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Abstract In this paper, we address the Constrained Two-dimensional Rectangular Guillotine Single
Large Placement Problem (2D R CG SLOPP). This problem involves cutting a rectangular object to
produce smaller rectangular items from orthogonal guillotine cuts.In addition, there is an upper limit
on the number of copies that can be produced of each item type. To model this problem, we propose a
new compact integer non-linear programming (INLP) formulation and obtain an equivalent integer linear
programming (ILP) formulation from it. Additionally, we developed a procedure to reduce the numbers of
variables and constraints of the ILP formulation, without loss of optimality. From the ILP formulation, we
derive two new compact models for particular cases of the 2D R CG SLOPP, which consider only 2-staged
or 1-group patterns. Finally, as a specific solution method for the 2D R CG SLOPP, we apply Benders
decomposition to the proposed ILP formulation and develop a branch-and-Benders-cut algorithm. All
proposed approaches are evaluated through computational experiments using benchmark instances and
compared with other formulations available in the literature. The results show that the new formulations
are appropriate in scenarios characterized by few item types that are large with respect to the object’s
dimensions.

Keywords Cutting & packing problems · Constrained two-dimensional guillotine cuts · Integer
programming models · branch-and-Benders-cut algorithm.

1 Introduction

Cutting operations in manufacturing industries can be seen as a policy for economies of scale in the
purchase and storage of raw material (objects), or even to avoid risks of object unavailabilities in future
purchases. In fact, cutting a large stocked object to produce the required items of demands known a
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posteriori is often a safer economical policy than storing several required items of demand unknown a
priori. These decisions are known as Cutting and Packing (C&P) problems in the field of Operations
Research – see Wäscher et al (2007) for a survey and typology. They may represent the cutting of steel
bars, paper reels, wooden boards, flat glass, stones, among other types of objects and items from different
productive systems. C&P problems can also be analyzed in a wider framework, for instance, in logistical
scenarios (de Queiroz et al, 2017; Côté et al, 2017) or in combination with other manufacturing decisions,
such as layout, setups and lot-sizing issues (Linhares and Yanasse, 2002; Henn and Wäscher, 2013; Melega
et al, 2018).

This paper addresses the Constrained Two-dimensional Rectangular Guillotine Single Large Place-
ment Problem (2D R CG SLOPP). This problem considers cutting a rectangular stocked object of di-
mensions L ×W to produce an assortment of rectangular small item types, while maximizing the total
(usable) area or the sum of the values of the cut items. Each item type k ∈ {1, . . . ,m} is characterized by
its dimensions lk ×wk, value vk, and maximum number of copies to be cut rk. The cutting must satisfy
the following requirements:

i. Cuts are orthogonal to the object’s edges and of guillotine-type, i.e., any small item of the cutting
pattern is obtained by a sequence of edge-to-edge cuts;

ii. The number of guillotine stages is unlimited;
iii. No rotations of items is allowed (fixed orientation);
iv. The items must not overlap each other and must comply with the object dimensions;
v. For each item type k up to rk copies can be produced.

According to Wäscher et al (2007), the 2D R CG SLOPP is a variant of the standard Two-dimensional
Rectangular Single Large Placement Problem (2D R SLOPP) in which the cuts are of the guillotine-type
and there is a limit on the number of copies that can be produced of each item type. Additionally, we
address two special types of guillotine patterns, namely 2-staged and 1-group patterns, which arise in
productive systems in which shorter cycle times are sought even if detrimental to exploitation rates. In
such contexts, cutting patterns with a few guillotine stages are likely to be more relevant than highly-
staged patterns – the number of stages refers to the quantity of 90◦ rotations of the cutting saw. In
2-staged patterns, items are obtained by first cutting horizontal (resp. vertical) shelves that are then
followed by vertical (resp. horizontal) cuts – a shelf is any edge-to-edge cut on the large object. In 1-
group patterns, there are horizontal and vertical shelves, and shelves which are cut in the first stage are
stacked and cut together in the second stage. Fig. 1 illustrates different types of patterns – blank rectangles
represent the items and the hatched areas are waste. The term non-exact refers to the possibility of an
additional cut for splitting an item and waste for guillotine patterns, whereas in the exact case this step is
not allowed. The approaches proposed in this paper can also be used to address the non-fixed orientation
case, if we add a new item type k′ with length wk, width lk, and value vk, for each k ∈ K.

(a) Non-guillotine. (b) Exact 5-staged. (c) Non-exact 2-staged. (d) Exact 1-group.

Fig. 1: Different types of two-dimensional cutting patterns.

1.1 Related work

The 2D R CG SLOPP is generally addressed by search tree based strategies due to an intrinsic charac-
teristic of the problem: each cut on a rectangle always generates two smaller rectangles. The literature
presents two main approaches for search trees: top-down and bottom-up approaches. The former considers
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cut operations over the original object (and the residual sheets) to obtain the most valuable subset of
demanded pieces. The latter takes the small pieces (and the built sub-patterns) belonging to the most
valuable subset of demanded pieces and combines them, horizontally and vertically, until it obtains a
large rectangle that fits into the original object. Christofides and Whitlock (1977) developed the first
solution method for the 2D R CG SLOPP, which consists of an exact depth-first search algorithm (top-
down approach). The solution space is represented by a tree that enumerates all possible cutting patterns
and the branches represent the guillotine cuts and the nodes represent the small items. To restrict the
search, they used bounds generated by a transportation problem and a one-dimensional knapsack prob-
lem. Christofides and Hadjiconstantinou (1995) improved this method using bounds provided by a relaxed
space state formulation based on dynamic programming and a procedure based on the sub-gradient al-
gorithm. Morabito and Arenales (1996) considered this approach in the context of AND/OR graph.

In the context of bottom-up approaches, Wang (1983) proposed two combinatorial algorithms that
successively combine small items through horizontal and vertical builds. Additionally, they proposed two
indicators to reduce the amount of possible builds and to assess a feasible solution with respect to the op-
timal value. These algorithms were revisited and improved by Oliveira and Ferreira (1990), Viswanathan
and Bagchi (1993) and Parada et al (1995). The 2D R CG SLOPP is also addressed using dynamic
programming based techniques, as presented in Hifi (2004), Morabito and Pureza (2010), Dolatabadi
et al (2012), and Velasco and Uchoa (2018). Furthermore, there are meta-heuristic approaches based on
Simulated Annealing and Tabu Search frameworks (Parada et al, 1998; Alvarez-Valdés et al, 2002).

Although the 2D R CG SLOPP has been addressed by different approaches, it took more than 30
years for a mathematical formulation to appear in the literature that represents the (unconstrained or
constrained) guillotine case – and there are only two formulations up to this moment. To the best of
our knowledge, the first formulation was proposed by Ben Messaoud et al (2008), who proved a theorem
for characterizing a guillotine pattern and, based on this result, proposed an ILP formulation for the
Guillotine Strip Packing Problem (GSPP). The authors mentioned that this formulation is restricted to
scenarios with just a few small items – they considered computational experiments with 5 items. More
recently, Furini et al (2016) proposed a pseudo-polynomial ILP formulation for the 2D R CG SLOPP,
which can be seen as a generalization of the one-cut model proposed by Dyckhoff (1981), originally for the
one-dimensional case. This model is non-compact and thus requires an enumerative variable procedure in
a preprocessing phase, to enumerate all possible (relevant) cut decisions for any rectangle (large object
or residual sheets). The authors also proposed a solution method based on this formulation related to
a variable pricing technique. Their computational experiments used instances from the literature and
showed that the method was capable of solving medium-size instances.

Regarding 2-staged patterns, we mention the mathematical formulations proposed by Lodi and Monaci
(2003), Silva et al (2010) and Puchinger and Raidl (2007); and the column generation based approaches
developed by Gilmore and Gomory (1965) and Belov and Scheithauer (2006) – see Silva et al (2010)
for a detailed description. Silva et al (2010) and Puchinger and Raidl (2007) also proposed models for
3-staged patterns. In addition, there are a few approaches to directly address checkerboard patterns (p-
groups) – any p-group pattern, with p > 1, contains p sub-patterns of 1-group type. For 1-group patterns,
see the INLP model by Morabito and Arenales (2000) and the ILP models by Yanasse and Morabito
(2006); whereas for 2-group and 3-group patterns, see the ILP models of Yanasse and Morabito (2008).
Additionally, Yanasse and Katsurayama (2005, 2008) proposed enumerative algorithms for these types
of cutting patterns.

1.2 Our contributions

The main contributions of this paper are: (i) the proposition of an INLP formulation and one equiva-
lent ILP formulation for the 2D R CG SLOPP, which are extensions of the ILP formulation of Beasley
(1985) to the constrained guillotine case; (ii) the development of an enumerative variable procedure
(EVP) for the ILP formulation that, without loss of optimality, leads to fewer variables and constraints;
(iii) the proposition of new compact models based on the proposed ILP formulation, for the special
cases of the 2D R CG SLOPP that consider 2-staged or 1-group patterns; (iv) the development of a
branch-and-Benders-cut (BBC) algorithm, based on applying Benders decomposition to the proposed
ILP formulation. In addition, we show how to adapt the formulation by Ben Messaoud et al (2008)
to model the 2D R CG SLOPP. In advance, we highlight that our approaches stand out in scenarios
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characterized by few item types that are large with respect to the object’s dimensions. We also note
the relevance of developing models for optimization problems. A model contributes to the characteriza-
tion and understanding of the problem. In addition, it may motivate the development of new solution
methods based on decomposition techniques (such as Lagrangean relaxation or Dantzig-Wolfe/Benders
decomposition), matheuristic methods and even hybrid methods that can enable the solution of larger
instances of the problem.

1.3 Organization of the paper

The remainder of this paper is organized as follows. In Section 2 we propose a compact INLP formulation
and a related compact ILP formulation for the 2D R CG SLOPP, and develop the EVP that reduces
the number of variables of the ILP formulation. In Section 3, we adapt the proposed ILP formulation to
strictly generate 2-staged or 1-group patterns, which are special cases of guillotine patterns. Section 4
presents the proposed BBC algorithm to solve the 2D R CG SLOPP. Section 5 discusses the computa-
tional experiments carried out to assess the proposed formulations and methods and highlights the most
appropriate scenarios for each of them. We conclude with final remarks in Section 6.

2 Mathematical formulation for the 2D R CG SLOPP

This section is divided into three parts. In Section 2.1, we propose a compact INLP formulation by
extending the ILP model of Beasley (1985) by adding two sets of variables and constraints related to
horizontal and vertical cuts, which are used to ensure the generation of guillotine patterns only. Then, in
Section 2.2, we develop a compact ILP formulation that is equivalent to the proposed INLP formulation.
Section 2.3 states the algorithm of the EVP, which relies on the discretization technique of the normal
sets (Herz, 1972) to reduce the numbers of variables and constraints in the ILP model. In these sections,
we use the following sets and parameters to represent the 2D R CG SLOPP:

– L and W are, respectively, the length and width of the original large object;
– K = {1, . . . ,m} is the set of small item types, where m is the number of item types;
– lk, wk, and vk are, respectively, the length, width, and value of the item type k ∈ K;
– rk is the maximum number of copies that can be produced item type k.

2.1 An INLP formulation based on Object’s discretization

Beasley (1985) proposed a formulation that allocates small items (according to their left-lower corners)
to points of a discretized object, using constraints to avoid the overlap between any pair of allocated
items. According to this approach, we assume without loss of generality that the input data consists of
positive integers. Let set R = {(i, j) ∈ Z2 | 0 ≤ i ≤ L, 0 ≤ j ≤ W} be the discretization of the large
object, assuming a complete discretization, and set Rk = {(i, j) ∈ R | 0 ≤ i ≤ L− lk, 0 ≤ j ≤W −wk} be
the allowed points for allocating the left-lower corner of an item of type k to be allocated. The decision
variable related to the allocation of an item of type k at position (i, j) is defined in Equation (1). The
formulation has also decision variables related to horizontal (hii′j) and vertical (vijj′) cuts, respectively
defined in Equations (2) and (3). Fig. 2 illustrates these variables.

xkij =

{
1, if an item type k is allocated at position (i, j),

0, otherwise,
k ∈ K, (i, j) ∈ Rk. (1)

hii′j =

{
1, if a horizontal cut is performed from (i, j) to (i′, j),

0, otherwise,
(i, j) ∈ R, (i′, j) ∈ R, i < i′. (2)

vijj′ =

{
1, if a vertical cut is performed from (i, j) to (i, j′),

0, otherwise,
(i, j) ∈ R, (i, j′) ∈ R, j < j′. (3)
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Fig. 2: Illustration of variables xkij , hii′j and vijj′ .

Let Sh
kij be the set of all horizontal segments (i′, i′′, j) that cross the allocated item represented by

variable xkij , as defined in Equation (4) and illustrated in Fig 3a. Similarly, let Sv
kij be the corresponding

set for vertical segments, which is defined in Equation (5) and illustrated in Fig 3b.

Sh
kij ={(i′, i′′, j′) ∈ Z3 | j < j′ < j + wk, 0 ≤ i′ < i + lk,max{i, i′} < i′′ ≤ L}, k ∈ K, (i, j) ∈ Rk. (4)

Sv
kij ={(i′, j′, j′′) ∈ Z3 | i < i′ < i + lk, 0 ≤ j′ < j + wk,max{j, j′} < j′′ ≤W}, k ∈ K, (i, j) ∈ Rk. (5)
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j

(a) Set Sh
kij .
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W

k

i

j

(b) Set Sv
kij .

Fig. 3: Illustrations of a few segments of Sh
kij and Sv

kij .

To avoid the overlapping between any pair of allocated items, we create the following parameter, for
each k ∈ K, (i, j) ∈ Rk and (i′, j′) ∈ R, with i′ < L and j′ < W :

fkiji′j′ =

{
1, if 0 ≤ i ≤ i′ ≤ i + lk − 1 < L and 0 ≤ j ≤ j′ ≤ j + wk − 1 < W ,

0, otherwise.

Model (6) defines the compact INLP formulation for the 2D R CG SLOPP. Regarding the decision
variables in the model, we highlight that: (i) the objective function and the constraints that ensure the
non-overlapping of allocated items and the constrained case are based on the allocation variables xkij

only, similarly to Beasley (1985); (ii) the cut variables hii′j and vijj′ are used to create a guillotine
framework on the large object; (iii) the allocation and cut variables are used together to avoid cuts over
allocated items, and to limit allocations to cut corners; together with the other constraints, they ensure
the guillotine restriction. Variables v00W , vL0W , h0L0 and h0LW are restricted to the unitary value, i.e.,
the object’s borders are considered as cuts in this model.

Max
∑
k∈K

∑
(i,j)∈Rk

vkxkij . (6a)
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s.t.∑
k∈K

∑
(i,j)∈Rk

fkiji′j′xkij ≤ 1, (i′, j′) ∈ R, i′ < L, j′ < W, (6b)

∑
(i,j)∈Rk

xkij ≤ rk, k ∈ K, (6c)

hi1i2j ≤
∑

0≤i′1,i
′′
1≤i1;

i2≤i′2,i
′′
2≤L;

0≤j1<j<j2≤W

∑
0≤j′1,j

′′
1≤j1;

j2≤j′2,j
′′
2≤W

hi′1i
′
2j1

hi′′1 i
′′
2 j2

vi1j′1j′2vi2j′′1 j′′2 , (i1, j) ∈ R, (i2, j) ∈ R,

i1 < i2, 0 < j < W, (6d)

vij1j2 ≤
∑

0≤j′1,j
′′
1≤j1;

j2≤j′2,j
′′
2≤W ;

0≤i1<i<i2≤L

∑
0≤i′1,i

′′
1≤i1;

i2≤i′2,i
′′
2≤L

hi′1i
′
2j1

hi′′1 i
′′
2 j2

vi1j′1j′2vi2j′′1 j′′2 , (i, j1) ∈ R, (i, j2) ∈ R,

0 < i < L, j1 < j2, (6e)∑
(i,′i′′,j′)∈Sh

kij

hi′i′′j′ +
∑

(i′,j′,j′′)∈Sv
kij

vi′j′j′′ ≤ (1− xkij)Mkij , k ∈ K, (i, j) ∈ Rk, (6f)

xkij ≤
∑

0≤i′≤i;
i+lk≤i′′≤L

hi′i′′j , k ∈ K, (i, j) ∈ Rk, (6g)

xkij ≤
∑

0≤j′≤j;
j+wk≤j′′≤W

vij′j′′ , k ∈ K, (i, j) ∈ Rk. (6h)

xkij ∈ {0, 1}, k ∈ K, (i, j) ∈ Rk, (6i)

hii′j ∈ {0, 1}, (i, j) ∈ R, (i′, j) ∈ R, i < i′, (6j)

vijj′ ∈ {0, 1}, (i, j) ∈ R, (i, j′) ∈ R, j < j′. (6k)

The objective function (6a) consists of maximizing the total value of the allocated items. Constraints
(6b) avoid overlaps between any pair of allocated items. Constraints (6c) limit the cutting pattern to the
constrained case. We note that the model {Max (6a), s.t. (6b), (6c), (6i)} is exactly ILP formulation
proposed by Beasley (1985) for the constrained non-guillotine case. Therefore, the cut variables and
related constraints have to be included to generate the guillotine restriction.

Model (6) is non-linear due to constraints (6d) and (6e), which present the sums of products of four
binary variables on their right-hand-side (rhs). These constraints create a guillotine framework in the
object. A guillotine cut requires the existence of the enabling rectangle in the object, over which an edge-
to-edge cut is made. Thus, a horizontal or vertical cut may exist only if there is an enabling rectangle that
supports this segment. Fig. 4 outlines these constraints using the rectangle (i1, i2, j1, j2) that is enabling
because its edges are cut, therefore allowing guillotine cuts within it. Therefore, if the rhs of a constraint
(6d) is at least one, the corresponding variable hii′j may assume value zero or one; but if the rhs of such
a constraint is zero, then hii′j = 0. The same analysis holds for constraints (6e).

The disjunctive constraints (6f) forbid cuts over an allocated item (i.e. when xkij = 1), where Mkij

is a sufficiently large parameter that can be set as the sum of the cardinality of sets Sh
kij and Sv

kij . Fig.
5a illustrates these constraints. Constraints (6g) and (6h) limit the item allocations to corners (vertices)
formed from horizontal and vertical cuts, as depicted in Fig. 5b. These constraints enforce the generation
of the guillotine framework, and therefore the non-guillotine patterns are eliminated from the solution
space. Constraints (6i) to (6k) impose the domain of the decision variables.

In preliminary computational experiments, we considered an efficient constraint programming software
to solve Model (6) to optimality, namely the CPOptimizer of the IBM CPLEX Optimization Studio
v.12.8. However, it turned out to be very ineffective for benchmark instances from the literature, as the
numbers of variables and constraints in the model quickly grow as the object’s dimensions increase. As
future research, one could explore the use of other INLP software, such as ANTIGONE (Misener and
Floudas, 2013, 2014), Baron (Tawarmalani and Sahinidis, 2005) or SCIP (Vigerske et al, 2012), as a
general purpose solver for this model. The experience with CPOptimizer motivated us to develop a linear
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Fig. 4: Illustration of constraints (6d) and (6e).
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j

(a) Constraints (6f) forbid cuts over xkij =
1.

L

W

k

lk

wk

ii′ i′′

hi′i′′j
j
j′

j′′

vij′j′′

•

•

• •

(b) Constraints (6g) and (6h).

Fig. 5: Illustrations of constraints (6f), (6g) and (6h).

version of Model (6). In a first attempt, we represented each possible rectangle of the rhs of constraints
(6d) and (6e) as a binary variable that was introduced in the model and linked to generated cuts, but
the number of variables was too large and undermined this approach. Additionally, we tried different
types of relaxations over these constraints, but they were with loss of generality and we could not find
an effective way to restore them. Finally, we obtained the ILP formulation described in the next section,
which seems to us a more promising alternative.

2.2 An equivalent ILP formulation based on the object’s discretization

To obtain an equivalent ILP formulation from Model (6), we ensure a new set of variables that represent
the enabled and disabled rectangles and, hence, can be used to ensure the guillotine cuts. For each
(i1, j1), (i2, j2) ∈ R, with i1 < i2 and j1 < j2, let the binary variable pi1i2j1j2 represent a (sub)area of
the original plate, as defined in Equation (7), which may assume unitary value if its borders are cut.

pi1i2j1j2 =

{
1, if the rectangle of left-lower corner (i1, j1) and right-upper corner (i2, j2) is enabled,

0, otherwise,

(7)

The non-linear constraints (6d) and (6e) of Model (6) can be replaced, without loss of generality, by
the linear constraints (8).

pi1i2j1j2 ≤
∑

i′1≤i1,i2≤i′2

hi′1i
′
2j1

, (i1, j1) ∈ R, (i2, j2) ∈ R, i1 < i2 and j1 < j2, (8a)
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pi1i2j1j2 ≤
∑

i′1≤i1,i2≤i′2

hi′1i
′
2j2

, (i1, j1) ∈ R, (i2, j2) ∈ R, i1 < i2 and j1 < j2, (8b)

pi1i2j1j2 ≤
∑

j′1≤j1,j2≤j′2

vi1j′1j′2 , (i1, j1) ∈ R, (i2, j2) ∈ R, i1 < i2 and j1 < j2, (8c)

pi1i2j1j2 ≤
∑

j′1≤j1,j2≤j′2

vi2j′1j′2 , (i1, j1) ∈ R, (i2, j2) ∈ R, i1 < i2 and j1 < j2, (8d)

hi1i2j ≤
∑

j1<j≤b(j1+j2)/2c

pi1i2j1j2 , (i1, j) ∈ R, (i2, j) ∈ R, i1 < i2, (8e)

vij1j2 ≤
∑

i1<i≤b(i1+i2)/2c

pi1i2j1j2 , (i, j1) ∈ R, (i, j2) ∈ R, j1 < j2, (8f)

pi1i2j1j2 ∈ {0, 1}, (i1, j1) ∈ R, (i2, j2) ∈ R, i1 < i2, j1 < j2. (8g)

Constraints (8a) to (8d) impose that variable pi1i2j1j2 assumes the value of 1 if the rhs of all the
four corresponding constraints are at least 1, i.e., the borders of the rectangle (i1, i2, j1, j2) are cut;
otherwise, pi1i2j1j2 assumes the value of 0. Constraints (8e) and (8f) allow guillotine cuts only over
enabled rectangles. They ensure that the variable related to a horizontal or vertical cut assumes the
value of 1 only if the corresponding constraint has an rhs greater than or equal to 1. Note that these
constraints also impose that the horizontal and vertical cuts are up to the half of an enabled rectangle,
where bxc is the largest integer smaller than or equal to x. This assumption is without loss of optimality
as the large object is homogeneous and contributes to avoid some symmetrical cutting patterns in the
solution space (Christofides and Whitlock, 1977) – the same assumption can be made in the guillotine cuts
of Model (6). Constraints (8g) impose the domain of the decision variables. Using all these constraints,
we obtain Model (9), which is a compact ILP formulation for the 2D R CG SLOPP.

Max (6a), (9a)

s.t. (6b)− (6c), (6f)− (6k), (8a)− (8g) (9b)

Similarly to the non-linear Model (6), we assume that all borders of the large object are cut in Model
(9). Thus, the corresponding variables are fixed at unitary value. Also, variable p0L0W may be fixed at
1, because the original rectangle (object) is enabled. We note that valid inequalities could be developed
to link variables xkij to pi1i2j1j2 and, hence, enhance the LP relaxation of the model. However, since the
number of constraints in the model is already considerably large, we decided to consider this implicitly
using the algorithm proposed in the next section.

2.3 Enumerative variable procedure

The literature related to C&P problems typically recurs to the discretization of the normal sets instead
of the complete discretization – such as in Sections 2.1 and 2.2 – for decisions related to allocations and
guillotine cuts (Herz, 1972; Scheithauer, 2018). To avoid symmetrical patterns, this technique considers
only the integer positions representing combinations of the small items and defines the cutting patterns
using left-bottom justified items only. For the 2D R CG SLOPP, the domain of variable xkij can be
modified, without loss of generality, according to the redefinition of set R as in Equation (10).

R = {(i, j) ∈ Z2 | i ∈ X̄, j ∈ Ȳ }, (10)

where:

X̄ =

{
qx | qx =

∑
k∈K

nklk, 0 ≤ qx ≤ L− min
k∈K
{lk}, nk ∈ N, nk ≤ rk

}
∪ {L} and

Ȳ =

{
qy | qy =

∑
k∈K

nkwk, 0 ≤ qy ≤W − min
k∈K
{wk}, nk ∈ N, nk ≤ rk

}
∪ {W}

represent the discretization of the normal sets for the vertical and horizontal cuts, respectively.
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We now propose an enumerative variable procedure (EVP) that focuses on reducing not only the
number of variables xkij , but also the number of variables hii′j , vijj′ , and pi1i2j1j2 , in Model (9). To
achieve that, without loss of generality, the procedure relies on the discretization of normal sets and some
properties of the problem. As outputs, the EVP determines the sets X , H, V and P that correspond
to the reduced sets of indices of variables xkij , hii′j , vijj′ , and pi1i2j1j2 , respectively. The procedure is
defined according to the following assumptions:

1. the horizontal cut (i1, i2, j) must belong to H, according to the rectangle (i1, i2, j1, j2), if each of the
following conditions hold:
– the cut is up to the half of the rectangle (j1 < j ≤ b(j1 + j2)/2c);
– the lower sub-rectangle (i1, i2, j1, j) fits at least one small item;
– the upper sub-rectangle (i1, i2, j, j2) fits at least one small item;
– the value j− j1 belongs to Ȳ , which assumes that each horizontal cut will always generate a lower

sub-rectangle (or sub-pattern) with a width equal to a linear combination of item types’ width;
and

– the value j2 − j belongs to Ȳ or j2 = W , which assumes that each horizontal cut will always
generate: (i) an upper sub-rectangle (or sub-pattern) with a width equal to a linear combination
of item types’ width, or (ii) allows the existence of patterns which lead to trim cuts;

2. the vertical cut (i, j1, j2) must belong to V, according to the rectangle (i1, i2, j1, j2), if each of the
following conditions hold:
– the cut is up to the half of the rectangle (i1 < i ≤ b(i1 + i2)/2c);
– the left sub-rectangle (i1, i, j1, j2) fits at least one small item;
– the right sub-rectangle (i, i2, j1, j2) fits at least one small item;
– the value i − i1 belongs to X̄, which assumes that each vertical cut will always generate a left

sub-rectangle (or sub-pattern) with a length equal to a linear combination of item types’ length;
and

– the value i2− i belongs to X̄ or i2 = L, which assumes that each vertical cut will always generate:
(i) a right sub-rectangle (or sub-pattern) with a length equal to a linear combination of item types’
length, or (ii) allows the existence of patterns which lead to trim cuts;

3. the domain (i1, i2, j1, j2) must belong to P if the area (i2 − i1) × (j2 − j1) is able to fit at least two
small items.

The proposed EVP is described in Algorithm 1. Fig. 6 shows two illustrative examples of possible
cutting patterns considered by the EVP that highlight: (i) if i2 < L and j2 < W , the formulation only
needs to consider a rectangle pi1i2j1j2 with length (i2 − i1) and width (j2 − j1) belonging to X̄ and Ȳ ,
respectively; and (ii) if i2 = L and j2 = W , we allow trim cuts in the upper or right rectangles.

i1 i2

j1

j2

•

•

•

•

hi1i2j
j

(a) j − j1 ∈ Ȳ and j2 − j ∈ Ȳ .

trim cut

i1 i2

j1

W

•

•

•

•

hi1i2j
j

(b) j − j1 ∈ Ȳ and W − j /∈ Ȳ .

Fig. 6: Illustrations of possible cutting patterns considered by the EVP.

We emphasize that Model (9) can be stated without loss of generality using domains X , H, V and
P to define all its variables and constraints. The improvements discussed in this section are used in the
computational experiments presented in Section 5.
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Algorithm 1: Enumerative variable procedure for a large object.

Data: L, W , m, K, (lk, wk, vk, rk) for all k ∈ K, and discretization sets X̄ and Ȳ .
1 X = ∅, H = {(0, L, 0), (0, L,W )} , V = {(0, 0,W ), (L, 0,W )}, P = {(0, L, 0,W )}, auxP = {(0, L, 0,W )}
2 for k ∈ K do
3 for i ∈ X̄ do
4 for j ∈ Ȳ do
5 if {(i + lk ≤ L) and (j + wk ≤W )} then
6 X = X ∪ (k, i, j)

7 while auxP is not empty do
8 select a rectangle (i1, i2, j1, j2) ∈ auxP and remove it from auxP

// horizontal cuts

9 for j ∈ Ȳ | j1 < j ≤ b(j1 + j2)/2c do
10 if each of the rectangles (i1, i2, j1, j) and (i1, i2, j, j2) fits at least one small item,

11 and j − j1 ∈ Ȳ and (j2 − j ∈ Ȳ or j2 = W ) then
12 H = H ∪ (i1, i2, j)
13 if rectangle (i1, i2, j1, j) /∈ P and fits at least two small items then
14 P = P ∪(i1, i2, j1, j), auxP = auxP ∪(i1, i2, j1, j)

15 if rectangle (i1, i2, j, j2) /∈ P and fits at least two small items then
16 P = P ∪(i1, i2, j, j2), auxP = auxP ∪(i1, i2, j, j2)

// vertical cuts

17 for i ∈ X̄ | i1 < i ≤ b(i1 + i2)/2c do
18 if each of the rectangles (i1, i, j1, j2) and (i, i2, j1, j2) fits at least one small item,

19 and i− i1 ∈ X̄ and (i2 − i ∈ X̄ or i2 = L) then
20 V = V ∪ (i, j1, j2)
21 if rectangle (i1, i, j1, j2) /∈ P and fits at least two small items then
22 P = P ∪(i1, i, j1, j2), auxP = auxP ∪(i1, i, j1, j2)

23 if rectangle (i, i2, j1, j2) /∈ P and fits at least two small items then
24 P = P ∪(i, i2, j1, j2), auxP = auxP ∪(i, i2, j1, j2)

Result: Domains X , H, V and P.

3 Mathematical formulations for generating 2-staged and 1-group patterns

In this section, we propose ILP formulations for two particular variants of the 2D R CG SLOPP, which
strictly consider special cases of guillotine patterns, known as 2-staged and 1-group patterns. These
formulations are obtained from Model (9) by removing the set of variables pi1i2j1j2 and modifying the
domain of the cut variables, which contributes to simplifying a few sets of constraints.

3.1 Formulation for 2-staged patterns

The 2-staged guillotine cutting patterns are formed by horizontal or vertical shelves in the object, from
which the items are cut. Considering the case of horizontal shelves, the horizontal cut variable hijj′ can
be redefined as in Equation (11), because in this context the horizontal cuts are always edge-to-edge in
the original object.

hj =

{
1, if a horizontal cut is performed from (0, j) to (L, j),

0, otherwise,
0 ≤ j < W. (11)

An allocated small item cannot cross over a horizontal cut to form a horizontal shelf. Hence, as the
allocated small items inside a shelf do not overlap each other, the vertical cuts are no longer needed.
Model (12) is a compact ILP formulation for the 2D R CG SLOPP with non-exact 2-staged patterns,
obtained from Model (9). We eliminate the sets of variables vijj′ and pi1i2j1j2 , whereas variables xkij are
kept as defined in Section 2.



Models for the 2D R SLOPP with guillotine cuts and constrained pattern 11

Max (6a),

s.t.

(6b), (6c), (6i),∑
j<j′<j+wk

hj′ ≤ (1− xkij)Mkij , k ∈ K, (i, j) ∈ Rk, (12a)

xkij ≤ hj , k ∈ K, (i, j) ∈ Rk, (12b)

hj ∈ {0, 1}, 0 ≤ j < W. (12c)

Constraints (12a) ensure that no horizontal cut crosses over an allocated item, where the parameter
Mkij can be set as wk−1. Constraints (12b) limit the allocations over a horizontal cut. Constraints (12c)
impose the domain of variable hj . The other constraints are as previously described. Similarly to the
models of Section 2, the lower border of the object is considered cut (i.e. h0 = 1).

For a 2-staged pattern formed by vertical shelves, we can carry out a similar analysis, but converting
variables vii′j into vi, whereas variables hijj′ remain as in the original formulation. Another possibility
is to interchange the length and the width of each item type, before using Model (13) to solve a given
instance.

Model (12) can be reformulated using a reduced number of variables and constraints, which can
contribute to its average performance on general purpose solvers. After this reduction, the resulting
formulation is given by Model (13).

Max (6a),

s.t.

(6b), (6c), (6i), (12c),∑
k∈K

∑
0≤i≤L−lk

∑
j′<j<j′+wk

xkij′ ≤ (1− hj)M1
j , 0 < j < W, (13a)

∑
k∈K

∑
0≤i≤L−lk

xkij ≤M2
j hj , 0 < j < W, (13b)

Constraints (13a) replace constraints (12a) of Model (12) and ensure that no small item crosses a
horizontal cut. The parameter M1

j can be set as
∑

k∈K(L− lk + 1) ∗ (wk − 1), which is an upper bound
for the left-hand-side (lhs) of the constraint. Fig. 7a illustrates the cases forbidden by these constraints.
Constraints (13b) replace constraints (12b) of Model (12) and limit the allocations that occur over a
horizontal cut, where the parameter M2

j can be set as
∑

k∈K(L− lk + 1).

L

W

k

i

j′

j′ + wk

hj

(a) A horizontal cut over xkij .

L

W

k

i′ i′ + lk

j

vi

(b) A vertical cut over xkij .

Fig. 7: Illustrations of guillotine cuts over an allocated item for 2-staged patterns.
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3.2 Formulation for 1-group patterns

The 1-group cutting pattern is formed only by horizontal and vertical shelves in the object. Therefore,
in addition to horizontal shelves hj , the variable vii′j can be redefined as in Equation (14), because all
vertical cuts also become edge-to-edge in the original object.

vi =

{
1, if a vertical cut is performed from (i, 0) to (i,W ),

0, otherwise,
0 ≤ i < L. (14)

Model (15) is a compact ILP formulation for the 2D R CG SLOPP using only non-exact 1-group
patterns, obtained from the model defined in Section 2.2. The variables xkij remain as defined in Section
2, while variables pi1i2j1j2 are no longer needed because all 1-group cuts lead to a guillotine pattern.

Max (6a),

s.t.

(6b), (6c), (6i), (12b), (12c),∑
j<j′<j+wk

hj′ +
∑

i<i′<i+lk

vi′ ≤ (1− xkij)Mkij , k ∈ K, (i, j) ∈ Rk, (15a)

xkij ≤ vi, k ∈ K, (i, j) ∈ Rk. (15b)

vi ∈ {0, 1}, 0 ≤ i < L. (15c)

Constraints (15a) avoid that any horizontal or vertical cut crosses over an allocated item, where Mkij

is a parameter that can be set as wk + lk− 2. Constraints (15b) forbid the allocations over a vertical cut.
Constraints (15c) impose the domain of variables vi. The other constraints are as previously described.
Similarly to the models of Section 2, the object’s left border is considered cut (v0 = 1).

As in the previous subsection, we can reformulate Model (15) using fewer variables and constraints,
resulting in Model (16), which has a better average performance on general purpose solvers.

Max (6a),

s.t.

(6b), (6c), (6i), (12c), (13a), (13b), (15c),∑
k∈K

∑
0≤j≤W−wk

∑
i′<i<i′+lk

xki′j ≤ (1− vi)N
1
i , 0 < i < L, (16a)

∑
k∈K

∑
0≤j≤W−wk

xkij ≤ N2
i vi, 0 < i < L, (16b)

Constraints (16a) replace the constraints (15a) of Model (15) and ensure that no allocated small item
crosses over a vertical cut, where N1

i is a parameter that can be set as
∑

k∈K(W −wk +1)∗(lk−1), which
is a sufficiently large bound for the lhs of the constraint. Fig. 7b illustrates how these constraints act in
the model. Constraints (16b) replace (15b) and impose that allocations have to occur over a vertical cut,
where the parameter N2

i can be set as
∑

k∈K(W − wk + 1).

As the set of variables pi1i2j1j2 are not present in any model of this section, lines 7 to 24 of Algorithm
1 are no longer needed. Therefore, the cut variables hj and vi should consider only the positions in the
sets X̄ and Ȳ , respectively. It is worth mentioning that we can easily adapt these models to address the
exact case. To do that, we just need to further impose that an item type k can be allocated at position
(i, j), only if the cuts hj′ and vi′ are performed, for j′ = j + wk and i′ = i + lk.
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4 A branch-and-Benders-cut algorithm

As a solution method for the 2D R CG SLOPP, we propose a branch-and-Benders-cut (BBC) algorithm
based on Model (9). It consists of using the Benders decomposition (Benders, 1962) to reformulate
Model (9) and then using a branch-and-cut algorithm to solve the resulting Benders-Master-Problem
(BMP). The generation of Benders cuts is embedded in the branch-and-cut algorithm and hence can be
carried out at each node of the tree. For detailed descriptions and comprehensive surveys on the Benders
decomposition and the BBC algorithm, see e.g. Costa (2005), Rahmaniani et al (2017) and Moreno et al
(2018).

In our method, we use the Benders decomposition to reformulate Model (9), as follows:

1. The BMP is defined by the sets of non-overlapping and constrained case constraints, as presented in
Model (17). Thus, the BMP searches for promising cutting patterns (trial solutions), represented by
the solution vector x̄kij . Notice that the BMP is exactly the ILP formulation proposed by Beasley
(1985) for the constrained non-guillotine case – see Section 2.1.

Max (6a), s.t. (6b), (6c), (6i). (17)

2. Each trial solution obtained from the BMP is checked considering the guillotine restriction using the
Benders-Sub-Problem (BSP), which is defined by Model (18). It consists of the variables hii′j , vijj′

and pi1i2j1j2 and constraints of Model (9) that are not included in the BMP.

Max 0, (18a)

s.t. (6j), (6k), (8), (18b)∑
(i′i′′j′)∈Sh

kij

hi′i′′j′ +
∑

(i′j′j′′)∈Sv
kij

vi′j′j′′ ≤ 0, (k, i, j) ∈ X̄ , (18c)

1 ≤
∑

i′≤i;i+lk≤i′′

hi′i′′j , (k, i, j) ∈ X̄ , (18d)

1 ≤
∑

j′≤j;j+wk≤j′′

vij′j′′ , (k, i, j) ∈ X̄ . (18e)

Constraints (18c)–(18e) are adapted from Model (9) to take into account only the unitary components
of the trial solution x̄kij . Hence, we define them using X̄ = {(k, i, j) | x̄kij = 1}, which is the set of triples
corresponding to the allocated small items in the cutting pattern of this solution. As in the original
formulation, these constraints avoid cuts over the allocated small items and ensure that these items are
allocated at cut corners.

The BBC algorithm works as follows. In a given node of the branch-and-cut tree, every trial solution
x̄kij obtained from the BMP is checked in the BSP. If the BSP is feasible for this solution, then the corre-
sponding cutting pattern is of guillotine-type; thus, the solution is accepted and stored as an incumbent
if it improves the lower bound of the tree. Otherwise, the cutting pattern is of non-guillotine type and
the solution is used to generate a Benders combinatorial cut, given by inequality (19). This inequality is
added to the BMP of the current node, which is then reoptimized.

∑
(k,i,j)∈X̄

xkij ≤ |X̄ | − 1. (19)

As usual in the implementations of the BBC algorithm, we add the Benders cuts as lazy constraints
using callback procedures of the general purpose solver. Hence, the BMP is solved at once, inside a
branch-and-cut single-tree. We point out that the set of indices of variables hii′j , vijj′ , and pi1i2j1j2
can be significantly reduced in Model (18) as the trial solution x̄kij is fixed in the BSP. In such case,
the domain of these variables can be restricted, in addition to zero and sheet dimension positions, to:
(i) horizontal positions i (resp. vertical positions j) from the triples in X̄ (i.e., the allocated items);
and (ii) horizontal segments i′ − i or i2 − i1 (resp. vertical segments j′ − j or j2 − j1) that are greater
than or equal to the length (resp. width) of the smallest allocated item in X̄ . We use this reduction in
the computational experiments described in the next section. Therefore, lines 7 to 24 of Algorithm (1)
(EVP) are not required in the definition of the BSP used in our BBC algorithm. For future research, this
decomposition could be further analyzed in the context of the 2-staged and 1-group models of Section 3.
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5 Computational results

We carried out computational experiments using benchmark instances from the literature, to assess the
performance of the ILP formulations and the BBC algorithm proposed in this paper. The purpose of
this section is twofold. First, for the 2D R CG SLOPP, we compared the solution quality and processing
times of the proposed ILP formulation – Model (9) – with those obtained by two other formulations
available in the literature (Ben Messaoud et al, 2008; Furini et al, 2016), when they are solved by a
general purpose solver. Additionally, we verified the performance of the proposed BBC algorithm with
respect to these formulations, using the same set of instances. From the results, we identified the most
appropriate scenarios for each of these approaches. Second, we analyzed the performances of the ILP
formulations proposed for the special cases of the 2D R CG SLOPP that consider only 2-staged or 1-
group patterns – Models (13) and (16). Their performances are compared with the results obtained for
the models proposed by Lodi et al (2002) and Yanasse and Morabito (2006), for the same variants.

The implementation of Model (9) uses the improvements of Algorithm 1 and is referred to as Grid.
Models (13) and (16) are implemented using the discretization improvements discussed in Section 3.2 and
are referred to as Grid-2staged and Grid-1group, respectively. All the approaches were coded in C++
using the Concert library which is part of IBM CPLEX Optimization Studio v.12.8. The experiments
were carried out on a PC with Intel Core i7-3770 (3.40GHz) processor, 16 GB of RAM, under Ubuntu
18.04 Operating System.

Table 1 shows the characteristics of the benchmark instances taken from the literature. The sets cgcut
and gcut were obtained from the online repository OR-Library1, while the other instances were obtained
from Wang (1983) and Oliveira and Ferreira (1990). We report for each instance the name of the instance
(column Instance), the length of the large object (column L), the width of the large object (column W ),
the number of small item types (column m) and the maximum number of small items (column n), where
n =

∑
k∈K rk. We also provide the optimal value of each instance with respect to the non-staged, 2-

staged and 1-group versions of the 2D R CG SLOPP. The optimal values in the non-staged and 2-staged
columns are well-known results and were taken from Lodi et al (2002) and Furini et al (2016); whereas
the values in column 1-group were obtained solving the ILP formulation of Yanasse and Morabito (2006)
through CPLEX, without imposing a time limit.

Table 1: Set of benchmark instances for 2D R CG SLOPP.

Instance L W m n
OPT

non-staged 2-staged 1-group

cgcut1 15 10 7 16 244 240 240
cgcut2 40 70 10 23 2,892 2,535 2,069
cgcut3 40 70 19 62 1,860 1,720 1,580
OF1 70 40 10 23 2,737 2,713 2,361
OF2 70 40 10 24 2,690 2,515 2,342
wang20 70 40 19 42 2,721 2,623 2,470
gcut1 250 250 10 10 48,368 43,024 43,024
gcut2 250 250 20 20 59,307 57,996 55,680
gcut3 250 250 30 30 60,241 59,895 59,895
gcut4 250 250 50 50 60,942 60,504 60,504
gcut5 500 500 10 10 195,582 193,379 192,907
gcut6 500 500 20 20 236,305 224,399 224,399
gcut7 500 500 30 30 238,974 238,974 231,494
gcut8 500 500 50 50 245,758 245,758 242,656
gcut9 1,000 1,000 10 10 919,476 919,476 806,912
gcut10 1,000 1,000 20 20 903,435 856,445 856,445
gcut11 1,000 1,000 30 30 955,389 942,219 915,219
gcut12 1,000 1,000 50 50 970,744 970,744 970,744

1 http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/files/
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5.1 Results for the 2D R CG SLOPP

We compare the performance of Grid with the performances of the ILP formulations of Ben Messaoud
et al (2008) and Furini et al (2016). As the formulation of Ben Messaoud et al (2008) was originally
proposed for the GSPP, we adapted this formulation as follows:

– the indices i and j vary in {1, . . . , n̄} (instead of n), where n̄ is an upper bound on the number of
small items in an optimal solution. We consider n̄ = max {

∑
k∈K yk :

∑
k∈K(lkwk)yk ≤ LW, yk ≤

rk, yk ∈ Z};
– the objective function consists of maximizing the sum of vkzijk over all small items k;
– the types of their constraints (4) to (6) are redefined to ≤ (instead of =);
– parameter H̄ is replaced by the corresponding sheet dimension and variable H is no longer needed;
– the parameter n in the lhs of their constraints (11) is replaced by n̄.

We refer to the resulting model as BMCE. We note that, in their notation, the index k varies from 1 to n
(instead of m as we consider in our models) as each small item is considered separately in their model.

For the model of Furini et al (2016), we used their enumerative variable procedure and the two
reductions proposed by them. Apparently, there is a typo in their definition of parameter aoqkj , as the
indices j and k seem to be exchanged. In the following analysis, we refer to this model as FMT.

Table 2 shows the results of the three formulations. For each formulation and instance, we report on
the number of variables (column var), number of constraints (column cons), the optimality gap (column
gap) as a percentage, the value of the LP-relaxation (column solr) and the processing time to solve the
instance (t[s]) in seconds. The gap is calculated as (OPT − sol)/(OPT + 10−10) ∗ 100, where OPT is the
corresponding optimal value taken from Table 1 and sol is the value of the best integer solution found by
the solver using the formulation. The time limit for integer solutions on CPLEX was set to 1 hour and
we denote by “tl” when it was reached. The symbol “*” means that CPLEX ran out of memory during
its execution, and a gap of “100.0%” means that no integer solution was found. In all formulations, we
provided an optimal 2-staged solution of the instance as an initial solution, which was obtained solving
the model of Lodi et al (2002) through CPLEX.

First, we analyze the results of BMCE for the 2D R CG SLOPP, as the original model was tested only
for the GSPP in Ben Messaoud et al (2008). Using parameter n̄ instead of n proved useful as this model
has, according to the original authors, around 3n4/4 binary variables and 2n4 constraints. For example,
for the gcut instances, the numbers of variables and constraints in this model are smaller than in the
other two models, which present n̄ ≤ 9 (the upper bound from the one-dimensional knapsack. However,
its LP-relaxation provides a very weak bound, which contributed to a poor performance of CPLEX. The
solver could prove optimality for only 2 of the 18 instances using BMCE, reaching the time limit in 15 of
them.

Furini et al (2016) compared the performance of their model with respect to the model of Ben
Messaoud et al (2008), in the context of the GSPP. The results in Table 2 are in accordance with their
findings, as FMT also outperforms BMCE for the 2D R CG SLOPP. Using FMT, CPLEX was able to prove
optimality in 12 of the instances and ran out of memory only for those in which the number of variables
exceeded two million. The LP-relaxation of this model is the tightest among the three formulations and
the performance in the medium-size instances (first six rows of the tables) is outstanding, especially
regarding the number of constraints and the solution time. However, it is worth mentioning that FMT is
a pseudo-polynomial model (non-compact formulation) that requires a preprocessing phase, although it
tends not to be time consuming.

The results of Grid in Table 2 show that our model has a better average performance than FMT in
the gcut instances, as the former was able to prove optimality in two additional instances and with
significantly less average processing time. In particular, for the instances with m = 10 item types (gcut1,
gcut5 and gcut9), the performance of Grid is significantly better than the performance of FMT. For instance
gcut9, CPLEX took 1.30 seconds to prove optimality using Grid, while it took 1,243.86 seconds for FMT.
For some instances with m = 20 item types, e.g. gcut2 and gcut7, it took less than 90 seconds to prove
optimality using Grid, while CPLEX ran out of memory using FMT. Note that for the gcut instances, as
the value of m increases, the processing times also increase. These instances are characterized by small
items that are large with respect to the object, resulting in fewer elements in sets X̄ and Ȳ and hence
fewer variables and constraints in the model. The experiments also highlight the relevance of the EVP.
For example, instance gcut2 would have 742,201 variables and 2,770,181 constraints in the absence of
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lines 7 to 24 of Algorithm 1. Hence, for this instance, the EVP leads to reductions of 98.70% and 99.06%
in the numbers of variables and constraints, respectively.

Regarding the LP-relaxation, Grid provided bounds significantly better than those provided by BMCE,
but inferior or similar to those of FMT. On the other hand, Grid does not seem to be suitable in scenarios
with many small item types, as it presented memory issues in all instances with m = 50 (gcut4, gcut8
and gcut12) and for instance gcut11. Particularly, FMT outperforms Grid in the first six instances in Table
2 (sets cgcut, OF and wang), which are characterized by items that are smaller than those in the gcut
instances. Despite the relevance of avoiding symmetrical solutions in ILP formulations, we are not aware
of any other type of symmetry breaking procedures for the model of Beasley (1985) and/or Grid, apart
from the one we adopted in this paper. Therefore, even though we restrict the guillotine cuts up to the
half of the plates, a plate (rectangle) with length i2 − i1 and width j2 − j1 may be represented several
times by variables pi1i2j1j2 according to its position.
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Table 3 shows the results obtained by the proposed BBC algorithm. For each instance, we also report
the size of sets X̄ and Ȳ , the number of trial solutions found by the BMP and verified in the BSP
(column trials) and the number of cuts added to the BMP (column cuts). The number of variables and
constraints in this table correspond to the initial BMP. In comparison to Grid, the BBC algorithm was
able to prove optimality faster than this model in 5 instances, namely cgcut1, OF2, wang20, gcut1 ang
gcut5. One of these instances is characterized by having its optimal value (OPT) close to the optimal
value of the problem with non-guillotine pattern and, thus, it needs few feasibility cuts to converge to an
optimal solution (see columns “trials” and “cuts”). The BBC algorithm provided a solution to gcut11,
one of the instances in which CPLEX failed due to memory issues when using both Grid and FMT. The
BBC algorithm proved optimality in two of the medium-size instances that Grid reached the time limit
(cgcut2 and OF1), but the processing times were worse than those of FMT. Notice that the BBC algorithm
obtained optimal solutions of all instances in which the method did not run out of memory, although it
was not able to prove optimality for two of them (gcut3 and gcut11) within the time limit. As expected,
the method was not able to provide optimal solutions for all instances with m = 30 or m = 50 item types
in the set gcut. As the number of small item types increases, the number of (non-guillotine and guillotine)
symmetrical solutions also increase in the BMP, which results in the generation of significantly more cuts
in order to remove the non-guillotine trial solutions. It is worth mentioning that, in an experiment using
a time limit of just a few minutes, the method was able to provide good-quality solutions for all those
instances, but without the certificate of optimality. However, for the time limit of 1 hour, the number of
cuts in the BPM led to the method running out of memory. Additionally, we note the processing time
spent in the BSP is negligible, and the number of trials and cuts in Table 3 may differ as a trial solution
is not cut if it is of guillotine-type, and the provided initial solution is not checked in the BSP.

5.2 Results for 2-staged and 1-group versions of 2D R CG SLOPP

In this section, we analyse the performance of Model (13) for 2-staged patterns (Grid-2staged) and
Model (16) for 1-group patterns (Grid-1group) with respect to the models proposed by Lodi et al (2002)
and Yanasse and Morabito (2006), which were specifically designed to these types of guillotine cutting
patterns, respectively. In the models for 2-staged patterns, we consider horizontal shelves only.

Tables 4 and 5 show the results of the four models. As they indicate, the models of Lodi et al (2002)
and Yanasse and Morabito (2006) outperform Grid-2staged and Grid-1group, mainly regarding the
processing solution time. For example, in Table 5, Grid-1group resulted in less processing time only
for instance gcut9. Furthermore, the numbers of variables and constraints of Lodi et al (2002)’s model
are significantly smaller than those of Grid-2staged, while for Yanasse and Morabito (2006)’s model
and Grid-1group these numbers are closer. This behavior is somehow expected, as the model of Beasley
(1985) – a sub-part of models Grid-2staged and Grid-1group – would already lead by itself to larger
times than the benchmark models for some of these instances, which indicates the difficulty that the
non-overlapping constraints bring to our models.

On the other hand, Grid-2staged and Grid-1group provided better LP-relaxation bounds than the
other two models, especially with respect to Yanasse and Morabito (2006)’s model, which tends to be
useful in the development of solution methods. Therefore, Grid-2staged and Grid-1group are likely to
be suitable in to cases where the discretization of the large object provides an interesting feature. For
instance, if the value of a small item type depends on its area and position due to different thicknesses in
the large object, as discussed by Gilmore and Gomory (1965), then one can still use models Grid-2staged
or Grid-1group after easily replacing parameter vk by vkij . However, we believe that the other models
from the literature cannot be be straightforwardly adapted for this case.

6 Conclusions

We addressed the Constrained Two-dimensional Rectangular Guillotine Single Large Placement Problem
(2D R CG SLOPP), a variant that has been broadly studied in the field of Cutting & Packing problems.
Its applicability in different productive environment motivates the proposition of several solution methods
since the seminal papers of Christofides and Whitlock (1977) and Wang (1983) for this problem. However,
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Table 4: Comparison between Lodi et al (2002)’s model and Grid-2staged.

Instance
Lodi et al (2002) Grid-2staged

var cons gap solr t[s] var cons gap solr t[s]

cgcut1 136 32 0.0 257.8 0.10 480 136 0.0 244.5 2.45
cgcut2 276 46 0.0 2,878.0 0.18 5,970 1,159 0.0 2,906.1 1,158.17
cgcut3 1,953 124 0.0 2,005.3 0.43 3,074 873 0.0 1,995.5 105.33
OF1 276 46 0.0 2,800.0 0.47 3,688 1,227 0.0 2,789.9 138.83
OF2 300 48 0.0 2,800.0 1.78 3,272 908 0.0 2,747.2 41.20
wang20 903 84 0.0 2,800.0 1.98 3,046 817 0.0 2,791.1 39.67
gcut1 55 20 0.0 62,192.6 0.17 369 201 0.0 50,960.0 1.72
gcut2 210 40 0.0 62,397.1 0.45 6,490 1,711 0.0 61,240.4 39.02
gcut3 465 60 0.0 62,500.0 1.07 19,676 3,189 0.0 61,785.3 571.51
gcut4 1,275 100 0.0 62,500.0 1.34 71,473 6,929 100.0 * *
gcut5 55 20 0.0 247,475.5 0.60 914 383 0.0 228,381.9 1.96
gcut6 210 40 0.0 249,494.5 0.05 3,090 1,277 0.0 242,556.1 32.44
gcut7 465 60 0.0 250,000.0 0.06 9,276 2,077 0.0 243,671.0 96.12
gcut8 1,275 100 0.0 250,000.0 1.33 97,927 12,721 100.0 * *
gcut9 55 20 0.0 990,591.4 0.11 1,147 279 0.0 947,014.0 1.35
gcut10 210 40 0.0 997,715.9 1.21 2,383 1,411 0.0 967,987.4 15.32
gcut11 465 60 0.0 999,177.6 2.91 31,903 6,621 0.0 983,752.5 2,244.23
gcut12 1,275 100 0.0 1,000,000.0 1.21 73,409 17,035 100.0 * *

Table 5: Comparison between Yanasse and Morabito (2006)’s model and Grid-1group.

Instance
Yanasse and Morabito (2006) Grid-1group

var cons gap solr t[s] var cons gap solr t[s]

cgcut1 170 174 0.0 364.0 0.03 491 157 0.0 244.5 2.15
cgcut2 837 600 0.0 4,449.0 0.57 5,991 1,200 0.0 2,906.1 tl
cgcut3 6,956 2,624 0.0 20,631.7 3.61 3,091 906 0.0 1,995.5 491.27
OF1 1,096 872 0.0 7,670.0 0.20 3,728 1,306 0.0 2,789.9 304.17
OF2 962 708 0.0 8,652.0 0.19 3,301 965 0.0 2,747.2 207.12
wang20 7,126 3,098 0.0 23,910.0 6.44 3,091 906 0.0 2,791.1 109.15
gcut1 1,185 852 0.0 163,562.0 0.44 391 244 0.0 50,960.0 1.71
gcut2 7,779 2,986 0.0 274,563.0 5.52 6,524 1,778 0.0 61,240.4 250.47
gcut3 23,945 6,766 0.0 407,651.0 144.70 19,753 3,342 0.0 61,785.3 675.46
gcut4 101,794 16,508 1.2 731,408.0 tl 71,557 7,096 100.0 * *
gcut5 1,274 832 0.0 545,300.0 2.68 929 412 0.0 228,381.9 2.78
gcut6 8,159 3,005 0.0 1,232,057.0 15.42 3,122 1,340 0.0 242,556.1 59.77
gcut7 24,709 6,584 0.0 2,004,791.0 103.97 9,338 2,200 0.0 243,671.0 164.93
gcut8 106,416 17,256 3.2 2,805,462.0 tl 98,021 12,908 100.0 * *
gcut9 1,318 952 0.0 2,021,830.0 8.45 1,172 328 0.0 947,014.0 8.35
gcut10 9,049 3,362 0.0 5,355,377.0 18.16 2,410 1,464 0.0 967,987.4 92.85
gcut11 28,331 7,292 0.0 6,536,520.0 136.76 31,965 6,744 100.0 * *
gcut12 121,197 19,980 0.0 12,521,992.0 1,327.06 73,556 17,328 100.0 * *

the first mathematical models to completely formulate this problem only appeared in the literature more
than 30 years after the mentioned seminal papers (Ben Messaoud et al, 2008; Furini et al, 2016).

We proposed a compact INLP formulation that completely models the 2D R CG SLOPP and an
equivalent compact ILP formulation, both based on the model of Beasley (1985). They are extensions
of this model to the guillotine case, as the original formulation was designed for non-guillotine patterns.
In addition, we proposed a procedure to, without loss of generality, reduce the numbers of variables and
constraints in the ILP formulation. By reformulating this ILP model, we developed two new compact for-
mulations for special cases of guillotine cutting patterns (2-staged and 1-group). As a solution method for
the 2D R CG SLOPP, we proposed a branch-and-Benders-cut (BBC) algorithm, based on applying Ben-
ders decomposition to the proposed ILP formulation. The resulting Benders-Master-Problem corresponds
to the model of Beasley (1985).

The results of computational experiments using benchmark instances from the literature pointed out
that the proposed ILP formulation is appropriate for scenarios with small items that are large with respect
to the object (as in the gcut instances), because they result in fewer allocation decisions (variables). In
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this case, our model outperforms the other two formulations from the literature. On the other hand, it
is not indicated in scenarios with many item types, as the opposite behavior tends to appear.

We also verified that our BBC algorithm presented a good average performance with respect to our
ILP formulation, especially for instances in which the optimal value (OPT) is close to the optimal value
of the model of Beasley (1985) (i.e., allowing non-guillotine patterns). However, the performance of the
method is adversely affected by scenarios with many small item types, as the number of (guillotine and
non-guillotine) symmetrical solutions tends to be large and hence the method needs significantly more
combinatorial cuts to converge. With respect to the special cases of guillotine patterns (2-staged and
1-group), the proposed models achieved an inferior performance with respect to other models from the
literature.

As future research, the proposed formulations can be enhanced with additional symmetry breaking
techniques for the discretized object. Particularly, one could extend our BBC algorithm to the special
cases of the 2D R CG SLOPP that strictly generate 2-staged or 1-group patterns. The compact INLP
formulation could be more explored in the field of Constraint Programming techniques by developing
tailored-approaches, rather than relying on a general purpose solver. Adaptating the formulations in order
to consider different applications is also relevant. For instance, suppose the distance of the guillotine cuts
is somehow constrained as, e.g., in the glass industry; these models seem to be suitable to address such a
case. The developments of other solution methods are also interesting considering different decomposition
techniques (e.g., Lagrangean relaxation or Dantzig-Wolfe decomposition) or variable reduction procedures
that are likely to enable the solution of larger instances.
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