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Abstract

A MILP model for an extended version of the Flexible Job Shop Scheduling
problem is proposed. The extension allows the precedences between operations of
a job to be given by an arbitrary directed acyclic graph rather than a linear order.
The goal is the minimization of the makespan. Theoretical and practical advantages
of the proposed model are discussed. Numerical experiments show the performance
of a commercial exact solver when applied to the proposed model. The new model is
also compared with a simple extension of the model described by Özgüven, Özbakır,
and Yavuz (Mathematical models for job-shop scheduling problems with routing and
process plan flexibility, Applied Mathematical Modelling, 34:1539–1548, 2010), using
instances from the literature and instances inspired by real data from the printing
industry.

1 Introduction

The Job Shop Scheduling (JS) problem can be stated as follows. Consider a set of machines
and a set of jobs. Each job consists of a sequence of operations to be processed in
a given order. Each operation must be processed individually on a specific machine,
without preemption. The objective is to find a processing sequence for each machine
that minimizes the makespan, which is the completion time of the last operation to be
processed. The Flexible Job Shop Scheduling (FJS) problem is a generalization of the
JS problem in which there may be several machines, not necessarily identical, capable of
processing an operation. Specifically, for each operation, we are given the set of machines
on which that operation can be processed. The goal is to decide on which machine each
operation will be processed, and in what order the operations will be processed on each
machine, so that the makespan is minimized.

The JS problem is known to be NP-hard [GJS76]. It is one of the most difficult
combinatorial optimization problems according to Lawler et al. [LLRKS93]. Since the
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FJS problem is at least as difficult as the JS, it is also NP-hard. Many researchers use
heuristic methods to deal with (the minimization of makespan of) the FJS problem. See
for example [Bra93, CWC06, GGM11, MP89, VB08, ZSLG09]. In contrast, the number of
publications concerned with the exact solution of the FJS problem is very small. Fattahi,
Mehrabad, and Jolai [FMJ07] presented one of the most relevant papers in this direction.
They proposed a mixed integer linear programming (MILP) model for the FJS problem
and used it to solve a set of 20 instances of small and medium size with the LINGO
software. The results were compared to those obtained by heuristic methods.

Özgüven, Özbakır, and Yavuz [OOY10] elaborated a more concise MILP model for the
FJS problem, modifying an earlier one by Manne [Man60] to incorporate machine flexibil-
ity. We shall name their model ÖÖY. Özgüven et al. tested their model by solving the 20
instances mentioned above with the CPLEX solver. They obtained optimal solutions for
the 10 small size instances faster than Fattahi et al. They also obtained optimal solutions
for five of the medium size instances and better bounds for the other five, while Fattahi
et al. did not find optimal solutions for any of those instances.

In the literature, each job in the FJS problem consists of a sequence of operations
to be processed in a given order, just as in the ordinary JS problem. In an industrial
environment, however, it is common to have jobs some of whose operations can be pro-
cessed simultaneously. Moreover, some mutually independent sequences of operations may
feed into an “assembling” operation. Similarly, there may be “disassembling” operations
which split the sequence of subsequent operations into two or more mutually independent
sequences. A representation of this kind of job is shown in Figure 1(a).

In a real problem from the printing industry [ZJL+10], for example, some jobs consist
of two independent sequences of operations followed by a third that puts together the
results of the first two. A representation of this kind of job is shown in Figure 1(b). We
say that such configuration is a Y-job, while the traditional type of job (a simple sequence
of operations) is a path-job.

Vilcot and Billaut [VB08] have already considered a class of instances that includes
Y-jobs and path-jobs. They describe an environment, coming from the printing and
boarding industry, where each operation in a job can have more than one predecessor,
but at most one direct successor. Alvarez-Valdés et al. [AVFT+05] describe yet another
environment, coming from a glass factory, that requires an even more general variant of
the FJS problem.

In this paper, we extend the usual definition of the FJS problem to allow a job to be
a set of operations with an arbitrary precedence relation, thus including general types of
jobs like those in Figure 1. Then we propose a new MILP model for the extended FJS
problem that focuses on the operations and the precedences among them, and leaves the
jobs only implicitly defined.

Difficult problems such as JS and FJS require sophisticated techniques to produce
reasonable results in acceptable time. It is usually preferable to get good sub-optimal
results quickly than to wait for days to get an optimal solution. However, to evaluate
the quality of the non-exact methods, it is desirable to compare their results with exact
solutions (at least for some reference set of small and medium size instances). This is
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(a) (b)

Figure 1: (a) A representation of a more general type of job. Each node represents an operation.
The arcs represent precedence constraints and all arcs are directed from left to right. The
black nodes are assembling operations and the gray nodes are disassembling operations. (b) A
representation of a Y-job.

one of the main reasons for developing exact methods for the FJS problem. Good mixed
integer programming models, combined with the availability of powerful MILP solvers,
are capable of providing, if not an optimal solution, at least good bounds to many small
and medium size instances. These bounds can then be used to evaluate the quality of
heuristic methods.

The goal of this paper is to contribute to the development of exact models for the FJS
problem, and to present a new set of instances to be used in comparisons between different
MILP models and heuristics for the problem. Section 2 introduces some notation, while
Section 3 presents the new model we propose for the problem. Section 3 also describes an
adaptation of the ÖÖY model needed to address the more general types of jobs. Section 4
presents the results of a computational experiment involving the two models, using as
benchmark the 20 instances of Fattahi et al., the 15 instances of Brandimarte [Bra93],
and a new set of 50 instances that contain jobs such as the ones depicted in Figure 1.

2 Notation

Let (V,A) be a dag, i.e. a directed acyclic graph. The vertices of the dag represent
the operations. The arcs represent precedence constraints. (One can think of a job as a
weakly connected component of the dag, but this concept is not needed for the models.)
We are also given a set M of machines and a function F that associates a non-empty
subset F (v) of M with each operation v. The machines in F (v) are the ones that can
process operation v. Additionally, for each operation v and each machine k in F (v), we
are given a positive rational number pv,k representing the processing time of operation v
on machine k.

A machine assignment is a function f that assigns a machine f(v) ∈ F (v) to each
operation v. Given a machine assignment f , let pfv := pv,f(v).

For each machine k, let Vk be the set of operations that can be processed on machine k,
that is, Vk = {v ∈ V : k ∈ F (v)}. Let Bk be the set of all ordered pairs of distinct elements
of Vk. The pairs (v, w) in Bk are designed to prevent v and w from using machine k at
the same time. Let B denote the union of all Bk. Hence, (v, w) ∈ B if and only if v 6= w
and F (v) ∩ F (w) 6= ∅.

Given a machine assignment f , let Bf be the set of all ordered pairs of distinct opera-
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tions to be processed on the same machine, that is, Bf := {(v, w) ∈ B : f(v) = f(w)}. A
selection is any subset Y of Bf such that, for each (v, w) in Bf , exactly one of (v, w) and
(w, v) is in Y . A selection corresponds to an ordering of the operations to be processed
on the same machine. A selection Y is admissible if (V,A ∪ Y ) is a dag. In other words,
a selection is admissible if it conflicts neither with the given precedence constraints nor
with itself.

Given a machine assignment f and an admissible selection Y , a schedule for (V,A ∪
Y, pf ) is a function s from V to the set of nonnegative rational numbers such that sv+pfv ≤
sw for each (v, w) in A∪Y . (A schedule exists since (V,A∪Y ) is a dag.) The number sv is
the starting time of operation v. (We write “sv” instead of the more traditional “s(v)”.)
The makespan of a schedule s is the number mks(s) := maxv∈V (sv + pfv). This definition
does not preclude idle time in the schedule; the next one focuses on nondelay schedules.

The length of a (directed) path (v1, v2, . . . , vℓ, vℓ+1) in the dag (V,A∪Y ) is the number
pfv1 +pfv2 + · · ·+pfvℓ . (Note that p

f
vℓ+1

is not part of the sum.) For any path P in (V,A∪Y )
ending at v and any schedule s, the length of P is at most sv. For each v in V , let s∗v be the
maximum of the lengths of all paths in (V,A∪Y ) ending at v. The function s∗ so defined
is a schedule. We say that this is the tight schedule for (V,A ∪ Y, pf ). There is a simple
dynamic programming algorithm that computes the tight schedule. Not surprisingly,
the makespan of the tight schedule s∗ is determined by long paths: there exists a path
P = (v1, v2, . . . , vℓ, vℓ+1) in (V,A∪Y ) such that the length of P plus pvℓ+1

equals mks(s∗).
(Such P is known as a critical path.) It follows from the previous observations that the
tight schedule has minimum makespan among all schedules for (V,A ∪ Y, pf ).

The makespan of an admissible selection Y for a given machine assignment f , denoted
by mks(Y ), is the makespan of the tight schedule for (V,A∪Y, pf ). The FJS problem can
now be stated as follows:

FJS Problem (V,A,M, F, p): Find a machine assignment f and an admissible
selection Y such that mks(Y ) is minimum.

3 Models

This section presents two models for the FJS problem. The first one is our new model
while the second is an adapted version of the ÖÖY model by Özgüven, Özbakır, and
Yavuz.

3.1 A new model for the FJS problem

In order to formulate the FJS problem as a MILP, we use a binary array x to represent
the machine assignments and a binary array y to represent selections. The first array
will have a component xv,k for each v in V and each k in F (v). The second will have
a component yv,w for each (v, w) in B. We also use two rational arrays s and p′, and
a rational number z, where s represents the starting times, p′ represents the processing
times corresponding to the machine assignment given by x, and z represents the makespan
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of schedule s.

We need an upper bound L on the makespan of an optimal solution of the FJS problem.
This can be the makespan of an arbitrary admissible selection or, alternatively, a global
bound like

∑
v∈V maxk∈F (v) pv,k.

Our MILP can now be given as follows: find a rational number z, rational arrays s
and p′, and binary arrays x and y that

minimize z

subject to

sv + p′v ≤ z ∀ v ∈ V , (1)
∑

k∈F (v) xv,k = 1 ∀ v ∈ V , (2)

p′v =
∑

k∈F (v) pv,kxv,k ∀ v ∈ V , (3)

yv,w + yw,v ≥ xv,k + xw,k − 1 ∀ k ∈ M and ∀ (v, w) ∈ Bk, (4)

sv + p′v ≤ sw ∀ (v, w) ∈ A, (5)

sv + p′v − (1− yv,w)L ≤ sw ∀ (v, w) ∈ B, (6)

sv ≥ 0 ∀ v ∈ V . (7)

As x is binary, constraint (2) ensures that x is a machine assignment. Then con-
straint (3) makes array p′ represent the processing times of operations. In fact, p′ can be
seen as an intermediate value, not a variable, that helps to simplify the presentation of the
model. Since pv,k > 0 for all v and k, thus p′v > 0 and so constraint (6) makes sure that
yv,w and yw,v are not both equal to 1. Hence, as y is binary, constraint (4) implies that y
represents a selection. Indeed, if xv,k = xw,k = 1, which means v and w are assigned to
machine k, then (4) forces y to decide whether v comes before or after w. Otherwise (i.e.
if xv,k and xw,k are not both 1), constraint (4) is trivially satisfied. Once y is a selection
and p′ represents the processing times, constraints (5), (6), and (7) make s represent a
schedule. Finally, the objective function and constraint (1) make sure z is the makespan
of the schedule, and is as small as possible.

We show next that our MILP is equivalent to the FJS problem. Suppose (f, Y ) is a
feasible solution of an instance (V,A,M, F, p) of the problem, i.e. suppose f is a machine
assignment and Y a corresponding admissible selection. Let s be the tight schedule for
(V,A∪Y, pf ) and let z := mks(s). For each v and each k in F (v), let xv,k := 1 if and only if
f(v) = k. Let yv,w := 1 for each (v, w) in Y and yv,w := 0 for each (v, w) in B \Y . Finally,
let p′ := pf . Then, the tuple (s, x, p′, y, z) is a feasible solution of our MILP and the value,
z, of this solution is equal to mks(s). Now consider the converse. Let (s, x, p′, y, z) be
a feasible solution of the MILP. For each v, let f(v) be the unique k in F (v) for which
xv,k = 1; such k exists because x is binary and constraint (2) holds. According to (3),
p′ = pf . Let Y be the set of all pairs (v, w) in B such that yv,w = 1. Constraint (4)
makes sure that Y is a selection. Since pv,k > 0 for all (v, k), constraints (5) to (7) make
sure that the selection Y is admissible. Hence, (f, Y ) is a feasible solution of the FJS
problem. Moreover, s is a schedule for (V,A ∪ Y, p′) and mks(s) ≤ z by virtue of (1).
This discussion shows that every optimal solution of the FJS problem corresponds to an
optimal solution of the MILP and conversely.
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Let β :=
∑

k∈M |Bk| and ϕ :=
∑

v∈V |F (v)|. Our MILP has 2|V | + |A| + |B| + β
constraints, and |V |+ ϕ+ |B| variables, of which ϕ+ |B| are binary.

3.2 The model of Özgüven, Özbakır, and Yavuz

The ÖÖY MILP model mentioned in the Introduction is designed to handle path-jobs
only. In order to handle also our more general job structure, a slight modification of that
MILP is needed. (Thus, for example, the double indices ij, representing operation j of
job i, were replaced by a single index v representing an operation. Accordingly, the set Oi

of operation in job i (implicitly defined as f(i), f(i) + 1, . . . , f(i+1)− 1) was replaced by
our set A of precedence constraints combined with the set Bk. Finally, the role of the “big
number” L was made precise.) We will refer to the modified version of the ÖÖY model
as ÖÖY′. We introduce ÖÖY′ only to be able to compare our proposed model with ÖÖY
also with the more general instances. We observe that the modified model, when applied
to instances with only path-jobs, reduces to the original ÖÖY model.

We shall use the following variables. First, a binary array x to represent machine
assignments, with one component xv,k for each v in V and each k in F (v). Second, a
rational array s to represent the starting times, with one component sv,k for each v in V
and each k in F (v). Third, a rational array t to represent the completion times, with one
component tv,k for each v in V and each k in F (v). Finally, a binary array y to represent
a selection, with one component yv,w,k for each k in M and (v, w) in Bk.

We also need an upper bound L on the makespan of an optimal solution. Again, this
can be the makespan of some admissible selection or the sum

∑
v∈V maxk∈F (v) pv,k, for

example. Finally, let V̂ be the set of “terminal” vertices, i.e. the set of all v in V such
that there is no (v, u) in A.

The ÖÖY′ model can be stated as follows: find a rational number z, rational arrays s
and t and binary arrays x and y that

minimize z

subject to

tv,k ≤ z ∀ v ∈ V̂ and ∀ k ∈ F (v), (8)
∑

k∈F (v) xv,k = 1 ∀ v ∈ V , (9)

sv,k + tv,k ≤ 2xv,kL ∀ v ∈ V and ∀ k ∈ F (v), (10)

yv,w,k + yw,v,k = 1 ∀ k ∈ M and ∀ (v, w) ∈ Bk, (11)

sv,k + pv,k − (1− xv,k)L ≤ tv,k ∀ v ∈ V and ∀ k ∈ F (v), (12)

tv,k − (1− yv,w,k)L ≤ sw,k ∀ k ∈ M and ∀ (v, w) ∈ Bk, (13)
∑

k∈F (v) tv,k ≤
∑

k∈F (w) sw,k ∀ (v, w) ∈ A, (14)

sv,k ≥ 0 ∀ v ∈ V and ∀ k ∈ F (v), (15)

tv,k ≥ 0 ∀ v ∈ V and ∀ k ∈ F (v). (16)

As x is binary, constraint (9) ensures that x is a machine assignment. If v is not
assigned to machine k, constraint (10) makes sv,k = tv,k = 0. Thus, at most one term
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is nonzero in each sum of (14), and constraint (10) is trivial if sv,k = tv,k = 0. Given
a machine assignment x, the set of pairs (v, w) such that yv,w,k = 1 and both v and w
are assigned to machine k is a selection due to constraint (11). Now, constraints (12)
to (16) make s store the starting times and t the completion times of a schedule. Indeed,
(12) ensures that the starting and completion times of an operation are consistent, (13)
ensures that two operations assigned to the same machine have starting and completion
times consistent with the selection, and (14) ensures that the starting and completion
times satisfy the precedences between operations. Finally, constraint (8) and the objective
function ensure that z is the makespan of the schedule, and is as small as possible.

We show next that the ÖÖY′ MILP is equivalent to the FJS problem. Suppose (f, Y )
is a feasible solution of an instance (V,A,M, F, p) of the problem. Let s∗ be the tight
schedule for (V,A ∪ Y, pf ) and z := mks(s∗). For each v and each k in F (v), let xv,k := 1
if and only if f(v) = k. For each v and each k in F (v), let sv,k := s∗v if f(v) = k and
sv,k := 0 otherwise. Similarly, let tv,k := s∗v + pv,k if f(v) = k and tv,k := 0 otherwise.
Then s, t, x, and z satisfy constraints (8) to (10), (12), and (14) to (16). Now define y as
follows. Let v1, v2, . . . , vN be an arbitrary ordering of all the operations in V . For each
k in M and each (vi, vj) in Bk, let yvi,vj ,k := 1 if and only if one of the following three
conditions holds: (vi, vj) ∈ Y and f(vi) = f(vj) = k; or f(vi) 6= k and f(vj) = k; or i > j,
f(vi) 6= k and f(vj) 6= k. This definition of y satisfies constraints (11) and (13). Hence,
the tuple (s, t, x, y, z) is a feasible solution of the MILP and the value, z, of this solution
is equal to mks(s∗). Now consider the converse. Let (s, t, x, y, z) be a feasible solution
of the MILP. For each v, let f(v) be the unique k in F (v) for which xv,k = 1; such k
exists because x is binary and (9) holds. For each k, let Yk be the set of all pairs (v, w)
in Bk such that xv,k = 1, xw,k = 1, and yv,w,k = 1. Let Y be the union of all Yk, k ∈ M .
According to (11), Y is a selection. According to (12), (13), and (14), Y is an admissible
selection. Hence, (f, Y ) is a feasible solution of the FJS problem. Finally, let s′v := sv,f(v)
and observe that s′ is a schedule for (V,A∪Y, pf ) and mks(s′) ≤ z. This discussion shows
that every optimal solution of the FJS problem corresponds to an optimal solution of the
MILP and conversely.

As before, let β :=
∑

k∈M |Bk| and ϕ :=
∑

v∈V |F (v)|. Additionally, let ϕ̂ :=∑
v∈V̂ |F (v)|. This MILP has |V |+ |A|+ ϕ̂+ 2ϕ+ 2β constraints, and 3ϕ+ β variables,

of which ϕ+ β are binary.

3.3 A brief comparison of the two models

In the next section, we compare the two models experimentally. Before that, we comment
on some differences between the models.

The proposed model, presented in Section 3.1, is more compact than the ÖÖY′ model.
The array variables that describe the selection and the starting times have one more
dimension in ÖÖY′, since they are also indexed by the machines. Moreover, ÖÖY′ has
variables for the completion times that depend not only on the operations but also on the
machines. Therefore, the ÖÖY′ model uses significantly more variables. Concretely, since
ϕ ≥ |V | and β ≥ |B|, the ÖÖY′ model uses at least ϕ more variables, at least as many
binary variables, and has at least ϕ̂+ ϕ more constraints than our model.

7



Another difference between the two models comes from the following observations.
Consider the linear relaxation of the proposed MILP, i.e. drop the requirement that x
and y be integer. Let (ṡ, ẋ, ṗ′, ẏ, ż) be an optimal solution of the resulting LP. As (5)
enforces the precedence constraints in A, considering the processing times given by ṗ′,
the starting times given by ṡ are a schedule for (V,A, ṗ′). Moreover, by (1), mks(ṡ) ≤ ż.
Now let s∗ be the tight schedule for (V,A, ṗ′). Then of course mks(s∗) ≤ mks(ṡ) ≤ ż.
Hence, the optimal value, ż, of the relaxed MILP is not smaller than the makespan of the
tight schedule for (V,A, ṗ′). (In fact, ż is also not smaller than the makespan of the tight
schedule for (V,A, p′′), where p′′v = mink∈F (v) pv,k.)

Similarly, consider the linear relaxation of the ÖÖY′ MILP, i.e. drop the requirement
that x and y be integer. Now take any instance of the FJS problem in which

• pv,k ≤ L/2 for each v and each k and

• |Vk| ≥ 2 for each k in M ,

where Vk := {v ∈ V : k ∈ F (v)}. (We believe many instances of the FJS problem do
possess these properties.) Then the linear relaxation of the ÖÖY′ MILP has an optimal
solution (ṡ, ṫ, ẋ, ẏ, ż) with ṡ = 0, ṫ = 0, ẋv,k = 1/|Vk|, ẏv,w,k = 1/2, and ż = 0. That is,
for these instances, the optimal value of the relaxation of the ÖÖY′ MILP is potentially
much smaller than the optimal value of the relaxation of the proposed MILP. Moreover,
the integrality gap of the ÖÖY′ MILP is unbounded. This seems to be an undesirable
property of this MILP, a property not shared by the proposed MILP.

4 Computational experiments

This section presents the results of a computational experiment involving the two MILP
models. We used as benchmarks the 20 instances of Fattahi et al. [FMJ07], the 15 instances
of Brandimarte [Bra93], and a new set of 50 instances that contain jobs as the ones depicted
in Figure 1.

In an application of the FJS problem coming from the printing industry [ZJL+10],
each job represents an order for a certain number of printed copies of some object. The
way to process each order depends on the type of object to be printed. Some of the orders
correspond to a path-job. Some others, like the printing of a book, correspond to a Y-job
as in Figure 1(b) with the following parts: the printing of the book cover, the printing of
the text blocks (book pages), and the binding. There is more than one choice of machine
to process some of the operations.

To analyze the performance of the MILP models on this kind of instances, we developed
a generator of random instances of Y-jobs. The generator has four integers as parameters:
the number n of jobs, the number o of operations per job, the number m of machines,
and the maximum number q of machines that can process the same operation. First, the
dag representing the jobs is created. Each job is initially a path-job with operations 1,
2, . . . , o. Then, for each job, two operations i and j are chosen independently at random.
If i = 1, j = 1, or i = j, the job is not changed. Else, assuming i < j, arc (i−1, i) is
replaced by arc (i−1, j). Next, for each operation, a set of at most q machines is selected
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D2 A2 DA2

D3 A3 DA3

Figure 2: The six types of dags — D2, D3, A2, A3, DA2, and DA3 — produced by our second
generator of instances. Each node represents an operation. The arcs represent precedence
constraints and are all directed from left to right. In each dag, all maximal paths have the
same length. (The black nodes are assembling operations and the gray nodes are disassembling
operations.)

at random and for each of these machines a processing time is chosen at random in the set
{20, . . . , 200}. (All random choices use a uniform distribution.) A set of 20 instances of
this type, with n and o in {4, . . . , 17}, m in {7, . . . , 26}, and q in {3, 5, 8}, was generated.
The instances were named YJS01 through YFJS20.

We also developed a generator of random instances of a more general kind. The
generator has two integer parameters: the number n of jobs and the numberm of machines.
Each job is represented by a dag of one of the six possible types — D2, D3, A2, A3, DA2,
and DA3 — indicated in Figure 2. In each dag, all maximal paths have the same length.
(Hence, in DA3, for example, the three “parallel” paths in the middle section have the
same number of operations.) For each job, one of the six types of dag is chosen at random.
Then, the length of the maximal paths through the dag is chosen at random from the set
{⌈m/2⌉, . . . ,m}. The lengths of the sections of the dag (left and middle section in case of
DA and left in case of D and A) dag are also chosen at random. For each operation v, the
size of the set F (v) is chosen at random in {⌈0.3m⌉, . . . , ⌈0.7m⌉} and then the elements
of F (v) are chosen at random from {1, 2, . . . ,m}. The processing time of v on one of the
machines in F (v) is set to a random number p in {1, . . . , 99}. The processing times of v
on each of the remaining machines in F (v) is a random number in {p, . . . ,min(3p, 99)}.
(All random choices use uniform distribution.) A set of 30 instances was generated in the
manner just described, with n in {4, . . . , 12} and m in {5, . . . , 10}. The instances were
named DAFJS01 through DAFJS30 and used in the computational experiments presented
next.

To solve the MILPs, we used the IBM ILOG CPLEX 12.1 solver with the following
settings: 3600s for time limit, 1 for maximum number of threads, and 2048MB for working
memory. All other parameters were left at their default values. The computer used in the
experiments has an Intel Xeon E5440 2.83GHz processor.

The computational experiments compare the ÖÖY′ model with our proposed model.
In a set of prelimary experiments, CPLEX was not able to find a feasible solution to a
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Instance Size EST
ÖÖY′ model new model
mks CPU(s) mks CPU(s)

SFJS01 2, 2, 2 66 66 0.01 66 0.00
SFJS02 2, 2, 2 107 107 0.01 107 0.01
SFJS03 3, 2, 2 255 221 0.02 221 0.05
SFJS04 3, 2, 2 367 355 0.02 355 0.02
SFJS05 3, 2, 2 143 119 0.04 119 0.04
SFJS06 3, 3, 2 360 320 0.03 320 0.01
SFJS07 3, 3, 5 407 397 0.01 397 0.00
SFJS08 3, 3, 4 273 253 0.03 253 0.04
SFJS09 3, 3, 3 230 210 0.02 210 0.01
SFJS10 4, 3, 5 608 516 0.01 516 0.02
MFJS01 5, 3, 6 526 468 0.53 468 0.26
MFJS02 5, 3, 7 540 446 1.20 446 0.87
MFJS03 6, 3, 7 655 466 4.09 466 1.66
MFJS04 7, 3, 7 690 554 126 554 27.43
MFJS05 7, 3, 7 690 514 5.70 514 4.55
MFJS06 8, 3, 7 838 634 1739 634 52.48
MFJS07 8, 4, 7 1130 [859;881] 2.50% 3600 879 1890
MFJS08 9, 4, 8 1129 [764;884] 13.57% 3600 [775;884] 12.33% 3600
MFJS09 11, 4, 8 1343 [845.26;1104] 23.44% 3600 [809.03;1137] 28.84% 3600
MFJS10 12, 4, 8 1559 [951.30;1263] 24.68% 3600 [944.80;1251] 24.48% 3600

Table 1: Solving the Fattahi et al. [FMJ07] instances with the ÖÖY′ and the new model. Both
MILPs were solved using CPLEX, with initial feasible solution provided by the EST heuristic.
The size of an instance is a triple (n, o,m), where n is the number of jobs, o is the the number
of operations per job, and m is the number of machines. All operations have integer processing
times. The smallest CPU times and gaps are highlighted.

few of the instances within the time limit, regardless of the model used. To remedy this,
we gave CPLEX an initial feasible solution produced by a constructive heuristic we call
EST, for “earliest starting time”. (The makespan of the schedule found by EST was also
used to set the value of parameter L.)

The EST heuristic produces a permutation (v1, v2, . . . , vN) of the set V of operations
such that i < j whenever (vi, vj) ∈ A, and a corresponding sequence (f1, f2, . . . , fN) of
machines. Of course fi ∈ F (vi) for each i, and vi is to be processed on machine fi. This
pair of sequences defines an admissible selection: just take the set of all ordered pairs
(vi, vj) in V × V such that i < j and fi = fj.

Each iteration of EST starts with sequences (v1, . . . , vq−1) and (f1, . . . , fq−1) such that
no arc in A enters the set U := {v1, . . . , vq−1}. Let AU := A ∩ (U × U), and let YU be
the set of all pairs (vi, vj) in U × U such that i < j and fi = fj. Let s∗ be the tight
schedule for (U,AU ∪ YU , p

′), where p′vi := pvi,fi . Then the completion time of vi will be
ci := s∗vi + p′vi and each machine k will become available at time

max {ci : 1 ≤ i < q and fi = k}

(or 0 if there is no i such that fi = k). From this information, the heuristic chooses vq
in V \ U and fq in F (vq). The idea is to choose a pair (vq, fq) whose execution can start
the earliest. This rule is, in general, satisfied by several pairs. Experience shows that an
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Instance Size EST
ÖÖY′ model new model
mks CPU(s) mks CPU(s)

MK01 10, 5-6, 6 49 40 1621 [39;40] 2.5% 3600
MK02 10, 5-6, 6 41 [23;30] 23.33% 3600 [25;29] 13.79% 3600
MK03 15, 10, 8 204 [63;204] 69.12% 3600 [92;204] 54.90% 3600
MK04 15, 3-9, 8 73 [38;67] 43.28% 3600 [41.09;65] 36.78% 3600
MK05 15, 5-9, 4 186 [58.85;186] 68.36% 3600 [66.2;184] 64.02% 3600
MK06 10, 15, 15 98 [33;98] 66.33% 3600 [37;98] 62.24% 3600
MK07 20, 5, 5 214 [62;174] 64.37% 3600 [61.17;192] 68.14% 3600
MK08 20, 10-14, 10 523 [181.25;523] 65.34% 3600 [181;523] 65.39% 3600
MK09 20, 10-14, 10 336 [140.32;336] 58.24% 3600 [146;336] 56.55% 3600
MK10 20, 10-14, 15 274 [104;274] 62.04% 3600 [119;274] 56.57% 3600
MK11 30, 5-7, 5 698 [158.88;695] 77.14% 3600 [152;698] 78.22% 3600
MK12 30, 5-9, 10 566 [160;524] 69.47% 3600 [180;546] 67.03% 3600
MK13 30, 5-9, 10 500 [153;482] 68.26% 3600 [157;500] 68.60% 3600
MK14 30, 8-11, 15 719 [228.97;719] 68.15% 3600 [232;719] 67.73% 3600
MK15 30, 8-11, 15 443 [154;443] 65.24% 3600 [190;443] 57.11% 3600

Table 2: Solving the Brandimarte [Bra93] instances through the ÖÖY′ and the new model. Both
MILPs were solved by CPLEX, with initial feasible solution provided by the EST heuristic. All
operations have integer processing times. The smallest gaps are highlighted.

additional tie-breaking rule can significantly improve the heuristic. Let p̄ be the mean
processing time, i.e. p̄v := (

∑
k∈F (v) pv,k)/|F (v)| for each operation v. The tie-breaking

rule can be stated as follows. If there are several candidate pairs (w, k) for the role of
(vq, fq), choose a pair that maximizes the largest sum of the form p̄w+ p̄z1 + p̄z2 + · · ·+ p̄zℓ ,
where (w, z1, z2, . . . , zℓ) is a path in (V,A). This heuristic takes time O(|V ||A|+ |V |2|M |).

Table 1 shows the results for the instances of Fattahi et al. [FMJ07] and Table 2 for
the instances of Brandimarte [Bra93]. These two sets of instances contain only path-jobs.
Tables 3 and 4 show the results for the two new sets of instances, generated as described
above. The Instance column records the names of the instances. The Size column contains
the number of jobs, the number of operations per job (or an interval a-b, when the jobs
have between a and b operations), and the number of machines. Column EST shows the
makespan of the schedule produced by the heuristic. For each model, the mks column
records the optimal makespan or the lower and upper bounds found by CPLEX, followed
by the relative gap (the difference between upper and lower bounds, divided by the upper
bound). The CPU column records the CPU time, in seconds, taken by CPLEX to solve
the MILP (or 3600, if CPLEX did not solve the MILP in one hour). In all cases, the EST
heuristic used no more than a hundredth of a second.

In Table 1 we observe that, for most instances, CPLEX ran fastest under the new
model. Moreover, CPLEX found an optimal solution for instance MFJS07 with the new
model, while it did not find one (within the time limit) with ÖÖY′. On the other hand,
for instance MFJS09, CPLEX obtained a solution with better makespan and better lower
bound using ÖÖY′ than using the new model. Recall that model ÖÖY′ reduces to the
original ÖÖY model when applied to the instances considered in Table 1 and that, more-
over, numerical experiments of Özgüven et al. [OOY10] show that their model is several
orders of magnitude faster than the model introduced in Fattahi et al. [FMJ07].
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Instance Size EST
ÖÖY′ model new model
mks CPU(s) mks CPU(s)

YFJS01 4, 10, 7 1318 773 68.37 773 11.5
YFJS02 4, 10, 7 1243 825 6.03 825 9.88
YFJS03 6, 4, 7 439 347 11.11 347 3.72
YFJS04 7, 4, 7 569 390 22.63 390 7.82
YFJS05 8, 4, 7 566 445 660.79 445 357.55
YFJS06 9, 4, 7 633 [378.90;452] 16.17% 3600 [425.29;449] 5.28% 3600
YFJS07 9, 4, 7 628 [439;460] 4.57% 3600 444 1392
YFJS08 9, 4, 12 531 353 3.26 353 0.67
YFJS09 9, 4, 12 506 [238;242] 1.65% 3600 242 14.03
YFJS10 10, 4, 12 541 399 22.21 399 4.03
YFJS11 10, 5, 10 740 526 1699.64 526 177.43
YFJS12 10, 5, 10 813 [465;541] 14.05% 3600 512 3218.89
YFJS13 10, 5, 10 717 [376;405] 7.16% 3600 405 1624.66
YFJS14 13, 17, 26 2055 [1317;1461] 9.86% 3600 1317 3293.58
YFJS15 13, 17, 26 2296 [1239;1260] 1.67% 3600 [1239;1244] 0.40% 3600
YFJS16 13, 17, 26 2006 [1189;1432] 16.97% 3600 [1200;1245] 3.61% 3600
YFJS17 17, 17, 26 2408 [1133;1832] 38.16% 3600 [1133;2379] 52.37% 3600
YFJS18 17, 17, 26 2082 [1220;1772] 31.15% 3600 [1220;2082] 41.40% 3600
YFJS19 17, 17, 26 2038 [862;1897] 54.56% 3600 [926;1581] 41.43% 3600
YFJS20 17, 17, 26 2369 [705;1686] 58.19% 3600 [968;2312] 58.13% 3600

Table 3: Solving FJS instances that consist of Y-jobs with the ÖÖY′ and the new model. Both
MILPs were solved by CPLEX, with initial feasible solution provided by the EST heuristic.
All makespans are integer since all processing times are integer. (Curiously, many of the lower
bounds are also integer.) The smallest CPU times and gaps are highlighted.

The instances in Table 2 are larger, in terms of total number of operations, and clearly
more difficult. Under the new model, CPLEX obtained better bounds for most of them.
For the instance MK01, it found an optimal solution in just 60 seconds but could not raise
the lower bound to prove the optimality of the solution. Under the ÖÖY′ model, CPLEX
found an optimal solution in 1621 seconds.

Table 3 shows that, on instances with Y-jobs, CPLEX performed better with the
new model, running significantly faster and obtaining better bounds, except on instances
YFJS17 and YFJS18. Most of the instances in Table 4 seem to be more difficult. CPLEX
found an optimal solution for instances DAFJS01 and DAFJS02 with the new model,
while it could not find one (within the time limit) with ÖÖY′. For instances DAFJS03
and DAFJS04, CPLEX found an optimal solution under the new model considerably
faster than it did under ÖÖY′. For the other 26 instances, CPLEX did not find an
optimal solution with either model. For only two of these 26 instances, CPLEX achieved
better bounds when using the ÖÖY′ model. For eight of the 26 instances, CPLEX ended
with the same bounds for both models, and for 16 of the 26 instances, CPLEX achieved
better bounds when using the new model.

Here is a summary of our results. For 34 of the 85 instances considered, CPLEX found
an optimal solution and proved its optimality when using the new model. Using the ÖÖY′

model, CPLEX did so for 27 of the 85 instances. For all but 7 of the 85 instances, CPLEX
produced at least as good a lower bound under the new model as under ÖÖY′. For 27
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Instance Size EST
ÖÖY′ model new model
mks CPU(s) mks CPU(s)

DAFJS01 4, 5-9, 5 327 [255.0;257] 0.78% 3600 257 78.93
DAFJS02 4, 5-7, 5 382 [270.0;297] 9.09% 3600 289 1271.7
DAFJS03 4, 10-17, 10 710 576 371.39 576 15.8
DAFJS04 4, 9-14, 10 653 606 18.2 606 1.22
DAFJS05 6, 5-13, 5 482 [355.01;411] 13.62% 3600 [347.53;403] 13.76% 3600
DAFJS06 6, 5-13, 5 489 [326;446] 26.91% 3600 [326;435] 25.06% 3600
DAFJS07 6, 7-23, 10 717 [491.11;717] 31.5% 3600 [497;562] 11.57% 3600
DAFJS08 6, 6-23, 10 847 [517;690] 25.07% 3600 [628;631] 0.48% 3600
DAFJS09 8, 4-9, 5 535 [315;497] 36.62% 3600 [315;475] 33.68% 3600
DAFJS10 8, 4-11, 5 629 [336;567] 40.74% 3600 [336;575] 41.57% 3600
DAFJS11 8, 10-23, 10 708 [658;708] 7.06% 3600 [658;708] 7.06% 3600
DAFJS12 8, 9-22, 10 720 [530;720] 26.39% 3600 [530;720] 26.39% 3600
DAFJS13 10, 5-11, 5 766 [252;751] 66.44% 3600 [304;718] 57.66% 3600
DAFJS14 10, 4-10, 5 871 [313;866] 63.86% 3600 [358.95;860] 58.26% 3600
DAFJS15 10, 8-19, 10 818 [497;818] 39.24% 3600 [512;818] 37.41% 3600
DAFJS16 10, 6-20, 10 831 [462;831] 44.4% 3600 [640;819] 21.86% 3600
DAFJS17 12, 4-11, 5 910 [300;910] 67.03% 3600 [300;909] 67.0% 3600
DAFJS18 12, 5-9, 5 951 [322;951] 66.14% 3600 [322;951] 66.14% 3600
DAFJS19 8, 7-13, 7 601 [512;601] 14.81% 3600 [512;592] 13.51% 3600
DAFJS20 10, 6-17, 7 815 [399;815] 51.04% 3600 [434;815] 46.75% 3600
DAFJS21 12, 5-16, 7 965 [504;965] 47.77% 3600 [504;965] 47.77% 3600
DAFJS22 12, 5-17, 7 902 [464;902] 48.56% 3600 [464;902] 48.56% 3600
DAFJS23 8, 6-17, 9 632 [450;605] 25.62% 3600 [450;538] 16.36% 3600
DAFJS24 8, 6-25, 9 674 [476;674] 29.38% 3600 [476;666] 28.53% 3600
DAFJS25 10, 9-19, 9 897 [584;897] 34.89% 3600 [584;897] 34.89% 3600
DAFJS26 10, 8-17, 9 903 [565;903] 37.43% 3600 [565;903] 37.43% 3600
DAFJS27 12, 7-22, 9 981 [503;981] 48.73% 3600 [503;981] 48.73% 3600
DAFJS28 8, 8-15, 10 703 [535;695] 23.02% 3600 [535;671] 20.27% 3600
DAFJS29 8, 7-19, 10 760 [609;753] 19.12% 3600 [609;726] 16.12% 3600
DAFJS30 10, 8-19, 10 657 [401;657] 38.96% 3600 [467;656] 28.81% 3600

Table 4: Solving the more general FJS instances through the ÖÖY′ and the new model. Both
MILPs were solved using CPLEX, with initial feasible solution provided by the EST heuristic.
All makespans are integer since all processing times are integer. The smallest CPU times and
gaps are highlighted.

of the 85 instances, CPLEX was strictly faster under the new model. For 11 of the 85
instances, CPLEX was faster under the ÖÖY′ model, and for 49 instances, under both
models, CPLEX ran for one hour without finding an optimal solution. On the instances
with Y-jobs and the more general ones, CPLEX performed especially well under the new
model. Taking all this into account, we conclude that, in general, CPLEX produced better
results with the new model than with ÖÖY′.

5 Conclusion

The FJS problem is a generalization of the JS problem in which there may be several
machines, not necessarily identical, capable of processing an operation. In the literature
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on the problem, each job consists of a sequence of operations to be processed in a given
order, as in the ordinary JS problem. In the present paper, we extended the definition
of the FJS problem to allow an arbitrary precedence relation over the set of operations
and we presented a new MILP model for the extended problem. We also presented
computational experiments indicating that the proposed model is better than that of
Özgüven, Özbakır, and Yavuz [OOY10]. Some of our experiments were done on a new set
of instances, inspired by a real application. This set can be used as benchmark in future
computational experiments on the FJS problem.

For benchmarking purposes, and to allow reproduction of the results presented in
this paper, the C/C++ code for the MILP models (using the IBM ILOG CPLEX Con-
cert Technology, version 12.1), as well as the code of the EST heuristic, the code of the
two generators, and the four sets of instances used in the experiments are available for
download at http://www.ime.usp.br/~cris/fjs/.
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