Exercício 1

Uma expressão completamente parentizada ou é uma matriz M, ou é da forma (AB), onde A e B são expressões completamente parentizadas.

Vamos provar por indução que o número de pares de parênteses numa expressão completamente parentizada com n matrizes é n-1. Se n=1, a expressão tem só uma matriz e é portanto da forma M, contendo 0 pares de parênteses.

Considere agora uma expressão completamente parentizada com n > 1 matrizes. Então a expressão é da forma (AB), onde ambas A e B são expressões completamente parentizadas. Suponha que A contenha n_1 matrizes e B contenha n_2 matrizes, sendo $n_1 + n_2 = n$.

Como n_1 , $n_2 < n$, temos por hipótese de indução que o número de pares de parênteses em A e B é $n_1 - 1$ e $n_2 - 1$, respectivamente. Assim, o número de pares de parênteses em (AB) é

$$(n_1-1)+(n_2-1)+1=n_1+n_2-1=n-1,$$

como queríamos.

Exercício 2

Suponha que $s \neq t$. Seja $v \in V$ tal que $(v,t) \in A$. Então se $s = v_1, \ldots, v_k = v$ é um (s,v)-caminho simples em D, temos que $s = v_1, \ldots, v_k, t$ é um (s,t)-caminho simples. Isso é verdade pois D é acíclico, logo t não pode ser um dos vértices v_1, \ldots, v_k .

Seja c(v) o número de (s, v)-caminhos simples em D. Se s = v, temos c(v) = 1. Caso contrário temos

(1)
$$c(v) = \sum_{u:(u,v)\in A} c(u).$$

Um algoritmo para calcular o número de (s,t)-caminhos simples é o seguinte:

- (1) Seja v_1, \ldots, v_n uma ordenação topológica de D. Suponha, sem perda de generalidade, que $s = v_1$ e $t = v_n$.
- (2) Para i = 1, ..., n, calcule $c(v_i)$ usando (1).

Para calcular c(v), precisamos conhecer c(u) para todo $(u,v) \in A$. Por isso, como usamos uma ordenação topológica, o passo (2) está bem definido.

Para executar o passo (1) gastamos tempo O(|V|+|A|). Para executar o passo (2) precisamos percorrer todos os vértices do grafo e para executar as somas olhamos para cada arco exatamente uma vez. Assim, gastamos para o passo (2) tempo O(|V|+|A|).

Exercício 3

Considere o grafo D = (V, A) com V = 1, 2, 3 e $A = \{(1, 2), (1, 3), (2, 3)\}$. Considere a função comprimento l tal que l(1, 2) = 2, l(1, 3) = 1 e l(2, 3) = -2.

Quando o algoritmo de Dijkstra é executado a partir do vértice 1, ele encontrará distâncias $d_1=0,\ d_2=2$ e $d_3=1,$ ao passo que o caminho mínimo entre 1 e 3 tem comprimento 0.

Exercício 4

Seja $x \in \Sigma^*$ uma palavra de comprimento n. Note que, se $x \in L^*$, então $x \in L^0 \cup L^1 \cup \cdots \cup L^n$. De fato, suponha que $x \in L^m$ com m > n. Então

$$x = x_1 x_2 \cdots x_m$$

com $x_1, \ldots, x_m \in L$. Mas, como x tem comprimento n, pelo menos m-n das palavras x_i devem ser a palavra vazia. Mas então, eliminando essas palavras, vemos que $x \in L^0 \cup L^1 \cup \cdots \cup L^n$, como queríamos.

Defina:

$$c(i,k) = \begin{cases} 1 & \text{se } x[1\dots i] \in L^k, \\ 0 & \text{caso contrário}, \end{cases}$$

para i = 0, ..., n e k = 0, ..., n.

Podemos considerar os seguintes casos:

- (1) se k = 0, então c(i, k) = 1 se e somente se i = 0;
- (2) se k>0, então c(i,k)=1 se e somente se existe $j\leq i$ tal que $x[1\dots j]\in L^{k-1}$ e $x[j+1\dots i]\in L$.

Assim chegamos à seguinte fórmula para c:

$$c(i,k) = \begin{cases} 1 & \text{se } k = 0 \text{ e } i = 0, \\ 0 & \text{se } k = 0 \text{ e } i > 0, \\ \bigvee_{j=0}^{i} c(j,k-1) \wedge (x[j+1\ldots i] \in L) & \text{caso contrário.} \end{cases}$$

Usando essa fórmula, podemos desenvolver um algoritmo que recebe uma palavra $x \in \Sigma^*$ e devolve 1 se $x \in L^*$ e 0 caso contrário.

```
\begin{aligned} & \text{Testa-Palavra}(x) \\ & n = |x| \\ & c(0,0) = 1 \\ & \text{para } i = 1, \, \dots, \, n \text{: } c(i,0) = 0 \\ & \text{para } k = 1, \, \dots, \, n \text{: } \\ & \text{para } i = 0, \, \dots, \, n \text{: } \\ & c(i,k) = 0 \\ & \text{para } j = 0, \, \dots, \, i \text{: } \\ & c(i,k) = c(i,k) \vee (c(j,k-1) \wedge (x[j+1 \dots i] \in L)) \\ & \text{para } k = 0, \, \dots, \, n \text{: } \\ & \text{se } c(n,k) = 1 \text{: devolva } 1 \\ & \text{devolva } 0 \end{aligned}
```

Qual o tempo gasto pelo algoritmo? Suponha que o algoritmo que decide se uma palavra x de comprimento n pertence à L consome tempo $O(n^k)$. Então o algoritmo acima executa esse algoritmo $O(n^3)$ vezes em palavras de comprimento no máximo n. Assim, o tempo total gasto é $O(n^{k+3})$ e temos portanto um algoritmo polinomial.