + h3(1 − ε3)φ

3
n,

dφ2
n

dt
= k2

[
φ2

n−1 − φ2
n

] + ρ
[
(n + 1)φ2

n+1 − nφ2
n

]

+ h1(1 − ε1)φ
1
n − h2φ

2
n + h3ε3φ

3
n,

dφ3
n

dt
= k3

[
φ3

n−1 − φ3
n

] + ρ
[
(n + 1)φ3

n+1 − nφ3
n

]

+ h1ε1φ
1
n + h2(1 − ε2)φ

2
n − h3φ

3
n.

(1)

Here, the parameters k1, k2 and k3 are the production rates of mRNA in each of the
states, which in general will be different from each other since we are interested in
processes involving states of different transcriptional activity, while ρ is the degra-
dation rate of mRNA molecules, which is assumed to be the same for all states. The
remaining parameters are the transition rates between the states and can be repre-
sented as follows:

φ1
n

h1(1−ε1)−⇀↽−
h2ε2

φ2
n, φ1

n

h1ε1−⇀↽−
h3(1−ε3)

φ3
n, φ2

n

h2(1−ε2)−⇀↽−
h3ε3

φ3
n,

with 0 ≤ hi < ∞ and 0 ≤ εi ≤ 1, for i = 1,2,3; see Fig. 1 for a schematic represen-
tation.
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Fig. 1 Schematic representation of the three states model

The master equations (1) are a system of differential-difference equations, which
are linear in n. Using the generating functions technique (van Kampen 1992), we can
transform it into a system of partial differential equations, setting

φ1(z, t) =
∞∑

n=0

φ1
n(t)zn, φ2(z, t) =

∞∑

n=0

φ2
n(t)zn, φ3(z, t) =

∞∑

n=0

φ3
n(t)zn,

(2)
where z is a complex variable belonging to the unitary disk, |z| ≤ 1. It reads:

∂φ1

∂t
= (z − 1)

[
k1φ

1 − ρ
∂φ1

∂z

]
− h1φ

1 + h2ε2φ
2 + h3(1 − ε3)φ

3,

∂φ2

∂t
= (z − 1)

[
k2φ

2 − ρ
∂φ2

∂z

]
+ h1(1 − ε1)φ

1 − h2φ
2 + h3ε3φ

3,

∂φ3

∂t
= (z − 1)

[
k3φ

3 − ρ
∂φ3

∂z

]
+ h1ε1φ

1 + h2(1 − ε2)φ
2 − h3φ

3.

(3)

The original probability distributions can be recovered as derivatives of the generating
functions, evaluated at z = 0, as follows:

φ1
n(t) = 1

n!
∂nφ1(z, t)

∂zn

∣∣∣∣
z=0

,

φ2
n(t) = 1

n!
∂nφ2(z, t)

∂zn

∣∣∣∣
z=0

,

φ3
n(t) = 1

n!
∂nφ3(z, t)

∂zn

∣
∣∣∣
z=0

.

(4)
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Similarly, their moments are obtained as derivatives of the same generating functions,
but evaluated at z = 1:

〈
n1,j

〉
(t) =

(
z

∂

∂z

)j

φ1(z, t)

∣∣∣∣
z=1

=
∞∑

n=0

njφ1
n(t),

〈
n2,j

〉
(t) =

(
z

∂

∂z

)j

φ2(z, t)

∣∣∣∣
z=1

=
∞∑

n=0

njφ2
n(t),

〈
n3,j

〉
(t) =

(
z

∂

∂z

)j

φ3(z, t)

∣∣∣∣
z=1

=
∞∑

n=0

njφ3
n(t).

(5)

In this set of equations, the index j indicates the order of the moment considered and
the index i = 1,2,3 is the label of the state.

Before introducing the biological parameter space, which we postpone until the
next section, let us rewrite the master equations in vector and matrix notation. The
system (1) can be written as a unique vector equation,

dφn

dt
= K[φn−1 − φn] + ρ

[
(n + 1)φn+1 − nφn

] + Hφn, (6)

where φn(t) = (φ1
n(t), φ2

n(t), φ3
n(t))T (T denotes transpose). K and ρ are now dia-

gonal (3 × 3)-matrices, where the first contains the production rates of mRNA cor-
responding to each state of transcriptional efficiency, while ρ is proportional to the
identity matrix and contains the degradation rate of mRNA molecules. The matrix H

encodes the couplings between the states of the system and has the properties

H1j + H2j + H3j = 0, Hii ≤ 0, Hij ≥ 0 if i �= j. (7)

Explicitly,

H =
⎛

⎝
−h1 h2ε2 h3(1 − ε3)

h1(1 − ε1) −h2 h3ε3
h1ε1 h2(1 − ε2) −h3

⎞

⎠ . (8)

The master equations in vector notation can also be transformed into a system of
partial differential equations by introducing the vector generating function

φ(z, t) =
∞∑

n=0

φn(t)z
n. (9)

This leads to the system of partial differential equations

∂φ

∂t
= (z − 1)

[
Kφ − ρ

∂φ

∂z

]
+ Hφ. (10)
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The vector whose components are the probability distributions of each state is recov-
ered through derivatives according to

φn(t) = 1

n!
∂nφ(z, t)

∂zn

∣∣∣∣
z=0

, (11)

and the moments are obtained from

〈
nj

〉 =
(

z
∂

∂z

)j

φ(z, t)

∣∣∣∣
z=1

, (12)

where j is the order of the moment under consideration.

3 Biological Interpretation of the Parameters

The master equations of our model can be interpreted as describing a combination of
two types of stochastic processes (van Kampen 1992). The first governs the produc-
tion and the degradation of mRNA molecules, where the production is controlled by
the rates k1, k2, k3, and the degradation by the rate ρ, which is the same for all states.
The second is a telegraphic process ruling the possible transitions between the states
of the system. In what follows, we want to discuss the biological interpretation of the
various parameters.

The first set of parameters allowing for a direct biological interpretation are the
transcriptional efficiency parameters that govern the production-degradation process
of mRNA, defined as the ratios k1/ρ, k2/ρ, k3/ρ between the production rates and
the degradation rate. A large value of a certain ki/ρ, in comparison to a certain kj /ρ,
say, means that the state i is more efficient for mRNA production than the state j .
Typically, one will find in the cell dozens of mRNA molecules when the gene is in an
efficient state, but just a few or none when it is in an inefficient state.

The telegraphic process is controlled by the transition rates between the states and
these are independent of the random variable n. However, they do depend on intrinsic
properties of the gene, such as operator affinity to a specific regulatory protein, as
well as on extrinsic properties, such as the availability of regulatory proteins, for
instance. In order to decouple these two sources of dependence, we consider just the
“telegraphic part” of the model, obtained by averaging the master equations (1) over
the mRNA number n, or equivalently, by setting z = 1 in (3), resulting in:

dP1

dt
= − h1P1 + h2ε2P2 + h3(1 − ε3)P3,

dP2

dt
= h1(1 − ε1)P1 − h2P2 + h3ε3P3,

dP3

dt
= h1ε1P1 + h2(1 − ε2)P2 − h3P3,

(13)

where each of the time dependent functions Pi(t) = φi(z = 1, t) (with i = 1,2,3)
represents the occupancy probability to find the gene operating in the respective mode
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i, independently of the mRNA number n. Alternatively, we can obtain Eqs. (13) in
vector form by setting z = 1 in the system (10):

dP

dt
= HP , (14)

where P (t) = (P1(t),P2(t),P3(t))
T and H is the coupling matrix as given in Eq. (8).

The solution of (14) and a detailed description of the dynamical behavior of the mo-
ments and distributions of the model will be postponed to a second article, already
in preparation. Here, we shall explore the properties of the coupling matrix H and
reinterpret its parameters in terms of the biological quantities of the model. The deci-
sive feature that allows us to do so is that H can be factorized into the product of two
other matrices, namely

H = εh, (15)

where

ε =
⎛

⎝
−1 ε2 1 − ε3

1 − ε1 −1 ε3
ε1 1 − ε2 −1

⎞

⎠ (16)

and

h =
⎛

⎝
h1 0 0
0 h2 0
0 0 h3

⎞

⎠ . (17)

Inspection of this decomposition shows that the matrix ε describes the structure and
intensity of the couplings in the system under consideration, while the matrix h con-
tains the information about the occupancy of each state.

Indeed, the entries of the matrix ε will define which state is connected to which
and how strong the coupling between them is. For instance, if ε1 = 1, state 1 will be
strongly coupled to state 3, but will not affect state 2; however, state 2 may affect
state 1, depending on the value of ε2. In the limit where all εi are zero, the coupling is
cyclic (1 → 2 → 3 → 1), when all εi are one it is anticyclic (1 → 3 → 2 → 1), and
if all εi are equal to 1/2 all states are coupled symmetrically and with equal intensity.

To clarify the interpretation of the matrix h, let us write its entries in terms of
the asymptotic occupancy probabilities pi = limt→∞ Pi(t). As is well known, the
general solution of the system (14) has the form

P (t) = exp(tH)P (0), (18)

where exp is the matrix exponential, which is defined by the usual power series ex-
pansion

exp(tH) =
∞∑

n=0

(tH)n

n! . (19)
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In particular, when the initial condition is an eigenvector of H , with eigenvalue λ,
say, i.e.,

HP λ(0) = λP λ(0), (20)

the solution becomes

P λ(t) = exp(λt)P λ(0). (21)

However, this special type of solution is in general not compatible with the require-
ment that the total probability should be equal to 1, i.e., that

P1(t) + P2(t) + P3(t) = 1 for all t , (22)

except when λ = 0, in which case the solution is constant. Therefore, the information
about the asymptotic state(s) is encoded in the eigenspace corresponding to the zero
eigenvalue, or kernel, of the matrix H : note that the properties of H , as specified in
Eq. (7), guarantee that this kernel is nontrivial. In fact, explicit calculation shows that
H annihilates the vector

q =
⎛

⎝
q1
q2
q3

⎞

⎠ =
⎛

⎝
h3h2δ1
h1h3δ2
h2h1δ3

⎞

⎠ , (23)

where the δi are the diagonal elements of the cofactor matrix of the matrix ε (δi =
Cii(ε) for i = 1,2,3); explicitly:

δ1 = 1 − ε3 + ε3ε2,

δ2 = 1 − ε1 + ε1ε3,

δ3 = 1 − ε2 + ε2ε1.

(24)

It may be interesting to observe that the components of the vector q are precisely
the diagonal elements of the cofactor matrix of the entire matrix H (qi = Cii(H)

for i = 1,2,3). When properly normalized, the vector q provides the asymptotic
occupancy probability vector

p =
⎛

⎝
p1
p2
p3

⎞

⎠ =
⎛

⎝
q1/q

q2/q

q3/q

⎞

⎠ , (25)

where the scalar q is the product of the vector q with the left eigenvector uT =
(1,1,1) of H corresponding to the zero eigenvalue (uT H = 0), given by

q = uT q = q1 + q2 + q3 = h3h2δ1 + h1h3δ2 + h2h1δ3. (26)

Since the matrix h has three entries and the asymptotic occupancy probabilities pi ,
being subject to the constraint

p1 + p2 + p3 = 1, (27)
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contain only two free parameters, it is clear that we need one more parameter, which
allows for a biological interpretation. This parameter will be the trace of h, or (up to
a sign) of H , which we shall denote by Σ :

Σ = h1 + h2 + h3. (28)

Moreover, we introduce the quantity

Δ = δ1p2p3 + p1δ2p3 + p1p2δ3. (29)

Then an elementary algebraic calculation gives the following expressions for the en-
tries of the matrix h and for the scalar q:

h1 = Σδ1p2p3/Δ,

h2 = Σp1δ2p3/Δ, (30)

h3 = Σp1p2δ3/Δ,

q = Σ2δ1δ2δ3p1p2p3

Δ2
. (31)

In this way, the entries of the matrix h are expressed in terms of its trace Σ , in
terms of the parameters δ1, δ2, δ3 which, according to Eq. (24), are determined by the
entries of the matrix ε that encodes the couplings between the states, and in terms
of the parameters p1,p2,p3 which, as stated before, are the asymptotic occupancy
probabilities of each state. These asymptotic occupancy probabilities depend on the
environmental conditions and are classified as extrinsic properties. In the case of the
lac operon they are functions of the concentrations of glucose and lactose present in
the medium.

In order to discuss the meaning of the parameter Σ , consider the two nonzero
eigenvalues of the matrix H , which can be obtained by calculating its characteristic
polynomial: in terms of the parameters introduce above, the result is

χH (λ) = det(λ1 − H) = λ3 + Σλ2 + qλ, (32)

so that χH (λ) = λ(λ + λ+)(λ + λ−) with

λ± = 1

2

(
Σ ±

√
Σ2 − 4q

)
,

or explicitly

λ± = Σ

2

(
1 ±

√

1 − 4δ1δ2δ3p1p2p3

Δ2

)
. (33)

Denoting by

v± =
⎛

⎝
v±

1
v±

2
v±

3

⎞

⎠ (34)
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the corresponding (unnormalized) eigenvectors, determined uniquely up to some con-
stant factor by the condition that

Hv± = −λ±v±, (35)

we can write down the general solution (18) of the system (14) in the form

P (t) = p + exp
(−λ+t

)
v+ + exp

(−λ−t
)
v−. (36)

We shall refrain from writing out the components of the eigenvectors v± explicitly,
since the corresponding expressions are cumbersome and not particularly enlighten-
ing, mentioning only that the same argument as in the proof of Eq. (26) shows that
they sum up to zero:

v±
1 + v±

2 + v±
3 = 0. (37)

Together, Eqs. (27) and (37) guarantee that the condition (22) is satisfied.
From this analysis, we see that Σ is an important parameter governing the dy-

namics of the system. In fact, the model has two principal time scales: 1/ρ, the
average lifetime of an mRNA molecule, and 1/Σ , which by the definition of the
matrix H (see (8)) provides a typical timescale for the gene switch, i.e., the transition
between its different states of transcriptional activity. More precisely, when expressed
in purely numerical terms, it is the ratio Σ/ρ that measures the speed of switching,
as compared to the lifetime of an mRNA molecule, which serves as a reference scale.
For large values of this ratio, we say that the switch is fast, while for small values,
we say that it is slow. But to a certain extent, the adjectives “fast” and “slow” also
refer to the rate with which the probability distribution, averaged over the mRNA
number n, approaches its equilibrium configuration. Indeed, that rate is given by the
smallest positive eigenvalue of −H , i.e., by λ−, which according to (33) can take
any value between 0 and Σ/2: this means that the system’s approach to equilibrium
cannot occur on a shorter timescale than 1/Σ , but it may of course occur on a much
longer one.

We conclude this section by writing out the explicit form of the matrix H given
by (8), factorized according to Eq. (15), in terms of the biological parameters:

H = Σ

Δ

⎛

⎝
−1 ε2 (1 − ε3)

(1 − ε1) −1 ε3
ε1 (1 − ε2) −1

⎞

⎠

⎛

⎝
δ1p2p3 0 0

0 p1δ2p3 0
0 0 p1p2δ3

⎞

⎠ . (38)

4 Asymptotic Properties of the Model

In this section, we want to explore the master equations (3) for the generating func-
tions in a different direction: rather than evaluating them at z = 1 but retaining the
time dependence in order to obtain information about the time evolution of averages,
we shall study the asymptotic limit t → ∞ where we can neglect all time derivatives
but retain the z-dependence in order to obtain the stationary multi-modal probability
distributions and their moments.
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4.1 Solution of the Steady-State Limit of the Model

In the stationary limit where all time derivatives can be neglected, the master equa-
tions (3), written in vector and matrix notation as in Eq. (10), become

ρ(z − 1)
dφ

dz
= (z − 1)Kφ + Hφ, (39)

where now φ(z) = (φ1(z),φ2(z),φ3(z))T , H is the coupling matrix and K contains
in its diagonal the production rates of mRNA corresponding to each state of tran-
scriptional efficiency, as before. Performing a change of variables by introducing the
new variable w = z − 1, we obtain

ρw
dφ

dw
= wKφ + Hφ, (40)

which we can solve by means of a power series Ansatz

φ(w) =
∞∑

n=0

φnw
n. (41)

Indeed, substituting in Eq. (40) and collecting the terms, we arrive at the following
recursion relations:

Hφ0 = 0, φn = (nρ1 − H)−1Kφn−1 for n > 0. (42)

The first few terms can be computed explicitly. For example, φ0 is just the value
of φ(w) at w = 0, which is equal to the vector p = limt→∞ P (t) of asymptotic
occupancy probabilities already introduced in the previous section; note that this does
satisfy the first condition in Eq. (42), thus starting the recursion. Similarly, taking the
first two derivatives and using Eq. (12), we can express φ1 and φ2 in terms of the
moment vectors n1 and n2 to obtain

φ(w) = p + 〈
n1〉w + 1

2

(〈
n2〉 − 〈

n1〉)w2 + O
(
w3). (43)

The same goes for the higher order terms, so the power series expansion in the vari-
able w is just another form of the moment expansion of the asymptotic probability
distributions. Moreover, it is clear that the second condition in Eq. (42) completely
determines all coefficients φn in terms of p. To do so, it is convenient to find a more
explicit expression for the inverse of the matrix U = nρ1 − H : this can be done by
using the fact that any matrix U satisfies its own characteristic equation, i.e., we have

U3 − tr(U)U2 + (
C11(U) + C22(U) + C33(U)

)
U − det(U)1 = 0, (44)

where the Cii(U) are the diagonal elements of the cofactor matrix of the matrix U .
This formula implies that if det(U) �= 0, then U is invertible, and its inverse is

U−1 = 1

det(U)

(
U2 − tr(U)U + (

C11(U) + C22(U) + C33(U)
))

. (45)
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For H itself, Eq. (44) becomes H 3 + ΣH 2 + qH = 0, but since H is not invertible,
this does not imply H 2 + ΣH + q1 = 0; rather, it can be shown by a somewhat
tedious calculation, using Eqs. (8) and (23)–(28), that

H 2 = −ΣH − q(1 − P), (46)

where P denotes a matrix obtained by repeating the entries of the vector p along the
columns,

P =
⎛

⎝
p1 p1 p1
p2 p2 p2
p3 p3 p3

⎞

⎠ , (47)

so as to guarantee that HP = 0. Now taking U = nρ1 − H , we compute det(U) =
nρ(nρ + λ+)(nρ + λ−) = nρ(n2ρ2 + nρΣ + q), tr(U) = 3nρ + Σ and C11(U) +
C22(U) + C33(U) = 3n2ρ2 + 2nρΣ + q to obtain

(nρ1 − H)−1 = nρ(nρ + Σ)1 + qP + nρH

nρ
(
n2ρ2 + nρΣ + q

) . (48)

As a result, the recursion relation (42) assumes the form

φ0 = p, φn =
(

nρ(nρ + Σ)1 + qP + nρH

nρ
(
n2ρ2 + nρΣ + q

) K

)
φn−1 for n > 0. (49)

Thus, given the transcriptional efficiency parameters of the gene (entries of the ma-
trix K/ρ), the couplings between the states (entries of the matrix ε) and the asymp-
totic occupancy probabilities (components of the vector p), we use the recursion rela-
tion (49) to compute all the coefficients of the power series expansion of the function
φ(w) around w = 0 and, from that, the function φ(w) itself. Even after that has been
done, we must still substitute w by z − 1 and evaluate at z = 0, since the asymp-
totic probability distributions of the system are the coefficients of the power series
expansion of the function φ(z) around z = 0: more concretely, we may recall that the
coefficient of zn in this expansion is a vector whose ith component gives the proba-
bility to find the system in the ith state of transcriptional activity with n molecules
of mRNA in the cell. To perform this last step, we may either use the binomial ex-
pansion for (z − 1)n and collect the terms in powers of z or else apply Eq. (11) to
evaluate the derivatives at z = 0, which corresponds to w = −1. However, in contrast
to the asymptotic probability distributions themselves, their moments are much easier
to obtain, namely, directly from the original expansion around w = 0, as is already
evident from Eq. (12) and was used explicitly in the derivation of Eq. (43).

4.2 Multimodal Probability Distributions

In this subsection, we show numerical examples and graphical representations of
probability distributions calculated according to Eq. (49). In all cases that follow, the
transcriptional efficiency parameters follow the hierarchy k1 > k2 > k3; the numerical
values adopted being k1/ρ = 40, k2/ρ = 20 and k3/ρ = 5. The entries of the coupling
matrix ε were all set equal to 1/2, corresponding to a scheme where all states are
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Fig. 2 Behavior of the partial and total probability distributions in the regime of slow switch, Σ = 0.1,
with mRNA degradation time scale ρ = 1, transcriptional efficiency parameters k1 = 40, k2 = 20, k3 = 5
and couplings ε1 = ε2 = ε3 = 0.5. (a) p1 = p2 = p3 = 1/3. (b) p1 = 0.8, p2 = p3 = 0.1. (c) p2 = 0.8,
p1 = p3 = 0.1. (d) p3 = 0.8, p1 = p2 = 0.1

coupled symmetrically and with equal intensity. All calculations were performed for
two flexibility regimes of the gene, namely for slow switch (Σ = 0.1) and for fast
switch (Σ = 10), using four distinct asymptotic configurations, characterized by the
following occupancy probability vectors: p = (1/3,1/3,1/3)T , p = (0.8,0.1,0.1)T ,
p = (0.1,0.8,0.1)T , and p = (0.1,0.1,0.8)T .

In Fig. 2, we exhibit the probability distributions for each mode, φ1
n,φ2

n,φ3
n , as

well as the total one, φn = φ1
n + φ2

n + φ3
n , as functions of n, for the regime of slow

switch: Σ = 0.1. In the first panel, Fig. 2(a), the occupancy probabilities are all equal
(p1 = p2 = p3 = 1/3). Each operational mode shows a pronounced peak, which
leads to a three peaks structure for the total probability distribution, indicating that
the system is operating in all states to produce mRNA. In Fig. 2(b), the values of the
occupancy probabilities are p1 = 0.8 and p2 = p3 = 0.1. One can note a dominant
peak centered around n = 40 and two residual peaks around n ≈ 20 and n ≈ 5, in-
dicating that mRNA is produced predominantly in the state of maximum efficiency.
In Fig. 2(c), we have p2 = 0.8 and p1 = p3 = 0.1: here, the system is more likely to
be found producing in its intermediate state, as can be seen by noting the strong peak
around n = 20. Finally, in Fig. 2(d), we encounter the scenario of basal production,
with p3 = 0.8 and p1 = p2 = 0.1. In comparison, the differences in the behavior of
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Fig. 3 Behavior of the partial and total probability distributions in the regime of fast switch, Σ = 10,
with mRNA degradation time scale ρ = 1, transcriptional efficiency parameters k1 = 40, k2 = 20, k3 = 5
and couplings ε1 = ε2 = ε3 = 0.5. (a) p1 = p2 = p3 = 1/3. (b) p1 = 0.8, p2 = p3 = 0.1. (c) p2 = 0.8,
p1 = p3 = 0.1. (d) p3 = 0.8, p1 = p2 = 0.1

the occupancy probabilities as one passes from one panel to the other reveal a transi-
tion from a multi-peak probability distribution to a Poisson like structure. Obviously,
when multimodality predominates, the moments of the distribution commonly used
to describe the system in some approximation scheme, such as mean value and vari-
ance, are by themselves insufficient to describe the multi-peak structure.

In Fig. 3, we show the same probability distributions for the same values of the
parameters (transcriptional efficiency, couplings, and occupancy probabilities) as in
Fig. 2, except that we are now in the regime of fast switch: Σ = 10. Comparison
of the panels in Fig. 3 with the corresponding ones in Fig. 2 reveals that when the
ability of the gene to reach the equilibrium configuration is increased, the peaks of
the individual modes tend to decrease and to be dislocated toward a common mean. In
particular, comparing Fig. 3(a) with Fig. 2(a), we see that φ1

n is now centered around
n ≈ 28 ,and φ3

n is now centered around n ≈ 12, the first having been dislocated from
n ≈ 40 and the second from n ≈ 5; as a result, the pronounced three-peak structure of
the total probability distribution has completely disappeared. The remaining panels,
representing situations of predominance of one operational mode over the other two,
show similar but less pronounced effects.
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For extreme values of Σ , two principal consequences emerge. When Σ → 0, the
states decouple (this can be seen by inspection of the coupling matrix), while for
Σ → ∞, the effect is to diminish the fluctuations in the system, which drives all
probability distributions toward a Poisson like structure. In order to make this last
affirmation more precise, we pass to the next subsection, where we present the mo-
ments of the distributions in the stationary regime.

4.3 Mean Value and Noise

In this subsection, we shall derive explicit expressions for the first two moments of
the probability distributions: these can be inferred directly from the first three terms
of the power series expansion (41) of the generating function φ(w) at w = 0 (see
Eq. (43)), whose coefficients are determined by the recursion relation (49).

We start with the first moment vector 〈n1〉, given by

〈
n1〉 = dφ

dw

∣∣∣∣
w=0

= φ1,

or explicitly

〈
n1〉 = ρ(ρ + Σ)1 + qP + ρH

ρ(ρ2 + ρΣ + q)
Kp. (50)

We shall also call it the mean value vector because its components provide the mean
mRNA production in each operational mode of the system. It is the sum of three
terms: the first term is

ρ + Σ

ρ2 + ρΣ + q
Kp = ρ + Σ

ρ2 + ρΣ + q

⎛

⎝
k1p1
k2p2
k3p3

⎞

⎠ , (51)

the second term is

q

ρ(ρ2 + ρΣ + q)
PKp = q

ρ(ρ2 + ρΣ + q)
(k1p1 + k2p2 + k3p3)

⎛

⎝
p1
p2
p3

⎞

⎠ , (52)

and the third term is
1

ρ2 + ρΣ + q
HKp, (53)

which cannot be substantially simplified. What is more significant, however, is the to-
tal mean value 〈n1〉, since this is a quantity commonly measured in the experiments:
it is obtained by summing the components of the mean value vector 〈n1〉, or equiva-
lently, by taking its scalar product with the left eigenvector u = (1,1,1)T of the cou-
pling matrix H corresponding to the zero eigenvalue: 〈n1〉 = uT 〈n1〉. There is then
no contribution from the third term, and taking into account that p1 + p2 + p3 = 1,
we are left with the following final result:

〈
n1〉 = 1

ρ
(k1p1 + k2p2 + k3p3). (54)
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Clearly, this quantity is independent of the switch parameter Σ . However, the com-
ponents of the vector 〈n1〉 do depend on Σ . In particular, as was already observed in
the last section, the system behaves very differently when we go to the two extreme
values of Σ . When Σ → 0 (slow switch), the states decouple completely and the
mean values of the modes will be given by the components of the vector

lim
Σ→0

〈
n1〉 = 1

ρ

⎛

⎝
k1p1
k2p2
k3p3

⎞

⎠ . (55)

On the other hand, when Σ → ∞ (fast switch), they will be given by the components
of the vector

lim
Σ→∞

〈
n1〉 = 〈n1〉

ρ

⎛

⎝
p1
p2
p3

⎞

⎠ . (56)

Passing to the second moment vector 〈n2〉, we have

φ2 = 1

2

d2φ

dw2

∣∣
∣∣
w=0

= 1

2

(〈
n2〉 − 〈

n1〉).

Taking into account that φ1 = 〈n1〉, this can be solved to give
〈
n2〉 = 2φ2 + φ1,

Again, we are mainly interested in the total second moment 〈n2〉, which is the sum of
the components of the second moment vector 〈n2〉, or equivalently, 〈n2〉 = uT 〈n2〉,
since this determines the total variance σ 2 of the system, defined as

σ 2 = 〈
n2〉 − 〈

n1〉2. (57)

Thus,
〈
n2〉 = 2uT φ2 + uT φ1. (58)

The second term in this expression is the total mean value 〈n1〉, which has already
been calculated, whereas using the fact that uT P = uT (which follows from the con-
dition p1 + p2 + p3 = 1) and uT H = 0, we see that the first term becomes

2uT φ2 = uT 2ρ(2ρ + Σ)1 + qP + 2ρH

ρ
(
4ρ2 + 2ρΣ + q

) Kφ1 = 1

ρ
uT Kφ1. (59)

Inserting the expression (50) for φ1 = 〈n1〉, we get

1

ρ
uT Kφ1 = uT K

ρ(ρ + Σ)1 + qP + ρH

ρ2
(
ρ2 + ρΣ + q

) Kp. (60)

Once again, this is the sum of three terms: the first term is

ρ + Σ

ρ(ρ2 + ρΣ + q)
uT K2p = ρ + Σ

ρ(ρ2 + ρΣ + q)

(
k2

1p1 + k2
2p2 + k2

3p3
)
, (61)
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the second term is

q

ρ2(ρ2 + ρΣ + q)
uT KPKp = q〈n1〉2

ρ2 + ρΣ + q
, (62)

and the third term is a rather complicated expression involving the coupling matrix
H , which no longer vanishes. To calculate it, we use the product decomposition (15)
and Eq. (30) to rewrite H in the form

H = Σ

Δ
εδπ (63)

where δ and π are diagonal matrices defined by

δ =
⎛

⎝
δ1 0 0
0 δ2 0
0 0 δ3

⎞

⎠ , π =
⎛

⎝
p2p3 0 0

0 p1p3 0
0 0 p1p2

⎞

⎠ . (64)

We also set

k =
⎛

⎝
k1
k2
k3

⎞

⎠ , (65)

so that

uT K = kT , πKp = p1p2p3k, (66)

and hence the third term referred to above becomes

1

ρ(ρ2 + ρΣ + q)
uT KHKp = 1

ρ(ρ2 + ρΣ + q)

Σ

Δ
p1p2p3k

T εδk, (67)

with the scalar product

kT εδk = −δ1k
2
1 − δ2k

2
2 − δ3k

2
3 + Γ 3

1,2k1k2 + Γ 2
1,3k1k3 + Γ 1

2,3k2k3, (68)

where the Γ -coefficients can be expressed entirely in terms of linear combinations of
the δ’s:

Γ 3
1,2 = δ1 + δ2 − δ3,

Γ 2
1,3 = δ1 + δ3 − δ2,

Γ 1
2,3 = δ2 + δ3 − δ1.

(69)

Putting everything together, we arrive at the following formula for the total variance
in terms of the biological parameters of the system:

σ 2 = 〈
n1〉 + ρ + Σ

ρ(ρ2 + ρΣ + q)

[(
k2

1p1 + k2
2p2 + k2

3p3
)

− (k1p1 + k2p2 + k3p3)
2]
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− 1

ρ(ρ2 + ρΣ + q)

Σ

Δ
p1p2p3

[
δ1k

2
1 + δ2k

2
2 + δ3k

2
3

− Γ 3
1,2k1k2 − Γ 2

1,3k1k3 − Γ 1
2,3k2k3

]
. (70)

The total fluctuation of the system is simply the square root σ of this expression.
Another important quantity widely used to classify the noise in gene networks is

the Fano factor, which is simply the variance normalized by the mean value, i.e., the
expression

σ 2

〈n1〉 = 〈n2〉 − 〈n1〉2

〈n1〉 . (71)

It is used to measure the extent to which a given probability distribution deviates from
a Poisson distribution. For values of the Fano factor <1, one says that the distribu-
tion is sub-Poissonian while for values >1, one says that the distribution is super-
Poissonian; finally, if the Fano factor is = 1, the distribution is called Poissonian.

With the explicit formulas for the mean value and the total fluctuation (hence also
for the Fano factor) at our disposal, we are in a position to describe some typical
features of the behavior of the system. Consider, for example, the situation where it
operates in only one of its states, so we have p1 = 1 or p2 = 1 or p3 = 1 while the
other two asymptotic occupancy probabilities vanish. (Mathematically, this situation
has to be handled by taking the limit in which one of the three asymptotic occupancy
probabilities approaches 1 while the other two approach 0, according to pi = (1 −
λ)p′

i and pj = λp′
j for j �= i, with p′

i and p′
j fixed and λ → 0, say, keeping the

parameters ρ, Σ , k1, k2, k3, ε1, ε2, ε3—and hence also δ1, δ2, δ3—fixed; this implies
that Δ goes to zero linearly with λ while q goes to some finite non-zero value.) Then
it is clear that the last two terms in Eq. (70) are zero and the fluctuation is equal to the
total mean value: this implies that the Fano factor is equal to 1 and so the distribution
is Poissonian. Moreover, in this case, the lowest level of noise is reached when the
gene operates in the basal mode (p3 = 1), with fluctuation k3/ρ. More generally, the
same argument shows that whenever one of the asymptotic occupancy probabilities
vanishes, the last term in Eq. (70) is zero, and hence the fluctuations are governed by
the quadratic terms appearing in the second term of the same equation. In a similar
fashion, we can study the dependence on the parameter Σ , assuming now that all
other parameters (including p1, p2, p3) are fixed. To do so, note that the denominator
of the last two terms in Eq. (70) contains a linear term in q and that according to
Eq. (31), q is quadratic in Σ , whereas the numerator of the last two terms in Eq. (70)
is linear in Σ . Therefore, as Σ → ∞, the noise in the system decreases as 1/Σ

down to its limit value, which is 〈n1〉 for the variance or 1 for the Fano factor. This
means that increasing the speed with which the gene is able to reach its equilibrium
configuration decreases the level of noise in the system and drives the probability
distribution to a Poissonian one.

In Figs. 4 and 5 below, we exhibit graphically the behavior of the fluctuation and
of the Fano factor in the regimes of slow switch (Σ = 0,1) and fast switch (Σ = 10),
respectively, as functions of the asymptotic occupancy probabilities p1 and p3, which
are indicated along the axes. The analytical expressions underlying these graphs are
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Fig. 4 Behavior of the total fluctuation σ and the Fano factor σ 2/〈n1〉 in the regime of slow switch,
Σ = 0.1, with mRNA degradation time scale ρ = 1, transcriptional efficiency parameters k1 = 40,
k2 = 20, k3 = 5 and couplings ε1 = ε2 = ε3 = 0.5. (a) 3-d plot of fluctuation. (b) 3-d plot of Fano factor.
(c) Density plot of fluctuation. (d) Density plot of Fano factor. A path connecting the state p3 = 1 to the
state p1 = 1 and avoiding the “mountain pass problem” is shown in (b). Along this path, the Fano factor
remains < 6, while along a direct path that does not use the intermediate state (i.e., with p2 remaining
equal to zero), it would reach values between 17 and 18

given by Eqs. (70) and (71), with the same choices for the mRNA degradation time
scale (ρ = 1), the transcriptional efficiency parameters (k1 = 40, k2 = 20, k3 = 5)
and the entries of the coupling matrix ε (all εi = 1/2) as in the preceding section.

In Figs. 4(a) and 5(a), we show the fluctuation and in Figs. 4(b) and 5(b) the Fano
factor, in the form of 3-d plots. Similarly, Figs. 4(c) and 5(c) exhibit the fluctuation
and Figs. 4(d) and 5(d) the Fano factor in the form of 2-d density plots, follow-
ing the color scheme indicated to the right of each panel. In all cases, the graphs
show clearly that the region of highest noise level is the one where the gene operates
predominantly in the two extreme states (1 or 3). Remarkably, the possibility of oc-
cupying an intermediate state (2), that is, increasing p2, leads to a significant noise
reduction! Moreover, comparing the panels in Fig. 4 with the corresponding ones in
Fig. 5 shows that this behavior is more pronounced in the slow switch regime, since
in the fast switch regime, noise is globally reduced and all probability distributions
become closer to Poissonian ones.

Finally, it should not go unnoticed that even though, as mentioned before, the
lowest noise level is reached when the gene operates in the basal mode, this goes
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Fig. 5 Behavior of the total fluctuation σ and the Fano factor σ 2/〈n1〉 in the regime of fast switch,
Σ = 10, with mRNA degradation time scale ρ = 1, transcriptional efficiency parameters k1 = 40, k2 = 20,
k3 = 5 and couplings ε1 = ε2 = ε3 = 0.5. (a) 3-d plot of fluctuation. (b) 3-d plot of Fano factor. (c) Density
plot of fluctuation. (d) Density plot of Fano factor. A path connecting the state p3 = 1 to the state p1 = 1
and avoiding the “mountain pass problem” is shown in (b). Along this path, the Fano factor remains < 7,
while along a direct path that does not use the intermediate state (i.e., with p2 remaining equal to zero), it
would reach values between 17 and 18

along with an almost insignificant rate of molecule production (small value of k3/ρ).
Indeed, noise reduction is not a goal just by itself: it should happen for states with a
production rate that is sufficient to guarantee functionality of the produced molecules
in the cell. Thus, we see that multimodal systems, such as the one proposed here,
provide a good strategy to achieve noise reduction while maintaining an acceptable
level of gene expression: this is achieved by allowing the system to operate in an
intermediate state of efficiency with non-negligible occupancy probability.

4.4 Probabilities and Noise for a Fixed Mean Value

In this section, we analyze the shape of the distributions and the noise amplitude
when the system is forced to operate at a fixed average level of production.

Figure 6(a) exhibits a density plot for the fluctuation of the system as a function of
the mean value 〈n1〉 and the asymptotic occupancy probability p2 for the intermediate
state. As a general rule, valid for any fixed mean value 〈n1〉 of the production level, the
possibility of the system to operate in an intermediate state (p2 �= 0) causes the total
noise to decrease. In the case where p2 can vary all the way from zero to one (which
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Fig. 6 (a) Density plot for fluctuation as a function of mean value 〈n1〉 and intermediate state occupancy
p2 in the slow switch regime (Σ = 0.1). Remaining figures: partial and total probability distributions as
functions of the mean RNA population number n, in the slow switch regime (Σ = 0.1), with mean value
fixed at 〈n1〉 = 20, for different values of the occupancy probabilities. (b) p1 = 0.35, p2 = 0.2, p3 = 0.45.
(c) p1 = 0.22, p2 = 0.5, p3 = 0.28. (d) p1 = 0.09, p2 = 0.8, p3 = 0.11. As before, in all figures, ρ = 1,
k1 = 40, k2 = 20, k3 = 5, ε1 = ε2 = ε3 = 0.5

happens for 〈n1〉 ≈ 20), we observe that the fluctuations vary from a maximum value
of about 20 (for p2 = 0) to a minimal value of about 4 (for p2 = 1). The remaining
panels exhibit the different shapes that the probability distributions can assume, even
when all of them are associated with the same mean value 〈n1〉 (again, ≈ 20), but with
noise levels that decrease systematically as p2 increases, from Fig. 6(b) via Fig. 6(c)
to Fig. 6(d).

4.5 Changing the Mean Value at Fixed Maximum Noise

Changes in the environment (for instance, the replacement of a carbon source by
another one, in the case of a bacterial metabolism) induce changes in the average gene
expression. In our model, this can be taken into account by allowing the occupancy
probabilities pi (i = 1,2,3) to depend on some external variable.

Concretely, let us consider a continuous transition of the average gene expression
from its maximum value (p1 = 1, p2 = p3 = 0) to its minimum value (p1 = p2 = 0,
p3 = 1). In the initial and the final states, the probability distributions are Poissonian,
with Fano factor equal to one. In the intermediate states, the Fano factor is greater
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Fig. 7 Behavior of the total probability distribution for different values of the occupancy probabilities, as
indicated, forcing the Fano factor to remain below a fixed value, chosen as small as possible, and allowing
the mean value to vary. As before, in all figures, ρ = 1, k1 = 40, k2 = 20, k3 = 5, ε1 = ε2 = ε3 = 0.5

than one, but we want to keep it below a given fixed value F ∗, say, chosen as small
as possible.

Finding a continuous path connecting the maximum and the minimum expression
states and along which the Fano factor F is as small as possible is a “mountain pass”
problem for the function F = f (p1,p3). Some solutions to this problem are shown
in Figs. 4(b) and 5(b), from which one may infer that paths of low Fano factor con-
necting the two extreme states always pass through states with p2 > 0, while a direct
transition along the straight line corresponding to p2 = 0 leads to a much higher
increase of F . This means that, typically, the presence of intermediate states leads
to noise reduction. In order to gain more insight into the mechanism behind this ef-
fect, one can calculate the behavior of the probability distribution for gene expression
level along such “mountain pass” paths. For small Σ (slow switch), the probability
distribution is multimodal all along the path and the change of average is performed
by “mode exchange,” namely by the transfer of probability between modes. Noise
reduction is obtained by performing this transfer sequentially, first from the high ex-
pression mode to the intermediate expression mode and then from there to the low
expression mode; see Fig. 7(a). For large Σ (fast switch), only the first step of the
mode exchange mechanism is employed, producing a moderate decrease of the av-
erage expression; at the same time, the Fano factor increases to its maximum value,
corresponding to a saddle point of the function f (p1,p3); see Fig. 7(b). A further de-
crease of the average expression is achieved by keeping a single mode and gradually
shifting its position. Thus, the presence of an intermediate state is noise reducing also
in the fast switching case, allowing the mode shift to be performed with no further
increase of the Fano factor.

5 Generalization of the Model to an Arbitrary Number of States

In this section, we briefly discuss the generalization of the model to an arbitrary
number N of operational states of different transcriptional efficiencies, modeling the
mRNA production of a gene controlled by multiple factors. Situations of this type
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abound in biology, a classical example from the bacterial world being the λ-phage,
with N = 8 (Ackers et al. 1982; Ptashne 1992); see also Cases and de Lorenzo (2005)
for further examples. Here, it is essential to write the master equations as a unique
vector equation,

dφn

dt
= K[φn−1 − φn] + ρ

[
(n + 1)φn+1 − nφn

] + Hφn, (72)

where φn(t) = (φ1
n(t), . . . , φN

n (t))T (T denotes transpose). K and ρ are now diagonal
(N × N )-matrices, where as before the first contains the mRNA production rates and
the second is proportional to the identity matrix, containing the mRNA molecule
degradation rate. Again, the matrix H encodes the couplings between the states of
the system and has the properties

N∑

i=1

Hij = 0, Hii ≤ 0, Hij ≥ 0 if i �= j. (73)

The vector generating function is defined as in Eq. (9),

φ(z, t) =
∞∑

n=0

φn(t)z
n, (74)

and it satisfies the same system of partial differential equations (10),

∂φ

∂t
= (z − 1)

[
Kφ − ρ

∂φ

∂z

]
+ Hφ. (75)

The probability distributions of each state and the moments are also recovered as
before (see Eqs. (11) and (12)), and the same goes for the occupancy probabilities
Pi(t) = φi(z = 1, t) (with i = 1, . . . ,N ): their dynamics is governed by the same
system, Eqs. (14),

dP

dt
= HP , (76)

where P (t) = (P1(t), . . . ,PN(t))T , that is, P (t) = φ(z, t)|z=1. As before, the deci-
sive property of the coupling matrix H is that it can be factorized according to

H = εh, (77)

where h = diag(h1, . . . , hN) with hi = −Hii , so that the matrix ε satisfies the condi-
tions

N∑

i=1

εij = 0, εii = −1, 0 ≤ εij ≤ 1 if i �= j. (78)

Generically (that is, except for special choices of the matrix ε), H will have N

distinct eigenvalues with eigenvectors p, corresponding to the eigenvalue 0, and
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v(1), . . . ,v(N−1), corresponding to the non-zero eigenvalues −λ(1), . . . ,−λ(N−1), re-
spectively: then the general solution of the system (76) can be written in the form

P (t) = p + exp
(−λ(1)t

)
v(1) + · · · + exp

(−λ(N−1)t
)
v(N−1). (79)

Moreover, the condition that the total probability should be equal to 1, i.e.,

N∑

i=1

Pi(t) = 1, (80)

is guaranteed by requiring that
N∑

i=1

pi = 1, (81)

since as long as the λ(1), . . . , λ(N−1) are all non-zero, it follows from the eigenvalue
equations Hv(1) = λ(1)v(1), . . . ,Hv(N−1) = λ(N−1)v(N−1), together with the proper-
ties of H that

N∑

i=1

v
(1)
i = 0, . . . ,

N∑

i=1

v
(N−1)
i = 0. (82)

In order to determine the components of the null eigenvector p, we make use of
the following fact from linear algebra, which does not seem to be widely known and
whose proof will therefore be given here.

Lemma 1 Let A be an (N × N)-matrix and Ac its cofactor matrix, i.e., the matrix
whose entry in the ith row and j th column is (−1)i+j times the determinant of the
(N − 1) × (N − 1)-matrix obtained from A by deleting the j th row and ith column.

Ac
i,j = (−1)i+j det

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎝

A1,1 . . . A1,i−1 A1,i+1 . . . A1,N

...
. . .

...
...

. . .
...

Aj−1,1 . . . Aj−1,i−1 Aj−1,i+1 . . . Aj−1,N

Aj+1,1 . . . Aj+1,i−1 Aj+1,i+1 . . . Aj+1,N

...
. . .

...
...

. . .
...

AN,1 . . . AN,i−1 AN,i+1 . . . AN,N

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

. (83)

Assume that the row vectors of A sum up to zero, i.e.,

N∑

i=1

Ai,j = 0 for 1 ≤ j ≤ N. (84)

Then every row of Ac is a multiple of the covector uT = (1, . . . ,1), and the vector

q =
⎛

⎜
⎝

Ac
1,1
...

Ac
N,N

⎞

⎟
⎠ (85)

belongs to the kernel of A.

Author's personal copy



Multimodality and Flexibility of Stochastic Gene Expression 2625

Proof The first assertion can be reformulated as stating that if A satisfies Eq. (84),
then its cofactor matrix satisfies

Ac
i,j = Ac

i,k for 1 ≤ i, j, k ≤ N.

Note that this conclusion is clearly invariant under permutations both of the rows and
the columns of A, so it suffices to prove it when i = 1, j = 1 and k = 2, say. But

Ac
1,1 − Ac

1,2 = det

⎛

⎜
⎜⎜
⎝

A2,2 . . . A2,N

A3,2 . . . A3,N

...
. . .

...

AN,2 . . . AN,N

⎞

⎟
⎟⎟
⎠

+ det

⎛

⎜
⎜⎜
⎝

A1,2 . . . A1,N

A3,2 . . . A3,N

...
. . .

...

AN,2 . . . AN,N

⎞

⎟
⎟⎟
⎠

= −
N∑

i=3

det

⎛

⎜⎜⎜
⎝

Ai,2 . . . Ai,N

A3,2 . . . A3,N

...
. . .

...

AN,2 . . . AN,N

⎞

⎟⎟⎟
⎠

= 0 ,

where we have used Eq. (84) together with the fact that the determinant of a matrix is
a linear function in each of its row vectors when all other row vectors are held fixed.
Now it is a standard fact from linear algebra that the cofactor matrix Ac satisfies
AAc = det(A)1, and since in the present case, det(A) = 0, we get

N∑

k=1

Ai,kA
c
k,j = 0 for 1 ≤ i, j ≤ N,

which in view of the fact that, as has just been shown, the Ac
k,j are independent of

j and hence Ac
k,j can be replaced by Ac

k,k , means precisely that A annihilates the
vector q as defined in (85). �

Here, we shall apply this lemma to the matrices H and ε and use the fact that the
factorization (77) with h diagonal implies Hi,j = hiεi,j , and hence

Hc
i,i =

N∏

k=1
k �=i

hkε
c
i,i . (86)

Denoting the diagonal elements of the cofactor matrix of the matrix ε by δi (δi = εc
i,i

for i = 1, . . . ,N ), as before, we may thus conclude that the asymptotic occupancy
probabilities pi , being the components of a vector p satisfying Hp = 0, must have
the form

hipi = αδi
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with some proportionality constant α. To determine it, multiply this equation with the
product of all pk except pi and sum over i; then using that the pi sum up to 1, we get

hi = Σ

Δ

N∏

k=1
k �=i

pkδi, (87)

where Σ is the trace of h (or up to a sign, of H ),

Σ =
N∑

i=1

hi = tr(h) = −tr(H), (88)

and

Δ =
N∑

i=1

N∏

k=1
k �=i

pkδi . (89)

As a result, the factorization (77) can be rewritten in the form

H = Σ

Δ
εδπ, (90)

where δ and π are diagonal matrices defined by

δ =
⎛

⎜
⎝

δ1 . . . 0
...

. . .
...

0 . . . δN

⎞

⎟
⎠ , π =

⎛

⎜
⎝

p2 . . . pN . . . 0
...

. . .
...

0 . . . p1 . . . pN−1

⎞

⎟
⎠ . (91)

As an example, consider the case N = 4. Here, we can factorize the coupling
matrix H as in Eq. (90), with

ε =

⎛

⎜⎜
⎝

−1 ε3ε4 ε5(1 − ε6) 1 − ε7
1 − ε1 −1 ε5ε6 ε7(1 − ε8)

ε1(1 − ε2) 1 − ε3 −1 ε7ε8
ε1ε2 ε3(1 − ε4) 1 − ε5 −1

⎞

⎟⎟
⎠ (92)

and

δ =

⎛

⎜⎜
⎝

δ1 0 0 0
0 δ2 0 0
0 0 δ3 0
0 0 0 δ4

⎞

⎟⎟
⎠ , π =

⎛

⎜⎜
⎝

p2p3p4 0 0 0
0 p1p3p4 0 0
0 0 p1p2p4 0
0 0 0 p1p2p3

⎞

⎟⎟
⎠ .

(93)
Similarly, there are now four transcriptional efficiency parameters, coded into a diag-
onal matrix

K =

⎛

⎜
⎜
⎝

k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

⎞

⎟
⎟
⎠ . (94)
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Fig. 8 Probability distributions for the example of a system with four different states of transcrip-
tional efficiency in the case of slow switch (Σ = 0.5). (a) p1 = 1/4, p2 = 1/4, p3 = 1/4, p4 = 1/4;
(b) p1 = 1/10, p2 = 4/10, p3 = 4/10, p4 = 1/10; (c) p1 = 3/4, p2 = 1/12, p3 = 1/12, p4 = 1/12;
(d) p1 = 1/12, p2 = 1/12, p3 = 1/12, p4 = 3/4. In all figures, ρ = 1, k1 = 60, k2 = 30, k3 = 15, k4 = 4
and εi = 0 (which is the cyclic coupling) for i = 1, . . . ,8

In terms of these data, we can again calculate probability distributions, by solving the
recursion relations (42). An example is shown in Fig. 8, the values of the parameters
chosen being listed in the figure caption.

6 Conclusions

In this paper, we have presented an analytical method for computing steady state
probability density functions and their first two moments for a gene promoter model
with multiple states.

The parametrization of the transition matrix of the model adopted here is based
on its factorization into the product of two components: a matrix ε, which encodes
the couplings between the different states of transcriptional efficiency, representing
an intrinsic property of the system, and a matrix h, which gives the strengths of the
couplings. As a result, we have been able to reinterpret the mathematical constants
that appear in the model in terms of biological parameters. Moreover, this approach
decouples intrinsic aspects from extrinsic ones: the couplings (εi ) and the switch de-
cay parameter (Σ ) reflect intrinsic properties of the system, whereas the asymptotic
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occupancy probabilities for the transcriptional efficiency states are controlled by ex-
ternal agents.

In particular, in our approach the desired probability distributions are calculated
directly in terms of the asymptotic occupancy probabilities. This choice facilitates the
analysis of noise, revealing the differences between the noise patterns for slow and
fast switch, at a fixed value of mean expression and also when the mean expression
changes under the influence of external agents such as inducers, repressors, carbon
source, etc.

Already in the case of a three-states system, the three-peak probability distribu-
tions resulting from our calculations show that, in such a configuration, the knowl-
edge of just a few moments of the distribution may not be enough. Changes in gene
expression triggered by external agents can use a mode exchange mechanism to re-
distribute the probabilities among the modes. In a repressed condition, the promoter
will operate in a low expression basal mode. When external conditions become per-
missive, the promoter will first function in the intermediate expression state and then
in the maximum expression state. Our theoretical results indicate that the study of
such probability distributions can provide more information about details of tran-
scription regulation than just its moments. This suggests undertaking a more accurate
experimental determination of such distributions. Scanning two photon fluorescence
microscopy, combined with a number and brightness analysis, is well adapted for this
purpose and has already provided hints on how to reconcile observed noise patterns
with mechanisms of transcription control (Ferguson et al. 2012).

Finally, our setup for the transition matrix allows for a straightforward general-
ization of the model to an arbitrary number of states, and we show how to calculate
stationary probability distributions in this general case. All information about the
steady state statistics of the general model, including the moments, is contained in
this distribution. This is important to the extent that biological complexity provides
strong motivation for constructing models of gene expression that admit states of in-
termediate transcriptional efficiency, rather than just treating it as a simple “on/off”
process (Cases and de Lorenzo 2005), and there is then no logical reason to assume
that there is just one such intermediate state. This actually happens for numerous
prokaryote promoters, but it also applies to eukaryote gene expression. As an ex-
ample, we may mention the transcriptional control of segmentation in Drosophila
melanogaster, which involves 34 binding sites for 7 regulatory proteins (Janssens
et al. 2006). In fact, multiple intermediate states have already been invoked by bi-
ologists to understand the relation between chromatin state regulation and the tran-
scription readout (Chen et al. 2012). Of course, gene expression in eukaryotic cells is
much more complex than in prokaryotes, due to the presence of a wealth of additional
factors that modify the basic process, and only comparison with experiment can show
whether predictions of a (still fairly simple) mathematical model such as the one dis-
cussed in this paper will be able to catch at least some of its salient features. But we
do expect that one of these feature will be multi-modality, as exemplified in recent
work in synthetic biology (Murphy et al. 2007, 2010).
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