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Abstract

Scheduling problems involving both earliness and tardiness costs have received significant
attention in recent years. This type of problem became important with the advent of the just-
in-time (JIT) concept, where early or tardy deliveries are highly discouraged. In this work we
examine the flowshop scheduling problem with no storage constraints and with blocking in-
process. In this latter environment, there are no buffers between successive machines; therefore
intermediate queues of jobs waiting in the system for their next operations are not allowed.
Performance is measured by the minimization of the sum of earliness and tardiness of the jobs.
Mixed-integer models that represent these scheduling flowshop problems are presented. The
models are evaluated and compared in several problems using commercial known software.

Key words: Flowshop scheduling, earliness and tardiness, blocking in-process, mixed-integer
programming formulations.

1 Introduction

This paper addresses the flowshop scheduling problem. This environment is characterized by n
jobs being processed on m machines always in the same order, that is, the k-th operation of every
job must be conducted on machine k. We will consider the case with the same job sequence in
all machines, known as permutation schedule. As pointed out in [7], permutation schedules do
not always include the optimal schedule for a given problem, but their importance should not be
underestimated, since only permutation schedules are feasible in most real-life situations. A static
and deterministic environment is assumed here, where the processing times and due dates are
known and all jobs are available for processing since the beginning. Preemptions are not allowed,
that is, when a job starts to be processed on a machine, it cannot be interrupted. Among its
several applications, one of the most relevant applications of flowshop can be found in the chemical
industry [3, 13]. Since specific equipment for chemical processes is expensive, there is a strong
motivation to optimize this production environment.
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Two different storage conditions are considered in this work: (a) unlimited buffer and (b) block-
ing in-process. In the flowshop scheduling problem with blocking there is no buffer storage between
machines, and then queues of jobs waiting in the system for their next operation are not allowed.
A job completed on one machine blocks it until the next machine is available for processing. Note
that this environment is different from the no-wait flowshop environment. In the latter, there is
no machine blocking: once a job is started on the first machine, it must be continuously processed
(without interruption) until its completion on the last machine. As mentioned in [5], blocking can
be related to the production process itself. Some examples of blocking can be found in concrete
block manufacturing, which does not allow stock in some stages of the manufacturing process [4].
Another example appears in a robotic cell, where a job may block a machine while waiting for the
robot to pick it up and move it to the next stage [16].

The considered objective function is the minimization of the total deviation of job completion
times in relation to their corresponding due dates. Meeting due dates is a common objective
for many manufacturing processes. Tardy jobs may generate contractual penalties and loss of
credibility, causing damages to the company’s image and loss of clients [15]. Early jobs were
discouraged since the advent of Just-in-Time approaches due to the costs generated by those jobs,
such as tied-up capital and inventory costs [1].

Mixed-integer linear programming (MILP) models, can be used to generate optimal schedules
for moderate size problems. With the evolution of computers, in addition to the development of
specific software to solve this kind of problem, research in this field has been greatly leveraged. See,
for example, [11, 17, 18, 22]. The main goal of this paper is to evaluate, in terms of computational
cost, mixed-integer linear programming formulations for the job scheduling problem in the flowshop
environment with unlimited and zero buffer, for the minimization of total earliness and tardiness.
The rest of this work is organized as follows. In Section 2, models for the unlimited buffer envi-
ronment are presented. Models for the blocking in-process situation are introduced in Section 3.
Section 4 is devoted to the numerical evaluation of the different formulations. Concluding remarks
are given in Section 5.

2 MILP models for flowshop with unlimited buffer

The production environment with unlimited buffer is characterized by the existence of intermediate
buffers between all machines with no constraint in terms of their capacity. At first, we introduce
three formulations to be analyzed for this environment. According to [11], the flowshop environment
with unlimited buffer minimizing the makespan is better represented by Wagner’s [20], Wilson’s [21],
and Manne’s [10] formulations. Therefore, these first three introduced models are based on them.
Note that, differently from the problem considered in [10, 20, 21], in the present work, the insertion
of idle time in the schedule can be advantageous. See [6] for a literature review about scheduling
with inserted idle time.

The problem parameters for all the formulations studied in the rest of this work are (a) n: the
number of jobs, (b) m: the number of machines, (c) pik: the processing time of job i on machine k,
and (d) di: the due date of job i.

The model for the minimization of total earliness and tardiness based on the Wagner’s for-
mulation [20] with some modifications suggested in [17], called MUB1 from now on, is presented
below. Variables of the model, with their corresponding bound constraints, are: xij ∈ {0, 1}, i =
1, . . . , n, j = 1, . . . , n, Ej ≥ 0, j = 1, . . . , n, Tj ≥ 0, j = 1, . . . , n, Wjk ≥ 0, j = 1, . . . , n, k =
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1, . . . , m − 1, Ijk ≥ 0, j = 1, . . . , n − 1, k = 1, . . . , m, and Cjm, j = 1, . . . , n. The meanings of the
variables are: xij is equal to 1 if job i is in j-th position of the sequence, 0 otherwise; Tj is the
tardiness of the j-th job, Ej is the earliness of the j-th job, Cjm is the completion time of the j-th
job on machine m, Ijk is the idle time between the j-th and the (j + 1)-th jobs on machine k, and
Wjk is the waiting time of the j-th job in the buffer between machines k and k + 1.

Minimize
n

∑

j=1

Ej + Tj (1)

subject to Tj ≥ Cjm −
n

∑

i=1

xijdi, j = 1, . . . , n, (2)

Ej ≥
n

∑

i=1

xijdi − Cjm, j = 1, . . . , n, (3)

C1m =
n−1
∑

k=1

(
n

∑

i=1

xi1pik + W1k) +
n

∑

i=1

xi1pim, (4)

Cjm = Cj−1,m + Ij−1,m +
n

∑

i=1

xijpim, j = 2, . . . , m, (5)

Ijk +
n

∑

i=1

xi,j+1pik + Wj+1,k = Wjk +
n

∑

i=1

xijpi,k+1 + Ij,k+1, j = 1, . . . , n − 1,

k = 1, . . . , m − 1, (6)
n

∑

i=1

xij = 1, j = 1, . . . , n, (7)

n
∑

j=1

xij = 1, i = 1, . . . , n. (8)

Constraint (2), in conjunction with the non-negativity constraint Tj ≥ 0, correspond to the
linearization of Tj = max{Cjm −

∑n
i=1

xijdi, 0} and provide us with the value of the individual
tardiness of each job. Constraint (3), in conjunction with the non-negativity constraint Ej ≥ 0,
play the analogous role related to the individual earliness of each job. Constraints (4) and (5) are
involved in obtaining the completion times of each job on machine m. Constraint (4) applies only
to the job ordered in the first position, whose completion time depends on its own processing times
and the waiting time between the machines. On the other hand, constraint (5) is general, based
on the sum of the completion time of the previous job, the idle time of the last machine between
two consecutive jobs and the processing time of the job. Constraints (7) and (8) ensure that a job
can only be allocated to a sequence position and that each sequence position can only be related
to one job. Constraint (6) expresses the relationship among several times, such as processing,
waiting and idle times, among machines and jobs. Figure 1, based on Gantt chart, illustrates these
relationships.

The following formulation, based on Wilson’s model [21] and called MUB2 from now on, uses
neither variables of idle time nor waiting time, but it introduces the variables of processing start
time. Variables of the model, with their corresponding bound constraints, are: xij ∈ {0, 1}, i =
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Machine k + 1

Machine k
j-th job (j + 1)-th job

j-th job (j + 1)-th job

t

t1 t2

Wjk Ij,k+1

Ijk Wj+1,k

Figure 1: Graphical representation of the MUB1 model constraint (6) that expresses the relation-
ship among processing, waiting and idle times.

1, . . . , n, j = 1, . . . , n, Ej ≥ 0, j = 1, . . . , n, Tj ≥ 0, j = 1, . . . , n, and Sjk, j = 1, . . . , n, k = 1, . . . , m.
Cjm, j = 1, . . . , n, defined in (12), representing the completion time of each job on the last machine,
are not variables but intermediate values used to simplify the earliness and tardiness expressions
in (10) and (11). Variables Sjk represent the starting time of the j-th job on machine k. The other
variables have the previously defined meaning.

Minimize
n

∑

j=1

Ej + Tj (9)

subject to Tj ≥ Cjm −
n

∑

i=1

xijdi, j = 1, . . . , n, (10)

Ej ≥
n

∑

i=1

xijdi − Cjm, j = 1, . . . , n, (11)

Cjm = Sjm +
n

∑

i=1

xijpim, j = 1, . . . , m, (12)

Sj+1,k ≥ Sjk +

n
∑

i=1

xijpik, j = 1, . . . , n − 1, k = 1, . . . , m, (13)

Sj,k+1 ≥ Sjk +
n

∑

i=1

xijpik, j = 1, . . . , n, k = 1, . . . , m − 1, (14)

S11 ≥ 0, (15)
n

∑

i=1

xij = 1, j = 1, . . . , n, (16)

n
∑

j=1

xij = 1, i = 1, . . . , n. (17)

Constraints (13–15) impose the rules for the starting time of each job on each machine; while,
as mentioned above, equality (12) gives the completion time of each job on the last machine as a
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function of its start time and its processing time. Constraint (13) says that between the starting
times of consecutive jobs on a machine, there must be enough time for the first (of the two jobs) to
be processed. Constraint (14) indicates that between the starting times of a job on two consecutive
machines, there must enough time for the job to be processed on the first machine. Constraint (15)
simply says that the starting time of the first job on the first machine must be non-negative, i.e.,
the insertion of idle time at the beginning of the schedule is allowed. The remaining constraints
were already explained before.

The next formulation, based on Manne’s model [10] and called MUB3 from now on, uses a
different definition of decision binary variables, based on whether a job occurs before others: zij is
equal to 1 if job i precedes job j in the sequence (not necessarily immediately before it), 0 otherwise.
In addition, the completion time Cjk now refers to job j and not to the j-th job in the sequence as
defined earlier. Constant M , used in the formulation, represents a very large positive number. The
formulation is presented below. Variables of the model, with their corresponding bound constraints,
are: zij ∈ {0, 1}, i = 1, . . . , n − 1, j = i + 1, . . . , n, Ei ≥ 0, i = 1, . . . , n, Ti ≥ 0, i = 1, . . . , n, and
Cik, i = 1, . . . , n, k = 1, . . . , m.

Minimize
n

∑

i=1

Ei + Ti (18)

subject to Ti ≥ Cim − di, i = 1, . . . , n, (19)

Ei ≥ di − Cim, i = 1, . . . , n, (20)

Ci1 ≥ pi1, i = 1, . . . , n, (21)

Cik ≥ pik + Ci,k−1, i = 1, . . . , n, k = 2, . . . , m, (22)

Cik ≥ pik + Cjk − Mzij , i = 1, . . . , n − 1, j = i + 1, . . . , n, k = 1, . . . , m, (23)

Cjk ≥ pjk + Cik − M(1 − zij), i = 1, . . . , n − 1, j = i + 1, . . . , n, k = 1, . . . , m. (24)

Constraints (21) and (22) deal with completion times of individual jobs. Constraint (21) indi-
cates that the completion time of a job on the first machine must be greater than or equal to the
processing time of the job on the first machine. Constraint (22) says that between the completion
time of a job on two consecutive machines there must be enough time to process the job on the
first of the two machines. Constraints (23) and (24) ensure that only one operation is processed
on each machine at any given time and that some order must exist between different jobs on the
same machine. The remaining constraints were already explained before.

Finally, we elaborate on an improvement to Manne’s model proposed by Liao [9]. Constraints
(23) and (24) can be re-written as

Cik − Cjk − pik + Mzij ≥ 0, (25)

−Cik + Cjk + pik − Mzij ≥ pjk + pik − M, (26)

respectively. Defining
qijk = Cik − Cjk − pik + Mzij ,

inequalities (25) and (26) reduces to

0 ≤ qijk ≤ M − pik − pjk. (27)
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Note that inequalities in (27) are in fact a lower and upper bound constraint for qijk. Thus, to solve
subproblems of the branch and bound tree, the bounded simplex method can be used and achieving
an optimal solution may be easier. It is worth noticing that with these new relationships, there is
a reduction of one constraint for each pair of jobs in each machine, but it leads to an increase in
variables qijk in the same amount.

Model MUB4 below incorporates the Liao’s suggestion into model MUB3. Variables of the
model, with their corresponding bound constraints, are: zij ∈ {0, 1}, i = 1, . . . , n−1, j = i+1, . . . , n,
Ei ≥ 0, i = 1, . . . , n, Ti ≥ 0, i = 1, . . . , n, Cik, i = 1, . . . , n, k = 1, . . . , m, and 0 ≤ qijk ≤ M − pik −
pjk, i = 1, . . . , n − 1, j = i + 1, . . . , n, k = 1, . . . , m.

Minimize

n
∑

i=1

Ei + Ti (28)

subject to Ti ≥ Cim − di, i = 1, . . . , n, (29)

Ei ≥ di − Cim, i = 1, . . . , n, (30)

Ci1 ≥ pi1, i = 1, . . . , n, (31)

Cik ≥ pik + Ci,k−1, i = 1, . . . , n, k = 2, . . . , m, (32)

qijk = Cik − Cjk − pik + Mzij , i = 1, . . . , n − 1, j = i + 1, . . . , n,

k = 1, . . . , m. (33)

Summing up the characteristics of the four models presented in this section for the flowshop
scheduling problem with unlimited buffer and minimizing earliness and tardiness, Table 1 shows
the sizes of each model, expressed by their number of constraints, binary and continuous variables.

Model
binary continuous

constraints
variables variables

MUB1 n2 nm + 2n − m nm + 3n − 1
MUB2 n2 nm + 3n 2nm + 3n − m
MUB3 n(n − 1)/2 nm + 2n n2m + 2n
MUB4 n(n − 1)/2 n2m/2 − nm/2 + 2n n2m/2 + nm/2 + 2n

Table 1: Number of variables and constraints of the unlimited-buffer formulations.

3 MILP models for flowshop with zero buffer

The zero buffer environment is characterized by not having intermediary buffers between machines.
Therefore, a situation known as blocking can occur, when a machine interrupts its production cycle
(and it can also interrupt the production of previous machines), even though it has completed a
job, because the next machine is not free. Moreover, when minimizing tardiness and earliness, it
may be convenient for a job to stay on a machine after being completed even if the next machine
is ready to process it.

A model, based on MUB1 (for the unlimited buffer environment) and on Ronconi’s model [14]
for the zero-buffer situation minimizing the total tardiness, is presented below. This model will be
called MZB1 from now on. Variables of the model, with their corresponding bound constraints,
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are: xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n, Ej ≥ 0, j = 1, . . . , n, Tj ≥ 0, j = 1, . . . , n, Bjk ≥ 0, j =
1, . . . , n, k = 1, . . . , m, Ijk ≥ 0, j = 1, . . . , n, k = 1, . . . , m, and Djm, j = 1, . . . , n. The new variable
Bjk stands for the blocking time of the j-th job that, after being completed on machine k, stays
on the machine. Djm represents the departure time of the j-th job from the last machine.

Minimize
n

∑

j=1

Ej + Tj (34)

subject to Tj ≥ Djm −

n
∑

i=1

xijdi, j = 1, . . . , n, (35)

Ej ≥
n

∑

i=1

xijdi − Djm, j = 1, . . . , n, (36)

D1m =
m

∑

k=1

(
n

∑

i=1

xi1pik + B1k), (37)

Djm = Dj−1,m + Ij−1,m +

n
∑

i=1

xijpim + Bjm, j = 2, . . . , n, (38)

Ijk +
n

∑

i=1

xi,j+1pik + Bj+1,k = Ij,k+1 +
n

∑

i=1

xijpi,k+1 + Bj,k+1, j = 1, . . . , n − 1,

k = 1, . . . , m − 1, (39)
n

∑

i=1

xij = 1, j = 1, . . . , n, (40)

n
∑

j=1

xij = 1, i = 1, . . . , n. (41)

Constraints (35) and (36), which are used to identify the tardiness and the earliness of each
job, are analogous to those of the unlimited buffer models, replacing the completion time of a job
on a machine by its departure time. Constraint (37) states that the time when the first job leaves
the last machine is equal to the sum of its processing and blocking times in each machine. For the
departure time of the other jobs from the last machine, we have constraint (38), which also involves
the idle times of the last machine. Constraint (38) says that the departure time of a job from the
last machine is equal to the departure time of the previous job, plus the idle time between both
jobs, plus the processing time of the job plus the time the job blocks the machine. Constraint (39)
establishes the relationships required to keep the consistency between machines idle times and
machines blocking times. These relationships are illustrated in Figure 2. Constraints (40) and (41)
are those already presented in previous models, which ensure that each job will only have one
position in the sequence and that each position will be taken only by one job.

Model MZB1 presented above uses variables to measure times related to two different states of
the machines: empty and busy. When a machine k is empty, its idle time Ijk between every pair
of consecutive jobs in positions j and j + 1 is used in the formulation. When machine k is being
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Machine k + 1

Machine k
j-th job (j + 1)-th job

j-th job (j + 1)-th job

t

t1 t2

Bj,k+1 + Ij,k+1

Ijk Bj+1,k

Figure 2: Graphical representation of model MZB1 constraint (39) that expresses the relationship
among processing, blocking and idle times.

occupied by the j-th job, the time is divided into the time needed to process the j-th job, given by

n
∑

i=1

xijpi,k,

and the time Bjk during which the j-th job blocks machine k after having been processed.
In fact, it is not hard to see that there is no need to divide the time on this way, as the j-th job

can be processed on machine k any time between its arrival time and its departure time. In this
way, we eliminate the unnecessary imposition of processing the job as soon as it arrives. Therefore,
the job can arrive to the machine, block it for a while, then be processed and finally block the
machine again before leaving it. The alternative formulation below, called MZB2 from now on,
models the problem by imposing very intuitive relations between the departure times of the jobs
from the machines.

Variables of the model, with their corresponding bound constraints, are: xij ∈ {0, 1}, i =
1, . . . , n, j = 1, . . . , n, Ej ≥ 0, j = 1, . . . , n, Tj ≥ 0, j = 1, . . . , n, and Djk ≥ 0, i = 1, . . . , n, k =
1, . . . , m. Djk stands for departure of the j-th job from machine k. The other variables have the
same meanings defined before.
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Minimize
n

∑

j=1

Ej + Tj (42)

subject to Tj ≥ Djm −
n

∑

i=1

xijdi, j = 1, . . . , n, (43)

Ej ≥
n

∑

i=1

xijdi − Djm, j = 1, . . . , n, (44)

Dj1 ≥
n

∑

i=1

xijpi1, j = 1, . . . , n, (45)

Djk ≥ Dj,k−1 +
n

∑

i=1

xijpik, j = 1, . . . , n, k = 2, . . . , m, (46)

Djk ≥ Dj−1,k +
n

∑

i=1

xijpik, j = 2, . . . , n, k = 1, . . . , m, (47)

Djk ≥ Dj−1,k+1, j = 2, . . . , n, k = 1, . . . , m − 1, (48)
n

∑

i=1

xij = 1, j = 1, . . . , n, (49)

n
∑

j=1

xij = 1, i = 1, . . . , n. (50)

Constraints (45) and (46) indicate that a job must be processed on a machine before leaving
it. Constraint (45) is a special case for the first machine and says that the departure time of a
job from the first machine must be greater than or equal to its processing time on the machine.
Constraint (46) indicates that the departure time of a job from a machine must be greater than or
equal to its arrival time (i.e, departure time from the previous machine) plus its processing time.
Constraint (47) says that between the departure times of two consecutive jobs from a given machine,
there must be enough time for the second job to be processed. In other words, the departure time
of a job from a machine minus its processing time (that is something greater than or equal to its
arrival time to the machine) must be greater than or equal to the departure time of the previous job
from the machine. Constraint (48), deeply related to the zero-buffer situation, says that a job can
departure from a machine, and arrive to the next one, only when the previous job in the sequence
leaved the machine. Note that, for most of the combinations of indices j and k, constraints (46–48)
are the linearization of

Djk ≥ max

{

Dj,k−1 +
n

∑

i=1

xijpik, Dj−1,k +
n

∑

i=1

xijpik, Dj−1,k+1

}

. (51)

That is, for each Djk, if Dj,k−1+
∑n

i=1
xijpik 6= Dj−1,k+

∑n
i=1

xijpik 6= Dj−1,k+1, only one constraint
will be active. It is worth noticing that inequality (51) resembles a formulation presented by
Leisten [8] for the minimization of the makespan in the flowshop problem with blocking.

Summing up the characteristics of the two models presented in this section for the flowshop
scheduling problem with zero buffer and minimizing earliness and tardiness, Table 2 shows the sizes
of each model, expressed by their number of constraints, binary and continuous variables.
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Model
binary continuous

constraints
variables variables

MZB1 n2 2nm + 3n nm + 4n − m + 1
MZB2 n2 nm + 2n 3nm + 3n − 2m + 1

Table 2: Number of variables and constraints of the zero-buffer formulations.

4 Numerical experiments

In this section, we aim to compare the presented formulations based on the performance of the
commercial solver CPLEX when applied to a set of instances varying the number of jobs n, the
number of machines m, and considering different scenarios for the jobs due dates.

In the numerical experiments, we considered instances with

(n, m) ∈ {(5, 3), (10, 3), (10, 7), (10, 10), (15, 3), (15, 7), (15, 10), (20, 3)}.

Processing times were uniformly distributed between 1 and 99 (as suggested in [19]). Due dates
were uniformly distributed between P (1 − TF − DR/2) and P (1 − TF + DR/2) (as suggested
in [12]), where TF and DR are the tardiness factor of jobs and dispersion range of due dates,
respectively, while P is a lower bound of the makespan on the flowshop with unlimited buffer [19]
defined as:

P = max

{

max
1≤v≤m

{ n
∑

k=1

pkv + min
1≤k≤n

{ v−1
∑

q=1

pkq

}

+ min
1≤k≤n

{ m
∑

q=v+1

pkq}

}}

, max
1≤k≤n

{ m
∑

v=1

pkv

}}

.

The scenarios represent different configurations by varying TF and DR, as follows:

Scenario 1: low tardiness factor TF = 0.2 and small due date dispersion range DR = 0.6,

Scenario 2: low tardiness factor TF = 0.2 and wide due date range DR = 1.2,

Scenario 3: high tardiness factor TF = 0.4 and small due date range DR = 0.6,

Scenario 4: high tardiness factor TF = 0.4 and wide due date range DR = 1.2.

For each combination of n, m and scenario, we considered ten different randomly generated in-
stances. Therefore, as a whole, the test set consists of 8× 4× 10 = 320 problems. We set the value
of the big M parameter in formulations MUB3 and MUB4 as M = 100

∑n
j=1

∑m
k=1

pjk.
Formulations were written in AMPL (IBM ILOG AMPL 12.1.0) modelling language and solved

using CPLEX 12.1. The experiments were performed in a 2.4GHz Intel Core2 Quad Q6600 with
4.0GB of RAM memory and Linux Operating System. The computer implementation of the models
as well as the data sets used in our experiments and the solutions found are publicly available for
benchmarking purposes at [23].

Table 3 shows the results of solving formulations MUB1, MUB2, MUB3 and MUB4 for all
the instances in the test set. In the table, “CPU Time” means computational CPU time in seconds
used by CPLEX to solve the problem, “Simplex It” is the total number of simplex iterations, and
“B&B nodes” is the total number of explored nodes in the branch and bound tree. Each cell in the
table represents 40 instances (4 scenarios and 10 instances per scenario). The mean was computed
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excluding 2 instances from the top and 2 instances from the bottom tails of the CPU times. From
the table, it can be seen that formulations MUB1 and MUB2 are very similar, when referring to
the used CPU time. On the other hand, solving instances of formulations MUB3 and MUB4 is
very time consuming. As MUB3 and MUB4 have half the number of integer variables of MUB1

and MUB2, the experiment confirms that, at least for the present set of test instances, it is not true
that the computational effort needed to solve a MILP problem is proportional to the number of
binary variables of the model, as claimed in [11]. When comparing the effort needed to solve MUB3

and MUB4, it is not possible to confirm either the claim that replacing regular constraints by new
variables with lower and upper bounds (as in the modification to the Manne’s model suggested by
Liao [9]) makes the subproblems easier to be solved using CPLEX. This result may be related, as
pointed out in [18], to the chosen value for M that greatly affects the solver performance.

A note on solving the large instances using models MUB3 and MUB4 is in order. Table 3
shows that those models need one order of magnitude more computational time to be solved when
n = 10 and m = 10. Moreover, in instance with n = 10, m = 10, scenario 2, 8-th seed of both
models, CPLEX solver with its default parameters reported as final point a non-integer solution
with objective function value 1148.99678 (the optimal value of this instance is 1162). As pointed
out in [18], the performance of the solver when applied to solve those models, is strongly related to
the choice of the big M parameter in (23), (24) and (33). In [18], the authors mention that better
performances were achieved for large values of M . However, our numerical experiments suggested
that, due to rounding issues and scaling, large values of M prevent the solver from finding optimal
integer solutions in many cases. Therefore, for using models MUB3 and MUB4, a user should face
the problem of setting an adequate value for parameter M capable of providing optimal solutions
in a reasonable computational time.

Model MUB1 Model MUB2

n m CPU Time Simplex It B&B nodes CPU Time Simplex It B&B nodes

5 3 0.03 131.03 14.17 0.02 111.89 10.33
10 3 0.61 7,517.03 533.08 0.49 7,341.31 497.03
10 7 1.94 25,943.47 1,082.28 1.65 23,295.50 1,093.39
10 10 4.59 66,336.97 2,065.44 3.65 51,774.64 2,037.33
15 3 10.81 194,452.58 8,230.92 9.63 159,715.39 7,343.39
15 7 91.25 1,501,181.78 34,280.94 75.50 1,207,768.81 36,477.86
15 10 281.25 4,506,249.72 86,486.28 227.75 3,566,364.53 91,435.28
20 3 105.90 1,719,383.14 68,800.81 89.59 1,456,790.72 54,698.81

Model MUB3 Model MUB4

n m CPU Time Simplex It B&B nodes CPU Time Simplex It B&B nodes

5 3 0.05 182.31 22.17 0.05 331.08 33.17
10 3 2.11 37,891.92 2,956.08 3.28 58,925.89 5,075.83
10 7 27.90 316,057.22 28,688.97 39.45 461,485.92 44,965.47
10 10 40.17 417,254.75 32,041.25 61.87 635,131.11 50,661.58

Table 3: Numerical evaluation of formulations MUB1, MUB2, MUB3 and MUB4.

Table 4 shows the results of solving formulations MZB1 and MZB2 for all the instances in the
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test set. From the table, it can be seen that these formulations are very similar, MZB1 been a
slightly easier to be solved in the smaller cases while the opposite situation occurs in the larger
instances. The quotients between the number of branch and bound nodes used to solve models
MZB1 and MZB2 are 1.32, 1.10, 0.99, 1.00, 1.10, 0.97, 0.94 and 1.13, for each of the instances
dimensions listed in the table, respectively. Their average is 1.07, showing that 7% more nodes need
to be explored in the branch and bound tree to solve model MZB1 in comparison with MZB2.
The average number of simplex iterations needed to solve each node of the branch and bound tree
is 38.91 for model MZB1 and 32.81 for model MZB2. Both models have the same binary variables,
while model MZB2 has fewer continuous variables and more constraints than model MZB1. It
seems that this situation helps to reduce the number of explored nodes and the number of simplex
iterations needed to solve each node.

Model MZB1 Model MZB2

n m CPU Time Simplex It B&B nodes CPU Time Simplex It B&B nodes

5 3 0.02 147.56 14.72 0.04 154.50 11.17
10 3 0.79 12,171.28 753.50 0.94 12,850.72 685.78
10 7 2.67 39,232.25 1,561.97 3.08 37,722.58 1,578.14
10 10 6.06 101,268.08 3,058.47 6.86 90,915.25 3,073.31
15 3 20.33 392,951.31 14,895.53 21.10 331,480.81 13,569.50
15 7 203.06 3,334,785.25 71,643.31 188.79 2,740,222.69 74,074.36
15 10 645.71 9,658,414.00 179,901.81 629.83 8,440,086.14 190,989.08
20 3 558.15 8,680,575.50 299,238.36 458.06 6,320,653.61 263,867.06

Table 4: Numerical evaluation of formulations MZB1 and MZB2.

5 Concluding remarks

In [2], it is stated that the problem solution time using branch and bound algorithms is unpredictable
and that it depends on the numerical values of data. In the tests conducted, it could be noted that
several factors interact, in addition to the number of binary variables, so that favorable or adverse
conditions can be established to solve the model. That is, the time to solve a branch and bound
algorithm does not have a direct relationship with the size of the model, although it is one of the
factors involved in this relationship.

Observing the numerical results, it can be seen that the number of binary variables by itself
does not indicate precisely the level of difficulty in solving mixed integer problems, contradicting
the claims in [11]. This can be confirmed by the analysis of Table 3, which make it clear that
formulations with a small number of binary variables (MUB3 and MUB4) took longer to achieve
an optimal solution in the various scenarios analyzed.

Our numerical study strongly suggests that models based on n2 positioning binary variables xij ,
named MUB1, MUB2, MZB1 and MZB2, are easier to be solved than models based on n(n−1)/2
precedence binary variables zij , named MUB3 and MUB4. The experiments also seem to suggest
that, for models with the same number of binary variables, the ones with similar or less number of
continuous variables and more constraints (MUB2 versus MUB1 in the unlimited buffer case, and
MZB2 versus MZB1 in the zero buffer case) are slightly easier to be solved.
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