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Abstract. We investigate the problem of covering a region in the plane with the union of m5
identical balls of minimum radius. The region to be covered may be disconnected, nonconvex, have6
Lipschitz boundary and in particular may have corners. Nullifying the area of the complement of the7
union of balls with respect to the region to be covered is considered as the constraint, while minimizing8
the balls’ radius is the objective function. The first-order sensitivity analysis of the area to be9
nullified in the constraint is performed using shape optimization techniques. Bi-Lipschitz mappings10
are built to model small perturbations of the nonsmooth shape defined via unions and intersections;11
this allows us to compute the derivative of the constraint via the notion of shape derivative. The12
considered approach is fairly general and can be adapted to tackle other relevant nonsmooth shape13
optimization problems. By discretizing the integrals that appear in the formulation of the problem14
and its derivatives, a nonlinear programming problem is obtained. From the practical point of view,15
the region to be covered is modeled by an oracle that, for a given point, answers whether it belongs16
to the region or not. No additional information on the region is required. Numerical examples in17
which the nonlinear programming problem is solved with an Augmented Lagrangian approach are18
presented. The experiments illustrate the wide variety of regions whose covering can be addressed19
with the proposed approach.20
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1. Introduction. In this work we consider the problem of finding the minimum23

radius r of m identical balls B(xi, r), i = 1, . . . ,m, whose union covers a given arbi-24

trary region A ⊂ Rd. The covering problem has a wide variety of practical applica-25

tions ranging from the configuration of a gamma ray machine radiotherapy equipment26

unit [26] to placing base stations [10]. The problem of covering the d-dimensional27

space or a bounded region with overlapping identical balls minimizing the number of28

balls or their radius represents a challenging problem that has been studied for more29

than half a century [8, 34]. An attempt of devising a formula for the area of a ball30

that is covered by two other identical balls in the plane was reported in 1962 in [41,31

pp.184,185]. The author said “It was found that a single ‘formula’ could not be ob-32

tained for the area covered but an algorithm was devised which uses no less than eight33

formulae depending on certain geometric properties of the covering configuration.” He34

further concluded that “The impossibility of obtaining any reasonable ‘formula’ for35

the function we are trying to maximize in the relatively trivial case m = 2 seems to36

indicate the futility of the analytical approach especially when m is large. On this sad37

note the general analytical approach was abandoned and another method of a some-38

what experimental nature [hereafter named black box maximization], using high-speed39

electronic computers, was adopted.” Since then, several approaches to the problem40

are based on different kind of numerical optimization techniques. Although some of41

the techniques can be applied with small variations to arbitrary dimensions, applica-42
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tions and the appeal of representing solutions graphically justify the attention that43

has been given to the cases d = 2, 3.44

In [30] and [31] the cases in which A is an equilateral triangle and a square are45

considered, respectively. In both cases a two-level optimization strategy is considered.46

In the inner level, the radius r is fixed and a feasibility problem is solved to determine47

whether, with the fixed radius, there exist balls’ centers x1, . . . , xm ∈ R2 such that48

the balls cover A. BFGS [29], a quasi-Newton method for smooth unconstrained min-49

imization, is used to perform this task (presumably, minimizing the squared residual).50

Unfortunately, it is not explicit in [30] and [31] how the feasibility problem is modeled51

and how its first-order derivatives are computed. Depending on whether the balls52

with fixed radius cover A or not, a discrete rule is used in the outer level to update r.53

The method stops with a prescribed precision on the radius. In [36] the problem in54

which A is a region given by the union and the difference of polygons is considered. A55

mathematical programming model is proposed and analyzed. The proposed method56

is based on the computation of a feasible descent direction [42] that requires solving57

a linear programming problem at each iteration. In [18, 27, 28] a simulated annealing58

approach with an adaptive mesh is considered. Balls’ centers are chosen as points in59

the mesh. Then, points in the mesh are assigned to the closest center using Voronoi60

tessellation and, as a consequence, the optimal radius for balls with the given centers61

to cover all points in the mesh is easily obtained. Neighbor solutions constituted by62

perturbations of the current centers are evaluated and accepted as in a classical local63

search strategy within the framework of the simulated annealing approach. The cases64

in which A is a rectangle, a triangle, and a square are tackled with slight variations65

of this approach in [18], [27], and [28], respectively. In [40, 38], arbitrary 2D and66

3D regions are considered but the problem of covering the region is replaced by the67

problem of covering an arbitrary chosen set of points within A. Then, a specific opti-68

mization technique named hyperbolic penalization [39] is applied. In [2] the problem69

of covering an arbitrary region A is modeled as a nonlinear semidefinite programming70

problem with the help of convex algebraic geometry tools. The introduced model71

describes the covering problem without resorting to discretizations, but depends on72

some polynomials of unknown degrees with impracticable large bounds and whose73

coefficients are hard-to-compute. The resulting problem is solved with an Augmented74

Lagrangian (AL) method for nonlinear semidefinite programming. Solving the AL75

subproblems requires several spectral decompositions per iteration, being very time76

consuming; thus, only a limited number of numerical examples is exhibited.77

In the present work, the covering problem is tackled from a shape optimization78

perspective. In a broad sense, shape optimization is the study of optimization prob-79

lems where the variable is a geometric object, usually a subset of Rd; see [12, 17, 35].80

The covering problem may be naturally formulated as a nonsmooth shape optimiza-81

tion problem, as A may be nonsmooth, and the union of balls B(xi, r) covering A82

can be seen, except for degenerate cases, as a union of curvilinear polygons. To be83

more precise, Lipschitz domains and transformations seem to be the natural frame-84

work to model covering with a union of balls. Shape sensitivity analysis in a Lipschitz85

setting is well-understood – a family of Lipschitz domains is parameterized via dif-86

feomorphisms applied to a reference shape, then the integral on the moving domain87

is pulled back to the reference domain, and in this way the so-called shape derivative88

[12, 17, 35] can be computed. In this paper, standard shape derivative formulae for89

Lipschitz domains are used to compute the sensitivity of the constraint.90

The covering problem, formulated as a shape optimization problem, features an91

interesting class of moving nonsmooth domains that has received little attention in92
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the literature so far, that is, moving domains defined via unions and intersections of93

subcomponents animated by their own independent motions. To be more specific, in94

this approach the variable domain is the complement of the union of balls with respect95

to the region to be covered, where each ball may either be dilated or be translated96

in an arbitrary direction. The problem then consists in minimizing the radius of the97

identical balls, with the constraint that the area of this variable domain vanishes.98

The main task is then to compute the derivative of this constraint with respect to99

translation and dilations of the balls. Specialized methods have been developed to100

compute the first-order derivative of the area of a union of balls: in two dimensions for101

dilations and translations in [20], and for translations in any dimension in [9], where102

the derivative is expressed as a linear combination of the derivatives of the distances103

between the centers. Nevertheless, a general methodology for the sensitivity analysis104

of shape funcionals depending on sets defined via unions and intersections is lacking.105

The main challenge we are facing in this setting is the construction of a bi-Lipschitz106

mapping between the reference domain and the moving domain, which also needs to107

coincide with the basic transformations of the subcomponents. Our main contribution108

is to show that stretching, moving spheres and their intersection with a fixed set109

may be represented by a bi-Lipschitz map, which allows us to use the known shape110

derivative formulae. The techniques and ideas developed in this work to build such a111

mapping are fairly general and can be used in two dimensions for shape functionals112

involving sets defined via unions and/or intersections, involving the solutions of partial113

differential equations, and to compute second-order derivatives. They can also be used114

to study the structure of first- and second-order shape derivatives, a topic that is well-115

understood in the smooth framework but has been less investigated in the nonsmooth116

case; see the pioneering work [11] and the recent contributions [14, 15, 22, 23]. Some117

of these techniques are nevertheless specific to two dimensions and distinct methods118

should be devised to treat the case of higher dimensions.119

The rest of this work is organized as follows. In Section 2 we describe the shape120

optimization formulation of the covering problem considered in this paper, and we121

give the formulae for the gradient of its constraint. Section 3 is devoted to the proof122

of differentiability of the constraint function. We first show that, under some natu-123

ral nondegeneracy conditions, the structure of the variable domain is preserved, for124

small translations and dilations of the balls. This is a prerequisite to perform shape125

sensitivity analysis and compute shape derivatives. Then we build the bi-Lipschitz126

mapping between the reference domain and the moving domain, and we use it to127

compute the derivatives. In Section 4 we describe algorithms to approximate areas128

and line integrals appearing in the constraint and its derivatives, and provide conver-129

gence estimates for the approximations. In Section 5, numerical experiments illustrate130

the applicability of the introduced approach to a variety of regions A to be covered.131

Conclusions and lines for future research are given in the last section.132

Notation. For a given set ω ⊂ R2, ∂ω denotes its boundary, ω its closure, and ωc133

its complement. The notation ‖ · ‖ is used for the Euclidean norm. The divergence of134

a sufficiently smooth vector field R2 3 (x, y) 7→ V (x, y) = (V1(x, y), V2(x, y)) ∈ R2 is135

defined by div V := ∂V1

∂x + ∂V2

∂y , and its Jacobian matrix is denoted DV .136

2. The continuous problem. Let A be an open bounded subset of R2 and137

Ω(x, r) =
⋃m
i=1B(xi, r), where x := {xi}mi=1 and B(xi, r) are open balls with centers138

xi ∈ R2 and radii r. We consider the problem of covering A using a fixed number m139

of balls B(xi, r) with minimal radius r, i.e., we are looking for a vector (x, r) ∈ R2m+1140
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such that A ⊂ Ω(x, r) with minimal r. The problem can be formulated as141

(2.1) Minimize
(x,r)∈R2m+1

r subject to G(x, r) = 0,142

where143

G(x, r) := Vol(A \ Ω(x, r))(2.2)144145

and Vol(A \ Ω(x, r)) denotes the volume of A \ Ω(x, r).146

The function G can be interpreted as the composition of a so-called shape func-147

tional A\Ω 7→ Vol(A\Ω) with a function (x, r) 7→ A\Ω(x, r). Under some geometric148

conditions detailed in the next sections, the derivative of such a function can be com-149

puted using techniques of shape calculus and in particular via the concept of shape150

derivative [12, 17, 24, 25, 35]. In the forthcoming sections we prove that151

∇G(x, r) = −
(∫

∂B(x1,r)∩∂Ω(x,r)∩A
ν(z) dz, · · · ,

∫
∂B(xm,r)∩∂Ω(x,r)∩A

ν(z) dz,

∫
∂Ω(x,r)∩A

dz

)>
,(2.3)152

153

where ν is the outward unit normal vector to Ω(x, r). Note that ∇G(x, r) is a block154

vector of size 2m+ 1 since ν is a vector with two components.155

Remark 2.1. The results of this section may be extended to several other relevant156

situations. In particular, the case of different radii ri can be obtained immediately.157

Say Ω(x, r) is now a union of balls with different radii r := {ri}mi=1. Then the158

partial derivative with respect to ri of the function (x, r) 7→ G(x, r) is ∂riG(x, r) =159

−
∫
∂B(xi,ri)∩∂Ω(x,r)∩A dz.160

3. Proof of differentiability of G. In this section we prove the formula (2.3)161

for ∇G. Assumption 3.1 below precludes that two balls be exactly superposed, that162

two balls be tangent, and that more than two balls’ boundaries intersect at the same163

point. The assumption makes the task of proving that ∇G is given by (2.3) simpler.164

As it will be shown in Section 3.5, there are situations in which the assumption does165

not hold and ∇G is still given by (2.3); while there are also situations in which the166

assumption does not hold and ∇G does not exist. It is not a restrictive assumption,167

indeed if Assumption 3.1 is not satisfied for some configuration of Ω(x, r), then it168

can be satisfied using an arbitrary small perturbation of r or x = {xi}mi=1. In other169

words, the assumption excludes a null-measure set of balls’ configurations in R2m+1;170

and, thus, supposing it holds does not represent a practical issue of concern.171

Assumption 3.1. The centers {xi}mi=1 satisfy ‖xi − xj‖ 6= 0 and ‖xi − xj‖ 6= 2r172

for all 1 ≤ i, j ≤ m, i 6= j. Also, for all 1 ≤ i, j, k ≤ m with i, j, k pairwise distinct,173

we have ∂B(xi, r) ∩ ∂B(xj , r) ∩ ∂B(xk, r) = ∅.174

We consider two types of perturbed sets for the optimization. First of all,175

Ω(x, r + tδr) ∩A arises from a perturbation r + tδr of the radius while the cen-176

ters x are fixed. Second, the sets Ω(x + tδx, r) ∩ A correspond to translations of177

B(xi, r), i.e., to perturbations of the centers x + tδx = {xi + tδxi}mi=1 with a fixed178

radius r. The shape sensitivity analysis of the area of these perturbed domains is179

achieved through integration by substitution. The integral on the perturbed domain180

is pulled back onto the unperturbed domain, and then the derivative with respect181

to t of the integrand can be computed. In order to apply integration by substitu-182

tion, one needs at least a bi-Lipschitz mapping between the reference domain and183

the perturbed domain. In the case of the radius perturbation for instance, the refer-184

ence domain would be Ω(x, r) ∩A and the perturbed domain Ω(x, r + tδr) ∩A. The185
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objective is then to build a bi-Lipschitz mapping Tt : Ω(x, r) ∩A → R2 such that186

Tt(Ω(x, r)∩A) = Ω(x, r+ tδr)∩A and Tt(∂(Ω(x, r)∩A)) = ∂(Ω(x, r+ tδr)∩A). In187

the case of center perturbations we are looking for a bi-Lipschitz mapping such that188

Tt(Ω(x, r) ∩A) = Ω(x + tδx, r) ∩A and Tt(∂(Ω(x, r) ∩A)) = ∂(Ω(x + tδx, r) ∩A).189

The main difficulty with building Tt is that Ω(x, r) ∩ A is defined via unions of190

balls and intersection with A. Taken individually, the transformations of B(xi, r) are191

simple translations and dilations. Unfortunately, it is not possible to simply sum these192

simple transformations up to obtain Tt, as this would yield a discontinuous Tt. Even193

though the construction of Tt is rather technical, the main ideas may be summarized194

as follows. The boundary of Ω(x, r) ∩ A can be decomposed into a union of curves195

and singular points where two circles meet or where a circle meets the boundary196

of A. The crucial observation is that for small t, the motion of a singular point is197

entirely determined by the translations or dilations of the balls B(xi, r). This can be198

easily understood by considering the intersection between two translating or dilating199

circles. On the smooth parts of the boundary of Ω(x, r) ∩ A there is more freedom200

for building Tt, using the fact that small displacements along a smooth subset of the201

boundary do not modify the shape globally. Thus, the main idea of the construction202

is to first determine Tt at the singular points using the implicit function theorem, and203

then to appropriately extend Tt to the smooth parts of ∂(Ω(x, r) ∩ A), so that Tt is204

bi-Lipschitz and models a translation or a dilation on each B(xi, r).205

3.1. Construction of a mapping corresponding to a perturbation of the206

radius. Theorem 3.2 guarantees that under Assumption 3.1, and for sufficiently small207

t, the structure of Ω(x, r+tδr) is stable, in the sense that ∂Ω(x, r+tδr) is composed of208

a constant number of connected components and arcs, and that no topological changes209

occur, such as splitting, merging, or holes appearing in Ω(x, r + tδr). This result is210

necessary for building a bi-Lipschitz mapping field between Ω(x, r) and Ω(x, r+ tδr)211

in Theorem 3.3. If topological changes were occuring for instance, the perturbation212

of Ω(x, r) could not be described by a bi-Lipschitz transformation. In this case,213

techniques of asymptotic analysis would have to be used to study the variation of G;214

several examples of such singular situations are presented in Section 3.5.215

Theorem 3.2. Suppose that Assumption 3.1 holds. Then there exists t0 > 0 such216

that for all t ∈ [0, t0] we have the following decomposition217

(3.1) ∂Ω(x, r + tδr) =

k̄⋃
k=1

Ek(t) and Ek(t) =

¯̀
k⋃

`=1

Ak,`(t),218

where k̄ ≥ 1 and ¯̀
k ≥ 1 are independent of t, and {Ek(t)}k̄k=1 are the connected219

components of ∂Ω(x, r+tδr). Also, for each k = 1, . . . , k̄ and ` = 1, . . . , ¯̀
k, there exists220

a unique index ik,`, independent of t, such that Ak,`(t) is a subarc of ∂B(xik,` , r+ tδr)221

parameterized by an angle aperture [θin
k,`(t), θ

out
k,` (t)], and t 7→ θin

k,`(t), t 7→ θout
k,` (t) are222

continuous functions on [0, t0].223

Proof. Let I := {1, . . . ,m} and introduce Zi :=
⋃
j∈I,j 6=i ∂B(xi, r) ∩ ∂B(xj , r).224

Notice that Zi ⊂ ∂B(xi, r), that Zi may be empty, and that the cardinal ᾱi of Zi is225

always even due to Assumption 3.1. The points of Zi can be described, in local polar226

coordinates with the pole xi, by angles θi,α ∈ [0, 2π), with α = 1, . . . , ᾱi. The points227

of Zi may be ordered so that the angles θi,α satisfy 0 ≤ θi,1 < θi,2 < · · · < θi,ᾱi < 2π.228

Clearly, ∂Ω(x, r) has a finite number k̄ of connected components Ek. We start by229
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showing the decomposition into arcs230

(3.2) ∂Ω(x, r) =

k̄⋃
k=1

Ek and Ek =

¯̀
k⋃

`=1

Ak,`,231

where each arc Ak,` satisfies Ak,` ⊂ ∂B(xi` , r) for some index i` ∈ I, and the end-232

points of Ak,` are two consecutive points of Zi` , in the order determined by the angles233

{θi`,α}
ᾱi`
α=1. Note that the index i` is unique thanks to Assumption 3.1.234

For a given k ∈ {1, . . . , k̄}, the first arc Ak,1 ⊂ Ek is chosen arbitrarily. If235

Zi1 = ∅, then we have Ek = Ak,1 = ∂B(xi1 , r), i.e., ¯̀
k = 1. If Zi1 6= ∅, then Ak,1236

may be parameterized either by the angle aperture [θi1,γ1 , θi1,γ1+1] for some index237

1 ≤ γ1 ≤ ᾱi1 − 1 or by the angle aperture [θi1,ᾱi1 , θi1,1 + 2π], since the endpoints of238

Ak,1 are consecutive points on Zi1 . Let us call zin
` and zout

` the initial and final points of239

Ak,`, respectively, where the supra-indices “in” and “out” refer to a counterclockwise240

motion along the circles. Then we have zout
1 ∈ Zi1∩Zi2 6= ∅ for some i2 6= i1. Defining241

zin
2 := zout

1 , this determines automatically the next arc Ak,2 ⊂ ∂B(xi2 , r) with initial242

point zin
2 and final point zout

2 , so that zin
2 and zout

2 are two consecutive points of Zi2 .243

Given zout
` for some ` ≥ 1, the procedure can be iterated by setting zin

`+1 := zout
` .244

The procedure ends when ` is such that zout
` = zin

1 , yielding the decomposition of245

Ek in (3.2) with ¯̀
k = `. A simple example illustrating this geometric procedure is246

provided in Figure 1.

x5

A1,3

A1,1

x4

A1,2

x1

A2,2

x3

A2,1

θ2,1

θ2,2θ2,3

θ2,4

zin
1 = zout

3

zin
3 = zout

2

zin
2 = zout

1

x2

Fig. 1: An example of decomposition ∂Ω(x, r) =
⋃k̄
k=1 Ek in (3.2), where Ek are the

connected components of ∂Ω(x, r), with k̄ = 2, Ek =
⋃¯̀

k

`=1Ak,` with ¯̀
1 = 3 and

¯̀
2 = 2. The set Z2 :=

⋃
j∈I,j 6=2 ∂B(x2, r) ∩ ∂B(xj , r) is composed of four points,

hence ᾱ2 = 4. The arc A1,1 is parameterized by the angle aperture [θ2,2, θ2,3], which
corresponds to i1 = 2 and γ1 = 2 in the proof of Theorem 3.2.

247

6

This manuscript is for review purposes only.



Now that we have established the decomposition into subarcs (3.2) of the con-248

nected components of ∂Ω(x, r), we prove that this decomposition is stable for small249

perturbations of the radius r 7→ r + tδr. Let (i, j) ∈ I2, with i 6= j. If ∂B(xi, r) ∩250

∂B(xj , r) = ∅, then thanks to Assumption 3.1 we also have ∂B(xi, r+tδr)∩∂B(xj , r+251

tδr) = ∅ for all t ∈ [0, t0] and t0 > 0 sufficiently small. If ∂B(xi, r) ∩ ∂B(xj , r) is252

not empty then it is composed of exactly two points due to Assumption 3.1, i.e.,253

∂B(xi, r) ∩ ∂B(xj , r) = {zij1, zij2} ⊂ Zi, with zij1 6= zij2. Using Assumption 3.1, it254

is clear that for all η > 0, there exists t0 > 0 such that for all t ∈ [0, t0] we have the255

property ∂B(xi, r + tδr) ∩ ∂B(xj , r + tδr) = {zij1(t), zij2(t)}, with256

zijk(t) ∈ B(zijk, η) and zijk(t)→ zijk as t→ 0 for all k ∈ {1, 2}.(3.3)257258

We can also choose η > 0 sufficiently small so that259

B(zi1j1k1 , η) ∩B(zi2j2k2 , η) = ∅ for all (i1, j1, k1) 6= (i2, j2, k2).(3.4)260261

Now let us fix η > 0 and t0 > 0 such that (3.3) and (3.4) are satisfied, and define262

Zi(t) :=
⋃

j∈I,j 6=i

∂B(xi, r + tδr) ∩ ∂B(xj , r + tδr).263

264

In view of (3.3) and (3.4), the function pt : Zi(t) 3 z 7→ argminv∈Zi ‖z − v‖ ∈ Zi265

defines a bijection between Zi(t) and Zi: the injectivity of pt : Zi(t) → Zi is due to266

Assumption 3.1 and the surjectivity is a consequence of (3.3). Thus, we conclude that267

for all t ∈ [0, t0] the points of Zi(t) can be described, in local polar coordinates with268

the pole xi, by angles θi,α(t) ∈ [−µ0, 2π− µ0) for some µ0 ≥ 0 independent of t, with269

α = 1, . . . , ᾱi, where ᾱi = |Zi| is the cardinal of Zi = Zi(0). For each t ∈ [0, t0], there270

is a bijection between the sets of angles {θi,α(t)}ᾱiα=1 and {θi,α}ᾱiα=1 and we have271

(3.5) − µ0 ≤ θi,1(t) < θi,2(t) < · · · < θi,ᾱi(t) < 2π − µ0 for all t ∈ [0, t0].272

The points of Zi(t) can be ordered using {θi,α(t)}ᾱiα=1. Moreover, in view of (3.3)273

the functions t 7→ θi,α(t) are continuous on [0, t0] and we have θi,α(0) = θi,α for274

α = 1, . . . , ᾱi.275

Finally, we consider the decompositions

∂Ω(x, r + tδr) =

k̄(t)⋃
k=1

Ek(t) and Ek(t) =

¯̀
k(t)⋃
`=1

Ak,`(t),

where Ek(t) are the connected components of ∂Ω(x, r+ tδr). In view of the bijection276

between Zi(t) and Zi, the bijection between {θi,α(t)}ᾱiα=1 and {θi,α}ᾱiα=1, and (3.5),277

we conclude that the set of subarcs of ∂B(xi, r) defined by the points of Zi is also278

in bijection with the set of subarcs of ∂B(xi, r + tδr) defined by the points of Zi(t).279

Then, employing the same procedure leading to the decompositions (3.2), we obtain280

that for all t ∈ [0, t0] we have k̄(t) = k̄ and ¯̀
k(t) = ¯̀

k for all k = 1, . . . , k̄. Due to281

θi,α(0) = θi,α and (3.5), we also have Ak,`(0) = Ak,` and Ak,`(t) ⊂ ∂B(xi` , r + tδr)282

for all t ∈ [0, t0], where i` is the unique index such that Ak,` ⊂ ∂B(xi` , r). This proves283

the result.284

Theorem 3.3. Suppose that Assumption 3.1 holds. Then there exists t0 > 0 such285

that for all t ∈ [0, t0], there exists a bi-Lipschitz mapping Tt : Ω(x, r)→ R2 satisfying286

Tt(Ω(x, r)) = Ω(x, r + tδr) and Tt(∂Ω(x, r)) = ∂Ω(x, r + tδr).287
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Proof. First we provide a general formula for the angle ϑ(t), in local polar coordi-
nates with the pole xa, describing an intersection point of two circles ∂B(xa, r+ tδr)
and ∂B(xb, r + tδr), with xa, xb ∈ R2, xa 6= xb, and ‖xa − xb‖ < 2r. Introduce

ψ(t, ϑ) := ‖ζ(t, ϑ)‖2 − (r + tδr)2 with ζ(t, ϑ) := xa − xb + (r + tδr)

(
cosϑ
sinϑ

)
.

Observe that ϑ 7→ ζ(t, ϑ) is a parameterization of the circle ∂B(xa, r+ tδr) in a coor-288

dinate system of center xb, which means that the solutions of the equation ψ(t, ϑ) = 0289

describe the intersections between ∂B(xa, r + tδr) and ∂B(xb, r + tδr).290

We compute ∂ϑψ(0, ϑ) = 2〈ζ(0, ϑ), ∂ϑζ(0, ϑ)〉 with291

ζ(0, ϑ) = xa − xb + r

(
cosϑ
sinϑ

)
and ∂ϑζ(0, ϑ) = r

(
− sinϑ
cosϑ

)
.(3.6)292

293

Now let us select one of the two points in ∂B(xa, r + tδr) ∩ ∂B(xb, r + tδr) and let θ̂294

be the corresponding angle in a polar coordinate system with the pole xa. Since the295

conditions of Assumption 3.1 are satisfied, it is easy to see that296

(3.7) ∂ϑψ(0, θ̂) = 〈ζ(0, θ̂), ∂ϑζ(0, θ̂)〉 6= 0.297

Hence, the implicit function theorem can be applied to the function (t, ϑ) 7→ ψ(t, ϑ)298

in a neighborhood of (0, θ̂). This yields the existence, for t0 sufficiently small, of a299

smooth function t 7→ ϑ(t) in [0, t0] such that ψ(t, ϑ(t)) = 0 in [0, t0] and ϑ(0) = θ̂. We300

also have the derivative301

(3.8) ϑ′(t) = − ∂tψ(t, ϑ(t))

∂ϑψ(t, ϑ(t))
= −〈ζ(t, ϑ(t)), ∂tζ(t, ϑ(t))〉 − (r + tδr)δr

〈ζ(t, ϑ(t)), ∂ϑζ(t, ϑ(t))〉
.302

Now, let A be one of the two arcs composing the boundary of B(xa, r)∪B(xb, r),303

for instance A = ∂B(xa, r) ∩ (B(xa, r) ∪B(xb, r)), and let θa and θb be the angles304

parameterizing the endpoints of A, with θa < θb < θa + 2π since A is not a circle.305

In view of the development above, for t0 sufficiently small, we obtain two smooth306

functions t 7→ θa(t) and t 7→ θb(t), with θa(t) < θb(t) < θa(t) + 2π for all t ∈ [0, t0],307

where θa(t) and θb(t) are given by ϑ(t) with θ̂ = θa and θ̂ = θb, respectively. The308

angles θa(t) and θb(t) are parameterizing the endpoints of one of the two arcs A(t)309

composing the boundary of B(xa, r + tδr) ∪B(xb, r + tδr), with A(0) = A.310

Next we define

ξ(t, θ) := α(t)(θ−θb)+θb(t) for (t, θ) ∈ [0, t0]× [θa, θb] and α(t) :=
θb(t)− θa(t)

θb − θa
.

Then, for θ ∈ [θa, θb] we have ξ(t, θ) ∈ [θa(t), θb(t)] and ξ(t, θ) is a parameterization311

of A(t). We can parameterize a point x ∈ A(0) by312

(3.9) x = xa + r

(
cos θ
sin θ

)
, and define Tt(θ) := xa + (r + tδr)

(
cos ξ(t, θ)
sin ξ(t, θ)

)
.313

Writing ξ(t, θ) = θ + β(t, θ) with β(t, θ) := (α(t)− 1)(θ − θb(t)), we observe that(
cos ξ(t, θ)
sin ξ(t, θ)

)
= R(xa, β(t, θ))

(
cos θ
sin θ

)
= R(xa, β(t, θ))ν,
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where R(xa, β(t, θ)) is a rotation matrix of center xa and angle β(t, θ), and ν is the314

outward unit normal vector to A at the point (r, θ) in polar coordinates with the pole315

xa. Also, thanks to θa < θb < θa + 2π and θ ∈ [θa, θb], there exists a smooth bijection316

θ : A 3 x 7→ θ(x) ∈ [θa, θb]. Thus, using (3.9) we can define the function317

(3.10) Tt(x) := Tt(θ(x)) = x− rν(x) + (r + tδr)R(xa, β(t, θ(x)))ν(x) for all x ∈ A.318

In Figure 2 we provide an illustration of θ̂ and of the functions Tt(x), ξ(t, θ).319

r

r + tδr

θ̂ ξ(t, θ̂)
θ

ξ(t, θ)

xa

xb

A(0) 3 x
A(t) 3 Tt(x)

Fig. 2: Illustration of the geometric constructions in the proof of Theorem 3.3. For
a given point x on the arc A(0), the polar coordinate (r + tδr, ξ(t, θ)), with the
pole xa, represents the moving point Tt(x) ∈ A(t), and we have T0(x) = x and

ξ(0, θ) = θ ∈ [θa, θb]. In the particular case θ = θ̂, the polar coordinate (r+tδr, ξ(t, θ̂))
corresponds to an intersection point between B(xa, r + tδr) and B(xb, r + tδr), and

we have ξ(0, θ̂) = θ̂ = θa.

Now we show that Tt is Lipschitz on A. Using (3.9) we define320

(3.11) S(t, θ) := Tt(θ)− xa − r
(

cos θ
sin θ

)
= r

(
cos ξ(t, θ)− cos θ
sin ξ(t, θ)− sin θ

)
+ tδr

(
cos ξ(t, θ)
sin ξ(t, θ)

)
.321

Using ξ(t, θ) = θ + β(t, θ) we compute322

∂θS(t, θ) = r

(
−α(t) sin ξ(t, θ) + sin θ
α(t) cos ξ(t, θ)− cos θ

)
+ tδrα(t)

(
− sin ξ(t, θ)
cos ξ(t, θ)

)
323

= r

(
c1(t, θ) sin θ + c2(t, θ) cos θ
−c1(t, θ) cos θ + c2(t, θ) sin θ

)
+ tδrα(t)

(
− sin ξ(t, θ)
cos ξ(t, θ)

)
,324

325

with326

(3.12) c1(t, θ) := 1− α(t) cosβ(t, θ) and c2(t, θ) := −α(t) sinβ(t, θ).327

Since α(0) = 1 we have β(0, θ) = 0, c1(0, θ) = 0 and c2(0, θ) = 0 for all θ ∈ [θa, θb].328

Thus, we obtain329

(3.13) c1(t, θ) = t∂tc1(ξ1, θ) and c2(t, θ) = t∂tc2(ξ2, θ)330
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for some ξ1 ∈ [0, t] and ξ2 ∈ [0, t]. Then we compute331

(3.14) ∂tβ(t, θ) = α′(t)(θ − θb(t))− (α(t)− 1)θ′b(t) and α′(t) =
θ′b(t)−θ

′
a(t)

θb−θa .332

Using (3.6) and (3.8), we can show that for sufficiently small t0 we have333

(3.15) |θ′a(t)| ≤ C0 and |θ′b(t)| ≤ C0 for all t ∈ [0, t0],334

where C0 does not depend on t. Then, using (3.13) and (3.14) we get |c1(t, θ)| ≤ C1t335

and |c2(t, θ)| ≤ C2t, where C1 and C2 are both independent of t and θ.336

Finally, gathering (3.12), (3.13), (3.14), (3.15), and using a uniform bound on337

α(t) we obtain338

(3.16) ‖∂θS(t, θ)‖ ≤ C3t for all t ∈ [0, t0] and θ ∈ [θa, θb],339

where C3 is independent of t and θ.340

Now we show that (3.16) implies the existence of a constant C > 0 such that341

x 7→ S(t, x) := Tt(x)− x is Lipschitz on A with Lipschitz constant Ct, i.e.,342

(3.17) ‖S(t, x)− S(t, y)‖ ≤ Ct‖x− y‖, ∀(t, x, y) ∈ [0, t0]×A2.343

Indeed if this were not the case, then there would exist a sequence (tn, xn, yn) ∈344

[0, t0]×A2 such that345

(3.18)
‖S(tn, xn)− S(tn, yn)‖

tn‖xn − yn‖
→ ∞ as n→ +∞.346

Suppose that (3.18) holds. In view of (3.11) the numerator ‖S(tn, xn)− S(tn, yn)‖ is
uniformly bounded on [0, t0]×A2, thus we must have tn‖xn − yn‖ → 0. We suppose
that both tn → 0 and ‖xn − yn‖ → 0, the other cases follow in a similar way. Using
the compactness of [0, t0]×A2, we can extract a subsequence, still denoted (tn, xn, yn)
for simplicity, which converges towards (0, x?, x?) ∈ [0, t0]×A2. Then we write

‖S(tn, xn)− S(tn, yn)‖
tn‖xn − yn‖

=
‖S(tn, θ(xn))− S(tn, θ(yn))‖

tn|θ(xn)− θ(yn)|︸ ︷︷ ︸
bounded using (3.16) at θ(x?)

|θ(xn)− θ(yn)|
‖xn − yn‖︸ ︷︷ ︸

bounded

,

where we have used the fact that ‖xn − yn‖ = r
∥∥∥( cos θ(xn)−cos θ(yn)

sin θ(xn)−sin θ(yn)

)∥∥∥. This contra-347

dicts (3.18) which proves (3.17).348

So far we have built a Lipschitz function Tt on an arc A. We now proceed to build349

Tt on the entire boundary ∂Ω(x, r). On each arc Ak,`(t) ⊂ ∂B(xik,` , r + tδr) of the350

decomposition (3.1), Tt is built as in (3.10). Then due to (3.1) we have by construction351

that Tt(∂Ω(x, r)) = ∂Ω(x, r + tδr). The continuity of Tt at the arc junctions is an352

immediate consequence of the definition of θa(t) and θb(t). Using the compactness353

of ∂Ω(x, r), the Lipschitz property (3.17) is valid on each connected component of354

∂Ω(x, r). Using Kirszbraun’s theorem [21] we can extend x 7→ S(t, x) to a Lipschitz355

function on Ω(x, r) with the same Lipschitz constant Ct.356

Since S(t, x) = Tt(x) − x, this also defines an extension of x 7→ Tt(x) to Ω(x, r)357

and this shows that x 7→ Tt(x) is Lipschitz on Ω(x, r) with Lipschitz constant 1 +Ct358

for all t ∈ [0, t0]. Since C is independent of t, we can choose t0 sufficiently small so359

that x 7→ Tt(x) is invertible for all t ∈ [0, t0]. The inverse is also Lipschitz on ∂Ω(x, r)360
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with Lipschitz constant (1 − Ct)−1 for all t ∈ [0, t0]. This shows that Tt : Ω(x, r) →361

Tt(Ω(x, r)) is bi-Lipschitz for all t ∈ [0, t0].362

Finally, we prove that Tt(Ω(x, r)) = Ω(x, r+tδr). Suppose first that ∂Ω(x, r) has363

exactly one connected component. Since Tt : Ω(x, r)→ Tt(Ω(x, r)) is bi-Lipschitz it is364

also a homeomorphism, thus it maps interior points onto interior points and boundary365

points onto boundary points, i.e., Tt(Ω(x, r)) is the interior of Tt(∂Ω(x, r)). According366

to the Jordan curve theorem [37], Ω(x, r + tδr) is the interior of ∂Ω(x, r + tδr).367

Since ∂Ω(x, r + tδr) = Tt(∂Ω(x, r)) we also have that the interiors are the same,368

i.e., Tt(Ω(x, r)) = Ω(x, r + tδr). The case where ∂Ω(x, r) has several connected369

components follows in a similar way.370

3.2. Construction of a mapping corresponding to a perturbation of the371

centers. Unlike the case of the radius where the balls are dilated simultaneously,372

the computation of the partial derivatives of G with respect to xi only requires the373

perturbation of one center xi at a time. This can be modeled using a general setting374

where we build a mapping Tt between two sets B(x̂, r) ∩ E and B(x̂ + tδx̂, r) ∩ E,375

where E ⊂ R2 and B(x̂, r) are compatible in the following sense. In what follows, a376

Lipschitz domain denotes an open, bounded set that is locally representable as the377

graph of a Lipschitz function; see [24, Def. 1] for a precise definition.378

Definition 3.4. Let ω1, ω2 be open subsets of R2. We call ω1 and ω2 compatible379

if ω1 ∩ ω2 6= ∅, ω1 and ω2 are Lipschitz domains, and the following conditions hold:380

(i) ω1∩ω2 is a Lipschitz domain; (ii) ∂ω1∩∂ω2 is finite; (iii) ∂ω1 and ∂ω2 are locally381

smooth in a neighborhood of ∂ω1 ∩ ∂ω2; (iv) τ1(x) · ν2(x) 6= 0 for all x ∈ ∂ω1 ∩ ∂ω2,382

where τ1(x) is a tangent vector to ∂ω1 at x and ν2(x) is a normal vector to ∂ω2 at x.383

Let us consider the following simple example: A is a square and Ω(x, r) is a sin-384

gle ball, i.e. we have m = 1. Hence, the set of possible geometric configurations385

is three-dimensional. The sets A and Ω(x, r) are always compatible in the sense of386

Definition 3.4, except when ∂Ω(x, r) hits a corner of the square, or when ∂Ω(x, r)387

and ∂A are tangent, as illustrated in Figure 3. This shows that the set of geomet-388

ric configurations such that A and Ω(x, r) are not compatible has measure zero in389

R3. Note that the examples depicted in Figure 3 are representative of the geometric390

configurations occurring in practice.

(a) compatible (b) compatible (c) not compatible (d) not compatible

Fig. 3: Compatibility of a ball ω1 and a square ω2 in the sense of Definition 3.4. In (c),
condition (iii) of Definition 3.4 fails while, in (d), condition (iv) of Definition 3.4 fails.

391

The following result establishes the stability of the structure of B(x̂, r)∩E under392

a small perturbation of the center x̂ of the ball. We omit the proof of Theorem 3.5393

which follows the same methodology as the proof of Theorem 3.2. Further, we build394

a bi-Lipschitz mapping in Theorem 3.6 between B(x̂, r) ∩ E and B(x̂ + tδx̂, r) ∩ E;395
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see Figure 4.396

Theorem 3.5. Let x̂, δx̂ ∈ R2, E ⊂ R2, and suppose that B(x̂, r) and E are397

compatible. Then there exists t0 > 0 such that for all t ∈ [0, t0] we have the following398

decomposition399

(3.19) ∂B(x̂+ tδx̂, r) ∩ E =

k̄⋃
k=1

Ak(t),400

where k̄ is independent of t, and Ak(t) are subarcs of ∂B(x̂ + tδx̂, r) parameterized401

by an angle aperture [θk,a(t), θk,b(t)], and t 7→ θk,a(t), t 7→ θk,b(t) are continuous402

functions on [0, t0].403

Theorem 3.6. Let x̂, δx̂ ∈ R2, E ⊂ R2, and suppose that B(x̂, r) and E are404

compatible. Then there exists t0 > 0 such that for all t ∈ [0, t0], there exists a bi-405

Lipschitz mapping Tt : B(x̂, r) ∩ E → R2 satisfying Tt(B(x̂, r)∩E) = B(x̂+tδx̂, r)∩E406

and Tt(∂(B(x̂, r) ∩ E)) = ∂(B(x̂+ tδx̂, r) ∩ E).407

Proof. We start by providing a general formula for the angle ϑ(t), in local polar408

coordinates with the pole x̂+ tδx̂, describing an intersection point between the circle409

∂B(x̂ + tδx̂, r) and ∂E. Let z ∈ ∂B(x̂, r) ∩ ∂E and νE(z) the outward unit normal410

vector to E at z. Let φ be the oriented distance function to E, defined as φ(x) :=411

d(x,E)− d(x,Ec), where d(x,E) is the distance from x to the set E. Since we have412

assumed that B(x̂, r) and E are compatible, it follows that ∂E is locally smooth413

around the points ∂B(x̂, r)∩∂E, hence there exists a neighborhood Uz of z such that414

the restriction of φ to Uz is smooth, φ(x) = 0 and ‖∇φ(x)‖ = 1 for all x ∈ ∂E ∩ Uz.415

Let (r, θ̂) denote the polar coordinates of z, with the pole x̂. Introduce the function

ψ(t, ϑ) = φ

(
x̂+ tδx̂+ r

(
cosϑ
sinϑ

))
.

We compute

∂ϑψ(0, θ̂) = r

(
− sin θ̂

cos θ̂

)
· ∇φ

(
x̂+ r

(
cos θ̂

sin θ̂

))
= rτ(z) · ∇φ(z),

where τ(z) is a tangent vector to ∂B(x̂, r) at z. Since B(x̂, r) and E are compatible,416

B(x̂, r) is not tangent to ∂E and using ‖∇φ(z)‖ = 1 we obtain τ(z)·∇φ(z) 6= 0. Thus,417

we can apply the implicit function theorem and this yields the existence of a smooth418

function [0, t0] 3 t 7→ ϑ(t) with ψ(t, ϑ(t)) = 0 and ϑ(0) = θ̂. We also compute, using419

that ∇φ(z) = ‖∇φ(z)‖νE(z) since φ is the oriented distance function to ∂E,420

(3.20) ϑ′(0) = − ∂tψ(0, ϑ(0))

∂ϑψ(0, ϑ(0))
= − ∇φ(z) · δx̂

rτ(z) · ∇φ(z)
= − νE(z) · δx̂

rτ(z) · νE(z)
.421

Let A(t) be one of the arcs in the decomposition (3.19) parameterized by the angle422

aperture [θa(t), θb(t)]; we have dropped the index k for simplicity. The angles θa(t)423

and θb(t) are given by ϑ(t) with either θ̂ = θa(0) or θ̂ = θb(0).424

Let zt ∈ ∂B(x̂ + tδx̂, r) ∩ ∂E be the point parameterized by polar coordinates425

(r, ϑ(t)) with the pole x̂ + tδx̂. Let za ∈ ∂E ∩ B(x̂, r) and zb ∈ ∂E ∩ B(x̂, r)c, both426

distinct from z and sufficiently close to z so that the subarc of ∂E between za and427

zb is smooth. Let γ : [0, 1]→ R2 be a smooth parameterization of this arc satisfying428

γ(0) = za and γ(1) = zb. We may choose t0 > 0 sufficiently small so that zt ∈ γ((0, 1))429
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for all t ∈ [0, t0] and then define σ(t) := γ−1(zt) > 0 for all t ∈ [0, t0]. Then define430

Tt(γ(s)) := γ
(
σ(t)
σ(0)s

)
for all 0 < s < σ(0), or equivalently431

(3.21) Tt(x) := γ

(
γ−1(zt)

γ−1(z)
γ−1(x)

)
for all x ∈ γ([0, σ(0)]).432

Observe that Tt(za) = za, Tt(z) = zt and Tt(γ([0, σ(0)])) = γ([0, σ(t)]), which is433

precisely the smooth subarc of ∂E between za and zt; see Figure 4 for an illustration434

of the construction of Tt. Then we define Tt in a similar way in neighborhoods of the435

other points of ∂B(x̂, r)∩∂E. For all other points x of ∂E∩B(x̂, r) we set Tt(x) = x.436

Thus by construction we have Tt(∂E ∩B(x̂, r)) = ∂E ∩B(x̂+ tδx̂, r).437

x̂+ tδx̂ x̂

za = Tt(za)
z

zt = Tt(z)zb

∂Eϑ(t)

τ(z)

∇φ(z)

Fig. 4: Illustration of a key idea of the proof of Theorem 3.6. The point z belongs to
∂B(x̂, r) ∩ ∂E while zt belongs to ∂B(x̂ + tδx̂, r) ∩ ∂E. We build a transformation
Tt mapping the subarc of ∂E between za and z to the subarc between za and zt, and
also mapping the arc of circle ∂B(x̂, r) ∩E to ∂B(x̂+ tδx̂, r) ∩E. Note that the sets
E and B(x̂, r) are compatible in the sense of Definition 3.4.

Let us define S(t, γ(s)) := Tt(γ(s)) − γ(s) for all 0 < s < σ(0) and compute the438

derivative439

∂s[S(t, γ(s))] =
σ(t)

σ(0)
γ′
(
σ(t)

σ(0)
s

)
− γ′(s)440

= γ′
(
s+

(
σ(t)

σ(0)
− 1

)
s

)
− γ′(s) +

(
σ(t)

σ(0)
− 1

)
γ′
(
σ(t)

σ(0)
s

)
441

= st
σ′(η0)

σ(0)
γ′′ (η1) + t

σ′(η0)

σ(0)
γ′
(
σ(t)

σ(0)
s

)
,442

443

with η0 ∈ [0, t] and |η1 − s| ≤ st|σ′(η0)/σ(0)|. Using (3.20) and the smoothness of
γ−1 we obtain that σ′ is uniformly bounded on [0, t0]. Using the smoothness of γ we
obtain

‖∂s[S(t, γ(s))]‖ ≤ Ct for all t ∈ [0, t0] and 0 < s < σ(0),

for some constant C independent of t. Using a similar methodology as in the proof of444

Theorem 3.3, this proves that Tt is Lipschitz on ∂E ∩B(x̂, r) with Lipschitz constant445

1 + Ct for all t ∈ [0, t0].446

The definition of Tt on the arc A(0) follows the same steps as in the proof of447

Theorem 3.3. For t0 sufficiently small and t ∈ [0, t0], A(t) is an arc parameterized448
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by θa(t) and θb(t), where θa(t) and θb(t) are given by ϑ(t) with θ̂ = θa and θ̂ = θb,449

respectively. Then we define450

(3.22) Tt(x) := x̂+ tδx̂+ r

(
cos ξ(t, θ)
sin ξ(t, θ)

)
with x = x̂+ r

(
cos θ
sin θ

)
∈ A(0),451

where452

(3.23) ξ(t, θ) := α(t)(θ − θb) + θb(t) for (t, θ) ∈ [0, t0]× [θa, θb] and α(t) := θb(t)−θa(t)
θb−θa .453

The fact that Tt is Lipschitz on ∂B(x̂, r)∩E with Lipschitz constant 1 +Ct, and the454

bi-Lipschitz extension of Tt to B(x̂, r) ∩ E can be done as in the proof of Theorem 3.3.455

We have already shown that Tt(∂E ∩ B(x̂, r)) = ∂E ∩ B(x̂+ tδx̂, r) and by con-456

struction we also have Tt(A(0)) = A(t). This shows that Tt(∂(B(x̂, r) ∩ E)) =457

∂(B(x̂ + tδx̂, r) ∩ E). The property Tt(B(x̂, r) ∩ E) = B(x̂ + tδx̂, r) ∩ E is obtained458

in a similar way as in the proof of Theorem 3.3.459

3.3. Derivative of G with respect to the radius. To compute this derivative460

we consider a perturbation δr of the radius. The following result may be proven using461

Theorem 3.3 and a similar construction as in the proof of Theorem 3.6, therefore we462

omit its proof here. The result requires the following assumption.463

Assumption 3.7. Sets Ω(x, r) and A are compatible.464

Under Assumption 3.1, the set Ω(x, r) is Lipschitz, and if in addition the in-465

tersection of ∂Ω(x, r) and ∂A is empty, then Assumption 3.7 holds. Hence, in this466

particular case we can drop Assumption 3.7 in Theorem 3.8.467

Theorem 3.8. Suppose that Assumption 3.1 and Assumption 3.7 hold. Then,468

there exists t0 > 0 such that for all t ∈ [0, t0], there exists a bi-Lipschitz map-469

ping Tt : Ω(x, r) ∩A → R2 satisfying Tt(Ω(x, r) ∩ A) = Ω(x, r + tδr) ∩ A and470

Tt(∂(Ω(x, r) ∩A)) = ∂(Ω(x, r + tδr) ∩A).471

Theorem 3.8 provides a mapping Tt that allows us to use the following integration by472

substitution:473

G(x, r + tδr) = Vol(A \ Ω(x, r + tδr)) = Vol(A)−Vol(A ∩ Ω(x, r + tδr))474

= Vol(A)−
∫
Tt(Ω(x,r)∩A)

dz = Vol(A)−
∫

Ω(x,r)∩A
|detDTt(z)| dz.475

476

For sufficiently small t we have |detDTt(z)| = detDTt(z) and ∂t detDTt(z)|t=0 =477

div V (z), with V := ∂tTt|t=0; see [12, 17, 35]. The set Ω(x, r) ∩A is Lipschitz due to478

Assumption 3.7, thus we may apply a divergence theorem in Lipschitz domains, see479

for instance [13, § 4.3, Theorem 1]. Denoting by ν the outward unit normal vector to480

Ω(x, r), this yields481

d

dt
G(r + tδr,x)

∣∣∣∣
t=0

= −
∫

Ω(x,r)∩A
div V (z) dz = −

∫
∂(Ω(x,r)∩A)

V (z) · ν(z) dz.(3.24)482

483

The last integral in (3.24) is commonly called boundary expression of the shape deriva-484

tive and the penultimate integral is called volume expression; see [12, 24, 35]. These485

expressions are standard for Lipschitz domains and vector fields V .486

Now we compute V on (∂(Ω(x, r) ∩ A)) ∩ ∂B(xi, r). In the case of Ω(x, r) ∩ A
we also have a decomposition into arcs similar to (3.1), and we can use (3.9) and
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ξ(0, θ) = θ to obtain

V = ∂tTt|t=0 = δr

(
cos θ
sin θ

)
+ ∂tξ(0, θ)r

(
− sin θ
cos θ

)
on ∂(Ω(x, r) ∩A) ∩ ∂B(xi, r),

where θ is the angle in polar coordinates with the pole xi. Since ν =
(

cos θ
sin θ

)
on487

∂Ω(x, r) ∩ ∂B(xi, r), we get V · ν = δr on ∂(Ω(x, r) ∩ A) ∩ ∂B(xi, r). We define Tt488

as in (3.21) or as the identity on ∂A ∩ ∂(Ω(x, r) ∩A). Thus, it is easy to check that489

V = ∂tTt|t=0 is tangent to ∂A∩∂(Ω(x, r)∩A), so that V ·ν = 0 on ∂A∩∂(Ω(x, r)∩A).490

Gathering these results we obtain491

d

dt
G(r + tδr,x)

∣∣∣∣
t=0

= −
∫
∂(Ω(x,r)∩A)

V (z) · ν(z) dz = −δr
∫
∂Ω(x,r)∩A

dz,492

493

which gives the formula for the last entry of (2.3).494

3.4. Derivative of G with respect to the centers. To compute this deriva-
tive we consider a perturbation δx such that δxi 6= 0 for some index i ∈ I and δxj = 0
for j 6= i, i.e., we consider the translation of only one ball in Ω(x, r). Introduce the
notation Ω−i :=

⋃m
j=1,j 6=iB(xj , r). Then we have the partition

Ω(x + tδx, r) ∩A = (Ω−i ∩A) ∪ (B(xi + tδxi, r) ∩ Ωc−i ∩A).

We assume that the following condition holds.495

Assumption 3.9. Sets B(xi, r) and Ωc−i ∩A are compatible.496

Setting E := Ωc−i∩A, we can apply the results of Theorem 3.5 and Theorem 3.6 using497

Assumption 3.9. Let Tt be the bi-Lipschitz mapping given by Theorem 3.6. Then498

Tt(B(xi, r) ∩ E) = B(xi + tδxi, r) ∩ E and using an integration by substitution with499

the mapping Tt, we obtain500

G(x + tδx, r) = Vol(A \ Ω(x + tδx, r)) = Vol(A)−Vol(Ω(x + tδx, r) ∩A)501

= Vol(A)−Vol(Ω−i ∩A)−
∫
B(xi+tδxi,r)∩E

dz502

= Vol(A)−Vol(Ω−i ∩A)−
∫
Tt(B(xi,r)∩E)

dz503

= Vol(A)−Vol(Ω−i ∩A)−
∫
B(xi,r)∩E

|detDTt(z)| dz,504

505

with V := ∂tTt|t=0. The set B(xi, r)∩E is Lipschitz due to Assumption 3.9, thus the506

divergence theorem yields507

d

dt
G(x + tδx, r)

∣∣∣∣
t=0

= −
∫
B(xi,r)∩E

div V (z) dz = −
∫
∂(B(xi,r)∩E)

V (z) · ν(z) dz,508

509

where ν is the outward unit normal vector to Ω(x, r).510

Now we compute V on ∂(B(xi, r) ∩ E). Let A ⊂ ∂B(xi, r) be an arc in the511

decomposition (3.19) at t = 0, then using ξ(0, θ) = θ, (3.22) and (3.23) with x̂ = xi512

we obtain513

V = ∂tTt|t=0 = δxi + ∂tξ(0, θ)r

(
− sin ξ(0, θ)
cos ξ(0, θ)

)
= δxi + ∂tξ(0, θ)r

(
− sin θ
cos θ

)
on A,514
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where θ is the angle in local polar coordinates with the pole xi. Since ν =
(

cos θ
sin θ

)
is515

a normal vector on A, we get V · ν = δxi · ν on A. On ∂A ∩ ∂(B(xi, r) ∩ E), Tt is516

defined by (3.21) or is the identity. Thus it is easy to check that V = ∂tTt|t=0 is a517

tangent vector on ∂A ∩ ∂(B(xi, r) ∩ E), so that V · ν = 0 on ∂A ∩ ∂(B(xi, r) ∩ E).518

Gathering these results we obtain519

d

dt
G(x + tδx, r)

∣∣∣∣
t=0

= −
∫
∂(B(xi,r)∩E)

V (z) · ν(z) dz = −δxi ·
∫
∂B(xi,r)∩∂Ω(x,r)∩A

ν(z) dz,520

521

which gives the formula for the first 2m entries of (2.3).522

3.5. Analysis of several singular cases. The theory in Sections 3.1–3.4 shows523

that (2.3) corresponds to the gradient of (2.2) under Assumptions 3.1, 3.7 and 3.9.524

From the practical point of view, the set of points (x, r) that do not satisfy these525

assumptions has measure zero in R2m+1; thus, it does not represent an issue. From526

a theoretical point of view, it is interesting to understand what may happen at these527

points.528

Examples 3.10, 3.11, and 3.12 correspond to situations in which Assumption 3.1529

does not hold. Example 3.10 corresponds to two tangent balls compactly contained530

in A; Example 3.11 corresponds to three balls whose boundaries intersect at a single531

point; and Example 3.12 corresponds to two superimposed balls, i.e., two balls whose532

boundaries intersect in an infinite number of points. In the first two cases, (2.3) still533

corresponds to the gradient of (2.2); while in the third case the gradient of (2.2) does534

not exist. Finally, Example 3.13 illustrates a situation in which Assumptions 3.7535

and 3.9 do not hold and the gradient of (2.2) does not exist.536

Example 3.10. Suppose m = 2, Ω(x + tδx, r) ⊂ A for all t ∈ [0, t0] and t0 suf-
ficiently small, and the two balls are tangent at t = 0, i.e., ‖x1 − x2‖ = 2r. Note
that Assumption 3.1 is not satisfied. Two cases need to be considered to compute
the gradient of G. First, if 〈x1 − x2, δx1 − δx2〉 ≥ 0 then it is clear that B(x1 +
tδx1, r) ∩ B(x2 + tδx2, r) = ∅ for all t ∈ [0, t0]. Therefore G(x + tδx, r) = G(x, r) =
Vol(A)− 2πr2 for all t ∈ [0, t0], and limt↘0(G(x+ tδx, r)−G(x, r))/t = 0. Second, if
〈x1 − x2, δx1 − δx2〉 < 0 then B(x1 + tδx1, r) ∩B(x2 + tδx2, r) 6= ∅ for all t ∈ (0, t0].
Let us introduce the notation a(t) := Vol (B(x1 + tδx1, r) ∩B(x2 + tδx2, r)). Using

trigonometry we can show that a(t) = 2r2 arccos (d(t)/2r)− d(t)
(
r2 − (d(t)2)/4

)1/2
,

where d(t) := ‖x1 + tδx1 − (x2 + tδx2)‖. It is convenient to rewrite this expression as

a(t) = 2r2 arccos
(

(1− g(t))1/2
)
− 2r2

(
g(t) + g(t)2

)1/2
,

with g(t) := −(2t〈x1−x2, δx1−δx2〉+t2‖δx1−δx2‖2)/(4r2), g(t) ≥ 0 for all t ∈ [0, t0]
for t0 small enough, d(t) = 2r(1− g(t))1/2, and g′(0) = −〈x1 − x2, δx1 − δx2〉)/(2r2).

After simplifications, we obtain a′(t) = 2r2
(

g(t)
1−g(t)

)1/2

g′(t), and in particular a′(0) =

0. This shows that

lim
t↘0

G(x + tδx, r)−G(x, r)

t
= 0 when 〈x1 − x2, δx1 − δx2〉 < 0.

Hence limt↘0(G(x + tδx, r) − G(x, r))/t = 0 in both cases. Proceeding in a similar537

way we can also show that limt↘0(G(x, r+ tδr)−G(x, r))/t = 4πr. Thus ∇G(x, r) =538

(0, . . . , 0, 4πr)> in the case ‖x1− x2‖ = 2r. It is easy to check that formula (2.3) also539

gives ∇G(x, r) = (0, . . . , 0, 4πr)> in this case. This indicates that, for the analyzed540
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case, (2.3) is valid even without the satisfaction of Assumption 3.1. However, we had541

to use a different technique to prove that (2.3) holds, due to the fact that G(x+tδx, r)542

takes different expressions depending on the sign of 〈x1 − x2, δx1 − δx2〉.543

Example 3.11. Let m = 3 and x1, x2, x3 be the vertices of an equilateral triangle544

such that the circles ∂B(x1, r), ∂B(x2, r) and ∂B(x3, r) intersect at a single point.545

Observe that Assumption 3.1 is not satisfied in this configuration. Then, if δr < 0 it546

is clear that B(x1, r+ tδr)∩B(x2, r+ tδr)∩B(x3, r+ tδr) = ∅, thus limt↘0(G(x, r+547

tδr)−G(x, r))/t can be computed as in Section 3.3; and is equal to ∂rG(x, r) given548

by (2.3). Now if δr > 0, the intersection B(x1, r+ tδr)∩B(x2, r+ tδr)∩B(x3, r+ tδr)549

forms a well-known shape called Reuleaux triangle. An explicit calculation shows550

that this Reuleaux triangle is included in a ball whose area is of order t2δr2. Thus551

the first derivative of this area with respect to t at t = 0 is zero, hence the derivative552

limt↘0(G(x, r + tδr)−G(x, r))/t is also equal to ∂rG(x, r) given by (2.3) if δr > 0.553

Example 3.12. Letm = 2, Ω(x+tδx, r) ⊂ A for t ∈ [0, t0] and t0 sufficiently small,554

and the two balls are superposed at t = 0, i.e., ‖x1 − x2‖ = 0 and Assumption 3.1555

is not satisfied in this configuration. Denoting d(t) := t‖δx1 − δx2‖ and a(t) :=556

Vol Ω(x+ tδx, r), an explicit calculation yields a(t) = πr2 + 2r2 arctan
(
d(t)
2r

)
+ rd(t),557

and consequently a′(0) = 2r‖δx1 − δx2‖.558

First, expression (2.3) evaluated at x1 = x2 = 0 yields ∂x1
G(x, r) = (0, 0) and559

∂x2
G(x, r) = (0, 0). Thus, in this case (2.3) does not give the correct value for the560

directional derivatives of G. Second, it is interesting to observe that, taking δx2 = 0561

to simplify, a′(0) = 2r‖δx1‖ is equal to limε↘0−∂x1
G({x1 + εδx1, x2}, r) · δx1 with562

∂x1G({x1 + εδx1, x2}, r) given by (2.3).563

Example 3.13. Let A = B(0, 1), m = 1, x = x1 = 0 and r = 1. Observe that564

in this example ∂Ω(x, r) ∩ ∂A = ∂B(0, 1) is not a finite set of points. Therefore565

Assumption 3.7 (precisely item (ii) in Definition 3.4) and Assumption 3.9 do not566

hold.567

On the one hand, we have G(x, r) = 0 and G(x, r+ tδr) = 0 for t > 0 and δr > 0.568

Thus we get in this case569

(3.25) lim
t↘0

G(x, r + tδr)−G(x, r)

t
= 0 when δr > 0.570

For δr < 0 we have G(x, r + tδr) = π(1 + tδr)2 − π = π(2tδr + t2δr2), therefore571

(3.26) lim
t↘0

G(x, r + tδr)−G(x, r)

t
= 2πδr when δr < 0.572

This shows that G only has directional partial derivatives with respect to r at x = 0.573

We observe that in this configuration, formula (2.3) yields the expression ∂rG(x, r) =574

0 which is the same as the directional derivative (3.25). It is also interesting to575

observe that the other directional derivative (3.26) is equal to limr→1,r<1 ∂rG(x, r)δr576

with ∂rG(x, r) given by (2.3).577

On the other hand, we have G(x, r) = 0 and G(x + tδx, r) > 0 for t > 0 and578

δx = δx1 6= 0. An explicit calculation similar to the calculation in (3.12) yields579

(3.27) lim
t↘0

G(x + tδx, r)−G(x, r)

t
= 2r‖δx1‖.580

However, expression (2.3) evaluated at x = x1 = 0 yields ∂x1
G(x, r) = (0, 0). Thus,581

in this case (2.3) does not give the correct value for the directional derivatives of G.582
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Nevertheless, it can be checked that (3.27) is equal to limε↘0 ∂x1
G(εδx1, r) · δx1 with583

∂x1
G(εδx1, r) given by (2.3).584

4. Numerical approximation of G and ∇G. In this paper we follow an585

optimize-then-discretize approach, i.e., we first find an expression for ∇G in the586

continuous setting and then discretize it. In Section 3 the gradient of G has been587

calculated analytically using techniques of nonsmooth shape calculus. We now show588

how the constraint G and its gradient ∇G may be approximated numerically. In the589

approximation, it is assumed that the region A to be covered is modeled by an oracle590

which, for a given point x, answers whether x ∈ A or not. This is the most general591

way of defining a region A ⊂ D; and it reflects the fact that, from the practical point592

of view, A is considered to be a black-box from which no additional information is593

known other than the one given by the oracle. If more information about A were594

found available, such as an expression for its boundary, more efficient approximations595

could be devised.596

We first prove a general result for the approximation of volumes of sets with597

piecewise smooth boundary using unions of square cells of a Cartesian grid. We show598

in Theorem 4.1 that this approximation is O(h), where h is the size of the cells. In599

Algorithm 4.1 we implement this approach to approximate the constraint G. Then600

in Algorithm 4.2, a uniform discretization with step hθ of the arcs of circles and a601

midpoint rule are used to approximate the integrals appearing in ∇G given by (2.3).602

We show in Theorem 4.2 that this approximation is of order O(hθ).603

4.1. Numerical approximation of G on a regular Cartesian grid. In this604

section we give a general result for the numerical approximation of volumes in a605

class O of domains with piecewise smooth boundary. In Algorithm 4.1 we implement606

this approach to approximate the constraint function G(x, r) = Vol(A \ Ω(x, r)).607

Suppose that D = [0, LD]2 is a square, we define O as the set of open and bounded608

subsets ω ⊂ D with piecewise smooth boundary ∂ω, i.e.,609

∂ω =

K⋃
k=1

Γk, k = 1, . . . ,K,(4.1)610

611

where Γk is a smooth open or closed arc, K < +∞, and Γk ∩ Γj is either empty or612

composed of one or two points, for all j 6= k, j, k = 1, . . . ,K. We observe that O con-613

tains non-Lipschitz domains such as domains with cracks and cusps, and also includes614

the sets used in the numerical experiments; see Section 5. Here Per(∂ω) denotes the615

perimeter of ∂ω, with ω ∈ O, and χω the indicator function of a set ω ⊂ R2. In view616

of (4.1) and the smoothness of the Γk’s we have Per(∂ω) =
∑K
k=1 Per(Γk) < +∞.617

Let the grid L be the set of points zk,` = ((k + 1/2)h, (` + 1/2)h) with k, ` =618

0, . . . , N − 1 and h = LD/N . The point zk,` is the center of the cell S(k, `) defined619

by S(k, `) := {(x1, x2) ∈ D | kh ≤ x1 ≤ (k+ 1)h, `h ≤ x2 ≤ (`+ 1)h}. The main idea620

of the proof of Theorem 4.1 is to approximate ω ∈ O by a set ωh that is the union621

of small squares of area h2. As h → 0, the symmetric difference (ωh \ ω) ∪ (ω \ ωh)622

behaves, roughly speaking, like a thin layer of thickness of order h concentrated on623

the boundary of ω. Thus, the area of the symmetric difference is of the order of the624

perimeter of ω times h, which allows to approximate the area of ω by the area of ωh.625

Theorem 4.1. Let ω ∈ O, then there exists h0 > 0 such that, for all 0 < h ≤ h0,626

Vol(ω) = h2
N∑

k,`=1

χω(zk,`) + E(h), with |E(h)| ≤
√

2hPer(∂ω) + πKh2/2.627
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Proof. Introduce ωh :=
⋃
zk,`∈L∩ω S(k, `), then due to Vol(S(k, `)) = h2 we have628

Vol(ωh) = h2
∑N
k,`=1 χω(zk,`). Define ωint

h := {x ∈ ω | d(x, ωc) ≥ cδh} and ωext
h :=629

{x ∈ D | d(x, ω) < cδh}, where ωc is the complement of ω, cδ :=
√

2/2+ δ with δ > 0,630

and d(x, ω) is the distance of x to the set ω. We clearly have ωint
h ⊂ ω ⊂ ωext

h . We631

show that, for h sufficiently small, we also have ωint
h ⊂ ωh ⊂ ωext

h .632

Suppose that x ∈ ωint
h , then ‖x − z‖ ≥ cδh for all z ∈ ωc. There exists also633

zk,` ∈ L such that x ∈ S(k, `). Since zk,` is the center of the cell S(k, `), we have634

‖x − zk,`‖ ≤ (
√

2/2)h. Then cδh ≤ ‖x − z‖ ≤ ‖x − zk,`‖ + ‖zk,` − z‖ for all z ∈ ωc,635

which yields δh = (cδ−
√

2/2)h ≤ ‖zk,`−z‖ for all z ∈ ωc. This shows that zk,` ∈ L∩ω636

and since x ∈ S(k, `) this yields x ∈ ωh by definition of ωh; hence ωint
h ⊂ ωh.637

Next we prove ωh ⊂ ωext
h . Let x ∈ ωh, then by definition x ∈ S(k, `) for some638

zk,` ∈ L ∩ ω. Thus we have ‖x − zk,`‖ ≤ (
√

2/2)h and d(x, ω) = infz∈ω ‖x − z‖ ≤639

‖x − zk,`‖ ≤ (
√

2/2)h < cδh. This shows that x ∈ ωext
h and consequently ωh ⊂ ωext

h .640

Consequently we have Vol(ωint
h ) ≤ Vol(ωh) ≤ Vol(ωext

h ).641

Let Γhk := {x ∈ D | d(x,Γk) < cδh} be the so-called tubular neighborhood of Γk,642

where Γk ⊂ ∂ω is one of the arcs in the decomposition (4.1). Now we prove that643

ω \

(
K⋃
k=1

Γhk

)
= ωint

h ⊂ ωh ⊂ ωext
h ⊂ ω ∪

(
K⋃
k=1

Γhk

)
.(4.2)644

645

We start with the rightmost inclusion. Let x ∈ ωext
h \ ω, then we have d(x, ω) < cδh646

and consequently d(x, ∂ω) < cδh. Due to (4.1) this yields d(x,Γk) < cδh for some647

k ∈ {1, . . . ,K}, and this proves x ∈ Γhk . This proves indeed that ωext
h ⊂ ω∪

(
∪Kk=1Γhk

)
.648

Now let x ∈ ωint
h , and suppose that x ∈ Γhk for some k ∈ {1, . . . ,K}, then649

d(x,Γk) < cδh and consequently d(x, ∂ω) < cδh. This implies d(x, ωc) < cδh and then650

x /∈ ωint
h , which is a contradiction. This shows that x ∈ ω \

(
∪Kk=1Γhk

)
and we have651

obtained the inclusion ωint
h ⊂ ω\

(
∪Kk=1Γhk

)
. Conversely let x ∈ ω\

(
∪Kk=1Γhk

)
. Suppose652

that d(x, ωc) < cδh, then d(x, ∂ω) < cδh and d(x,Γk) < cδh for some k ∈ {1, . . . ,K},653

which implies x ∈ Γhk , a contradiction. This shows that d(x, ωc) ≥ cδh and x ∈ ωint
h .654

Thus we have proved ωint
h = ω \

(
∪Kk=1Γhk

)
.655

Let Vk be the set of endpoints of the arc Γk, then Vk is included in the set of
vertices of ∂ω and contains at most two vertices. For sufficiently small h, the tubular
neighborhood Γhk satisfies Γhk ⊂ {x + ν(x)µ | x ∈ Γk, |µ| < cδh} ∪

⋃
z∈Vk B(z), where

B(z) is an open half-ball with center z and radius cδh, and ν(x) is a normal vector to
Γk at x. Using the results of [16, Ch. 1], there exists h0,k > 0 independent of δ (for
sufficiently small δ > 0) such that

Vol({x+ ν(x)µ | x ∈ Γk, |µ| < cδh}) = 2cδhPer(Γk) ∀h such that 0 < h ≤ h0,k.

Since Vk contains at most two vertices, we obtain Vol(Γhk) ≤ 2cδhPer(Γk)+π(cδh)2 for656

all h such that 0 < h ≤ h0,k. As there is a finite number of arcs Γk, there exists h0 > 0657

such that
∑K
k=1 Vol(Γhk) ≤ 2cδhPer(∂ω) + πK(cδh)2 for all h such that 0 < h ≤ h0.658

From now on we suppose that 0 < h ≤ h0. This yields659

Vol

(
ω ∪

(
K⋃
k=1

Γhk

))
≤ Vol(ω) +

K∑
k=1

Vol(Γhk) ≤ Vol(ω) + 2cδhPer(∂ω) + πK(cδh)2,660

Vol

(
ω \

(
K⋃
k=1

Γhk

))
≥ Vol(ω)−

K∑
k=1

Vol(Γhk) ≥ Vol(ω)− 2cδhPer(∂ω)− πK(cδh)2.661

662
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Then, using (4.2) we obtain663

−2cδhPer(∂ω)− πK(cδh)2 ≤ Vol

(
ω \

(
K⋃
k=1

Γhk

))
−Vol(ω) = Vol(ωh)−Vol(ω)664

665

≤ Vol

(
ω ∪

(
K⋃
k=1

Γhk

))
−Vol(ω) ≤ 2cδhPer(∂ω) + πK(cδh)2.666

Finally this yields |Vol(ωh)−Vol(ω)| ≤ 2cδhPer(∂ω) + πK(cδh)2 for all 0 < h ≤ h0.667

Passing to the limit δ → 0, this proves the result.668

Algorithm 4.1 Numerical approximation to Vol(A ∩ Ω(x, r)). It considers a
rectangular region D that contains A, computes a partition of D into rectangular cells
with sides not larger than h, and returns the sum of the areas of the cells such that
the center u of the cell satisfies u ∈ A and u is within some ball.
Input: Region A, balls’ radius r and centers x1, . . . , xm, precision h > 0, and bottom-

left and top-right vertices dbl, dtr of a rectangle D ⊇ A.
Output: Approximation to Vol(A ∩ Ω(x, r)). (G(x, r) = Vol(A)−Vol(A ∩ Ω(x, r).)
Let nx = d(dtr

x −dbl
x )/he, ny = d(dtr

y −dbl
y )/he, hx = (dtr

x −dbl
x )/nx, hy = (dtr

y −dbl
y )/ny.

γ ← 0
for i = 1, . . . , nx do

for j = 1, . . . , ny do
Let u← dbl + ((i− 1/2)hx, (j − 1/2)hy)T be the center of the (i, j)th cell.
if u ∈ A and there exists k ∈ {1, . . . ,m} such that ‖xk − u‖ ≤ r then
γ ← γ + 1

return hxhyγ

4.2. Numerical approximation of ∇G. In this section we provide estimates669

for the numerical approximation of ∇G using Algorithm 4.2. First we observe that670

in (4.7), the balls B(xk, r) satisfying ‖xi − xk‖ > 2r have no intersection with671

∂B(xi, r), therefore we can simply ignore these. Second, if ‖xi − xk‖ ≤ 2r there672

is an intersection between B(xi, r) and B(xk, r), so the first step of Algorithm 4.2 is673

to find the centers xk satisfying ‖xi − xk‖ ≤ 2r.674

Combining the results of Theorem 3.2 and Theorem 3.5 we obtain a decomposition675

into arcs similar to (3.1):676

(4.3) ∂Ω(x, r) ∩A =

k̄⋃
k=1

Ek and Ek =

¯̀
k⋃

`=1

Ak,`,677

where k̄ ≥ 1, ¯̀
k ≥ 1, and {Ek}k̄k=1 are the connected components of ∂Ω(x, r) ∩ A. In678

particular we also have the decomposition679

(4.4) ∂B(xi, r) ∩ ∂Ω(x, r) ∩A =

¯̀
i⋃

`=1

A`.680

Let ν(z) = (ν1(z), ν2(z)) be the outward normal vector on ∂B(xi, r), with ν1(z) =681

cos θ and ν2(z) = sin θ, where θ is the angle in polar coordinates with the pole xi. We682

obtain the following approximation result for Algorithm 4.2.683
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Theorem 4.2. For q = 1, 2, denote by Gi,q the approximation of (∂G/∂xi)q =684 ∫
∂B(xi,r)∩∂Ω(x,r)∩A νq(z) dz given by Algorithm 4.2. Then we have the estimate685

(4.5)

∣∣∣∣∣
∫
∂B(xi,r)∩∂Ω(x,r)∩A

νq(z) dz − Gi,q

∣∣∣∣∣ < hθ ¯̀
i +

2π ¯̀
ih

2
θ

24r
, for q = 1, 2,686

where ¯̀
i is the number of arcs in the decomposition (4.4). Furthermore, let Gr be the687

approximation of ∂G/∂r =
∫
∂Ω(x,r)∩A dz given by Algorithm 4.2. Then we have the688

estimate689

(4.6)

∣∣∣∣∣
∫
∂Ω(x,r)∩A

dz − Gr

∣∣∣∣∣ <
(
hθ +

2πh2
θ

24r

) k̄∑
k=1

¯̀
k.690

Proof. Using (4.4) we compute691

(4.7)

∫
∂B(xi,r)∩∂Ω(x,r)∩A

ν1(z) dz =

¯̀
i∑

`=1

∫
A`
ν1(z) dz =

¯̀
i∑

`=1

r

∫ θ`,b

θ`,a

cos(θ) dθ,692

where θ`,a, θ`,b are the angles parameterizing the endpoints of the arc A`. In Algo-693

rithm 4.2 we do not compute the exact values of θ`,a, θ`,b, therefore we cannot compute694

the integrals in (4.7) explicitly. Instead we use the midpoint rule with step length695
hθ
r and check if the midpoints are in ∂B(xi, r) ∩ ∂Ω(x, r) ∩ A. This corresponds to696

approximating the integrals Î` :=
∫ θ̂`,b
θ̂`,a

cos(θ) dθ, for some θ̂`,a, θ̂`,b satisfying697

(4.8) |θ̂`,a − θ`,a| ≤
hθ
2r

and |θ̂`,b − θ`,b| ≤
hθ
2r
.698

Let us denote I` the approximation of Î` using the midpoint rule with step length hθ
r .

We have the following estimate for this approximation:∣∣∣∣∣
∫ θ̂`,b

θ̂`,a

cos(θ) dθ − I`

∣∣∣∣∣ ≤ (θ̂`,b − θ̂`,a)h2
θ supθ∈[θ̂`,a,θ̂`,b]

| cos(θ)|
24r2

<
2πh2

θ

24r2
.

Thus we compute699 ∣∣∣∫ θ`,bθ`,a
cos(θ) dθ − I`

∣∣∣ ≤ ∣∣∣∫ θ`,bθ`,a
cos(θ) dθ −

∫ θ̂`,b
θ̂`,a

cos(θ) dθ
∣∣∣+
∣∣∣∫ θ̂`,b
θ̂`,a

cos(θ) dθ − I`
∣∣∣ < hθ

r +
2πh2

θ

24r2 ,700

where we have used (4.8). Then using (4.7) we get701

(4.9)

∣∣∣∣∣∣
∫
∂B(xi,r)∩∂Ω(x,r)∩A

ν1(z) dz −
¯̀
i∑

`=1

rI`

∣∣∣∣∣∣ < hθ ¯̀
i +

2π ¯̀
ih

2
θ

24r
.702

We obtain the same estimate for ν2(z). The estimate (4.6) is obtained in a similar703

way, summing over all the arcs in the decomposition (4.3).704
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Algorithm 4.2 Numerical approximation to ∇G(x, r). It computes a discretiza-
tion of ∂B(xi, r) ∩ ∂Ω(x, r) for i = 1, . . . ,m and approximates the integrals in (2.3)
using the composite middle point rule.

Input: Region A, balls’ radius r > 0 and centers x1, . . . , xm, and precision h > 0.
Output: Approximation to ∇G(x, r).
Let nθ = d2πr/he and hθ = 2πr/nθ. Set ∂G/∂r ← 0.
for i = 1, . . . ,m do

Let K = {k ∈ {1, . . . ,m} \ {i} | ‖xi − xk‖ ≤ 2r}. Set ∂G/∂xi ← 0.
for ` = 1, . . . , nθ do

θ ← (`− 1
2 )hθr and u← xi + r(cos(θ), sin(θ))T

if u ∈ A and ‖u− xk‖ ≥ r for all k ∈ K then
∂G/∂r ← ∂G/∂r + 1 and ∂G/∂xi ← ∂G/∂xi + (cos(θ), sin(θ))T

return −hθ((∂G/∂x1)T , . . . , (∂G/∂xm)T , ∂G/∂r)T

5. Numerical experiments. Problem (2.1), with the discretization Gh(x, r) of705

G computed by Algorithm 4.1, is a constrained nonlinear programming problem (with706

a linear objective function and a single difficult nonlinear constraint) of the form707

(5.1) Minimize f(x, r) := r subject to Gh(x, r) = 0 and r ≥ 0708

that can be solved with an Augmented Lagrangian (AL) method [5]. In the present709

work we considered the safeguarded AL method Algencan [1, 5]. (See [6] for a numer-710

ical comparison with a state-of-the-art interior points method.) Algencan is based on711

the PHR AL function [19, 32, 33] that, for the considered problem, is defined by712

(5.2) Lρ(x, r, λ) = f(x, r) +
ρ

2

[
Gh(x, r) +

λ

ρ

]2

,713

for all ρ > 0, r ≥ 0, and λ ∈ R. Each iteration of the method consists in the714

approximate minimization of (5.2) subject to r ≥ 0 followed by the update of the715

Lagrange multiplier λ and the penalty parameter ρ. The subproblem that consists716

in minimizing (5.2) subject to r ≥ 0 is a bound-constrained minimization problem.717

In Algencan, bound-constrained subproblems are solved with an active-set method718

named Gencan [3] that uses Spectral Projected Gradient (SPG) [7] directions for719

“leaving faces” and a Newtonian approach “within the faces” (see [5, Ch. 9] for de-720

tails). In the Newtonian approach, since second-order information is not available,721

Newtonian linear systems are solved with preconditioned conjugate gradients in which722

the Hessian-vector product is computed using an approximation to the Hessian of the723

AL described in [4].724

The convergence theory of Algencan can be found in [5]. When applied to prob-725

lem (5.1), on success, given feasibility and optimality tolerances εfeas > 0 and εopt > 0,726

Algencan finds (x?, r?, λ?) with r? > 0 (clearly, the bound constraint r ≥ 0 is non-727

active at any feasible solution) satisfying728

(5.3) ‖∇f(x?, r?) + λ?∇Gh(x?, r?)‖∞ ≤ εopt and ‖Gh(x?, r?)‖∞ ≤ εfeas,729

i.e., it finds a point that approximately satisfies KKT conditions for problem (5.1). In730

order to enhance the probability of finding an approximation to a global minimizer,731

we employed a simple multistart strategy. For each considered problem, Algencan732
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was run a hundred times with an initial guess (x0, r0), x0 = (x0
1, . . . , x

0
m), such that733

x0
i ∈ A ⊂ R2 are random variables with uniform distribution and r0 is a random734

variable with uniform distribution in 1
m [ 1

2 ,
3
2 ]. Note that xi ∈ A is not a constraint735

of the problem and that optimal solutions (x?, r?), x? = (x?1, . . . , x
?
m), exist such736

that x?i 6∈ A for some i. However, if xi 6∈ A and r is such that B(xi, r) ∩ A = ∅,737

then ∂G/∂xi = 0. Thus, if x0
i 6∈ A and depending on the values of rk along the738

optimization process, there exists the chance that the i-th ball stagnates in its initial739

configuration without contributing to the covering of A; producing in that case, with740

high probability, a suboptimal solution.741

Algorithms 4.1 and 4.2 were implemented in Fortran 90. Algencan 3.1.11, which is742

also written in Fortran 90, was employed. All tests were conducted on a computer with743

a 3.4 GHz Intel Core i5 processor and 8GB 1600 MHz DDR3 RAM memory, running744

macOS Mojave (version 10.14.6). Code was compiled by the GFortran compiler of745

GCC (version 8.2.0) with the -O3 optimization directive enabled.746

Heart A = {(x, y)T ∈ R2 | (x2 + y2 − 1)3 − x2y3 ≤ 0}

Soap A = {(x, y)T ∈ R2 | (2x/3)4 + (2y)4 ≤ 1}

Two squares
A = A1 ∪A2

A1 = {(x, y)T ∈ R2 | − 0.5 ≤ x ≤ 0.5, −0.5 ≤ y ≤ 0.5}
A2 = {(x, y)T ∈ R2 | max{x+ y, x− y,−x+ y,−x− y} ≤

√
2/2}

Peaked star

A = A1 ∩ (A2 ∪A3 ∪A4 ∪A5)
A1 = {(x, y)T ∈ R2 | − 0.5 ≤ x ≤ 0.5, −0.5 ≤ y ≤ 0.5}
A2 = {(x, y)T ∈ R2 | ‖(x− 0.5, y − 0.5)T ‖2 ≥ 0.5}
A3 = {(x, y)T ∈ R2 | ‖(x− 0.5, y + 0.5)T ‖2 ≥ 0.5}
A4 = {(x, y)T ∈ R2 | ‖(x+ 0.5, y − 0.5)T ‖2 ≥ 0.5}
A5 = {(x, y)T ∈ R2 | ‖(x+ 0.5, y + 0.5)T ‖2 ≥ 0.5}

Ring
A = A1 ∩A2

A1 = {(x, y)T ∈ R2 | ‖(x, y)T ‖2 ≤ 0.5}
A2 = {(x, y)T ∈ R2 | ‖(x, y)T ‖2 ≥ 0.35}

Half ring

A = A1 ∩A2 ∩A3

A1 = {(x, y)T ∈ R2 | ‖(x, y)T ‖2 ≤ 0.5}
A2 = {(x, y)T ∈ R2 | ‖(x, y)T ‖2 ≥ 0.35}

A3 = {(x, y)T ∈ R2 | x ≤ 0}

Two half rings

A = (A1 ∩A2 ∩A3) ∪ (A4 ∩A5 ∩A6)
A1 = {(x, y)T ∈ R2 | ‖(x, y − 0.175)T ‖2 ≤ 0.25} A2 = {(x, y)T ∈ R2 | ‖(x, y − 0.175)T ‖2 ≥ 0.10}

A3 = {(x, y)T ∈ R2 | x ≤ 0} A4 = {(x, y)T ∈ R2 | ‖(x, y + 0.175)T ‖2 ≤ 0.25}
A5 = {(x, y)T ∈ R2 | ‖(x, y + 0.175)T ‖2 ≥ 0.10} A6 = {(x, y)T ∈ R2 | x ≥ 0}

Disconnected A =

A1(0, 0, 0, 1, 0, 3) ∪A1(0, 0, 1, 3, 0, 1) ∪A1(1.1, 1.1, 0, 1, 0, 3)∪
A1(1.1, 1.1, 1, 2, 1, 2) ∪A1(2.2, 3.2, 0, 1, 0, 1) ∪A1(2.2, 5.2, 0, 1, 0, 1)∪
A1(1.2, 4.2, 0, 1, 0, 1) ∪A1(3.2, 4.2, 0, 1, 0, 1)∪
A2(0, 3.1) ∪A2(2.2, 1.1) ∪A3 ∪A4 ∪A5

Table 1: Description of the considered regions A to be covered.

Table 1 shows the regions A to be covered that were considered in the numerical747

experiments. In the description of the “disconnected” region A,748

A1(x̂, ŷ, x, x̄, y, ȳ) = {(x, y)T ∈ R2 | x ≤ x− x̂ ≤ x̄, y ≤ y − ŷ ≤ ȳ},
A2(x̂, ŷ) = {(x, y)T ∈ R2 | y − ŷ ≥ 0, y − ŷ ≤

√
3(x− x̂), y − ŷ ≤ −

√
3(x− x̂) +

√
3},

A3 = {(x, y)T ∈ R2 | x− 3.3 ≥ 0, y − 5.3 ≥ 0, (x− 3.3) + (y − 5.3) ≤ 1},
A4 = {(x, y)T ∈ R2 | x− 1.1 ≤ 1, y − 5.3 ≥ 0, −(x− 1.1) + (y − 5.3) ≤ 0},
A5 = {(x, y)T ∈ R2 | x− 3.3 ≥ 0, y − 3.1 ≤ 1, (x− 3.3)− (y − 3.1) ≤ 0}.

749

1Algencan 3.1.1 is freely available at http://www.ime.usp.br/∼egbirgin/tango/.

23

This manuscript is for review purposes only.

http://www.ime.usp.br/~egbirgin/tango/


The sets A in Table 1 satisfy A ⊂ D, where D is a square of side 3 centered at the750

origin for the “heart”, D is a rectangle with height 1 and width 3 centered at the origin751

for the “soap”, D is a square of size
√

2 centered at the origin for the “two squares”, D752

is a square of size 1 centered at the origin for the “peaked star”, the “ring”, the “half753

ring”, and the “two half rings”, and D is a rectangle with bottom-left corner (0, 0) and754

top-right corner (4.3, 6.3) for the “disconnected” region. Taking into account the area755

of D, in all instances but the ones related to the “disconnected” region we considered756

h = 10−3. In the “disconnected” region we considered h = 5× 10−3. In Algencan, we757

set εfeas = 0.1h (i.e., εfeas = 5× 10−4 for the “disconnected” A and εfeas = 10−4 in all758

other cases) and εopt = 10−1. The value of εfeas is naturally related to the value of h759

— it would make no sense to require a tolerance much smaller than h for a constraint760

that is computed with precision O(h).761

Table 2 shows some performance metrics of the optimization procedure; while762

Figure 5 shows the solutions found. In the table, “trial” is the number of the initial763

guess (between 1 and 100) that let the optimization method find the best solution;764

“outit” and “innit” are the number of outer and inner iterations of the AL optimization765

method in that run; “Alg. 4.1” and “Alg. 4.2” are the number of calls to Algorithm 4.1766

and Algorithm 4.2, i.e., the number of evaluations of G and ∇G, respectively; and767

“CPU time” is the CPU time in seconds. In the table and the figures, obtained radii768

are rounded to four decimal places. The heart-shape region A was taken from [2] where769

solutions for 3 and 7 balls with radii 0.8065 and 0.5524 are reported2. While solutions770

reported in [2] and here represent the same arrangement of the balls, radii obtained771

with the present approach are smaller. The covering of a ring with three balls is an772

example in which the centers of the balls are outside the region to be covered. The773

same phenomenon occurs with some balls in the instances with the “disconnected”774

region. All solutions found, except for the ones related to the “peaked star”, are775

such that, looking with the naked eye, regions appear to be fully covered. If desired,776

improved solutions can be found at the expense of multiplying the effort by 100 every777

time h is divided by 10, since Algorithms 4.1 has time complexity O(1/h2). (As a778

side note, Algorithm 4.2 has time complexity O(1/h).) Alternatively, better solutions779

could also be found by considering a dynamic multigrid approach that makes use780

of smaller values of h at critical places of the region to be covered. The “peaked781

star” case is particularly challenging because its peaks have a small area to perimeter782

ratio. Thus, the combination of a small but bounded-away-from zero discretization783

step h > 0 and a feasibility tolerance εfeas > 0 with the minimization of the balls’784

radius r is attracted by configurations with uncovered peaks.785

Figure 6 shows the evolution of the optimization process in the arbitrary selected786

“two squares” problems with m = 9 balls, starting from the 70th initial guess (x0, r0)787

which is the one that leads to the best solution found. The top-left picture shows the788

initial guess. It is worth recalling that the balls’ centers are randomly chosen within789

the region to be covered; while the initial radius is a random number in [ 1
2 ,

3
2 ]/m. The790

picture shows that the initial radius is relatively small (with respect to the optimal791

one) and that the balls’ center do not present any attractive feature. The initial value792

of the Lagrange multipliers is λ0 = 0; and the penalty parameter ρ0 is automatically793

chosen by the optimization solver in such a way that, in the augmented Lagrangian794

function (5.2), the term related to feasibility is one order of magnitude larger than the795

objective function; see [5, p.153]. This choice explains why in the first iteration the796

objective function (radius of the balls) is increased; while feasibility is reduced. The797

2The values reported in [2, §5] correspond to r2.
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Region A m r∗ trial outit innit Alg. 4.1 Alg. 4.2 CPU Time

3 0.7949 100 20 155 2188 249 59.08
7 0.5366 69 15 50 214 117 7.92
11 0.4100 89 12 68 303 130 12.77
15 0.3476 78 13 77 311 138 15.46
3 0.6578 70 12 76 402 134 4.61
7 0.4754 30 13 119 1228 185 20.11
11 0.3564 61 13 72 261 132 6.12
15 0.3154 69 13 80 447 140 12.77
4 0.3810 91 11 40 222 90 2.78
9 0.2474 70 11 45 197 94 3.18
12 0.2064 32 10 66 346 112 6.16
4 0.2317 82 20 136 2221 230 14.55
5 0.1892 32 10 61 251 107 1.70
9 0.1300 59 10 56 248 107 1.84
3 0.4295 12 10 40 186 86 0.49
7 0.2149 36 10 35 155 78 0.58
11 0.1441 23 12 94 337 152 1.50
3 0.2465 38 10 32 146 76 0.30
7 0.1211 52 7 50 541 86 1.29
11 0.0964 59 12 24 118 75 0.36
3 0.2146 86 9 29 167 69 0.43
7 0.1122 54 10 46 182 93 0.56
11 0.0938 88 11 29 132 76 0.46
3 1.7067 51 12 49 230 104 2.42
7 1.1774 19 20 129 2331 215 27.14
15 0.7820 36 20 112 1799 202 25.85

Table 2: Performance metrics of Algencan.

sequence of iterates shows that in iteration 5 the optimal arrangement has already798

been found; but the current radius r5 ≈ 2.388 × 10−1 produces a cover that leaves799

uncovered vertices that are visible to the naked eye. From iteration 5 to the end,800

increasing values of the penalty parameter produce successive iterates with increased801

radius and improved feasibility. The optimization process ends at iteration 11 when802

the required feasibility tolerance is reached.803

Figure 7 shows the boxplot representation of the radii found in 100 runs of the804

“two squares” problem with m ∈ {4, 9, 12}. In the case m = 4, we have r∗ = rmin =805

0.3810 and the median value is 0.3828, which is 4.7% larger than r∗. In the case806

m = 9, we have r∗ = rmin = 0.2474 and the median value is 0.2835, which is 14.6%807

larger than r∗. In the case m = 12, we have r∗ = rmin = 0.2064 and the median808

value is 0.2327, which is 12.7% larger than r∗. These quantities were computed over809

the runs that ended with a feasible solution, that were 100, 97, and 91, respectively.810

These figures, together with the small number of outliers, show that the optimization811

process is able to find “good quality solutions” in many cases, independently of the812

given initial guess.813

Figure 8 and Table 3 show the results obtained by varying h ∈ {0.1, 10−2, 10−3,814

10−4}, with εfeas = 0.1h and εopt = 0.1, in problems “two squares” and “peaked815

star” with m = 9. The figures show that, the smaller the value of h, the higher the816
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quality of the obtained cover. They also show that a region like the peaked star,817

which exhibits “small thin features”, requires a smaller value of h, when compared to818

the two squares region, for a “reasonable” cover to be obtained. Recall that h = 10−3819

was considered in the numerical experiments shown in Figure 5 and Table 2. Figure 8820

suggests that, to the naked eye, the solution obtained for the “two squares” problem821

with m = 9 considering h = 10−2 is very similar to the one obtained with h = 10−3.822

The same is true for all other problems that do not exhibit “small thin features” as the823

ones present in the “peaked star” problem; and due to the O(1/h2) time complexity824

of Algorithm 4.1, using h = 10−2 is a hundred times faster than using h = 10−3.825

This is why numerical experiments in Figure 5 and Table 2 should be understood826

as an illustration of the capabilities and limitations of the proposed approach; and827

the considered value of h must depend on the desired goal for the problem at hand.828

The last column in Table 3, titled “PMC” (that stands for “practical measure of829

time complexity”) displays the total CPU time divided by the number of calls to830

Algorithm 4.1; and it roughly illustrates that the cost of approximating G is multiplied831

by 100 when h is divided by 10, as expected.832

Region A h r∗ |G(x∗, r∗)| trial outit innit Alg. 4.1 Alg. 4.2 CPU Time PMC

1e-1 0.2279 8.8e−03 7 20 133 3147 217 0.01 3e−06
1e-2 0.2442 7.9e−04 32 9 41 223 81 0.05 1e−03
1e-3 0.2474 5.9e−05 70 11 45 197 94 3.18 7e−02
1e-4 0.2479 8.0e−06 85 15 83 326 150 502.64 6e+00
1e-1 0.0762 1.0e−02 3 20 110 3894 193 0.01 9e−05
1e-2 0.1191 1.0e−03 65 20 89 2386 175 0.19 2e−03
1e-3 0.1300 6.9e−05 59 10 56 248 107 1.84 3e−02
1e-4 0.1325 8.4e−06 7 11 79 317 137 224.49 3e+00

Table 3: Numerical results obtained varying h ∈ {0.1, 10−2, 10−3, 10−4}, with εfeas =
0.1h and εopt = 0.1, in problems “two squares” and “peaked star” with m = 9.
In the last column, PMC stands for “practical measurement of the complexity of
Algorithm 4.1” and corresponds to the total CPU time divided by the number of calls
to Algorithm 4.1.

Figure 9 corresponds to the covering of a union of two tangent unitary-diameter833

balls with m = 2 balls. This case is not covered by the theory, as the trivial solution834

neither satisfies Assumption 3.1 nor Assumption 3.7. Not satisfying Assumption 3.1835

by having two tangent balls is in fact not an issue, since Example 3.10 shows that (2.3)836

still corresponds to ∇G in this case. On the other hand, not satisfying Assumption 3.7837

because the intersection of the balls’ border and the border of A contains infinitely838

many points does represent an issue. This is because Example 3.13 shows that, in this839

case, ∇G does not exist. Nevertheless, the depicted solution was found with a single840

run of the method, i.e., only one random initial guess. This example illustrates that841

a degenerate limit point does not affect the performance of the iterative optimization842

process that stops in finite time with a prescribed tolerance “before reaching the843

degenerate point that exists in the limit”.844

As a final illustration of the applicability of the proposed approach, Table 4 and845

Figure 10 show the application of the approach, with h = 10−3, εfeas = 0.1h, and846

εopt = 0.1, but considering 2,000 initial guesses instead of 100, to the covering of847

the union of three non-overlapping polygons that represent a sketch of America (a848

large non-convex polygon represents the continent; while two small convex polygons849

represent Cuba and Tierra del Fuego in the south of Argentina) [5, §13.2] with m =850
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Region A m r∗ trial outit innit Alg. 4.1 Alg. 4.2 CPU Time

15 0.08556 182 20 95 1844 180 2.45
20 0.07459 1144 20 105 2806 190 3.77
25 0.06728 1440 20 87 2086 170 2.81

Table 4: Performance metrics of Algencan applied to the problem of covering America
with m = 15, 20, 25.

15, 20, 25 balls. In all three instances, the feasibility tolerance εfeas = 0.1h = 10−4851

was reached. On the other hand, in all the three cases the method stopped because it852

reached the maximum of 20 outer iterations. (The same behavior can be observed in853

a few instances of other considered problems.) This means that the desired optimality854

tolerance εopt was not achieved. This could be a practical effect of reaching a solution855

at which ∇G is not well-defined. Solving instances with a larger number of balls or856

with more complex regions A faces two challenges of different nature. On the one857

hand, the larger the number of balls, the smaller the optimal radius; and a smaller858

optimal radius requires a smaller h to avoid very rough approximations. (Recall that859

the algorithm that approximates the constraint G has time complexity O(1/h2).) On860

the other hand, finding global solutions to more difficult instances (i.e., instances861

with more balls) might require a more elaborated ad hoc technique than the simple862

multi-start strategy adopted in the presented numerical experiments, including, for863

example, good quality initial guesses. Moreover, having at hand good quality initial864

guesses would require studying alternative nonlinear minimization methods because865

loosing feasibility of a potentially feasible initial guess is intrinsic to the augmented866

Lagrangian approach and to most of the practical nonlinear programming solvers.867

6. Conclusions and future works. From the shape optimization perspective,868

the present work contributes to the study of shape sensitivity analysis with nons-869

mooth domains defined as the union of balls intersected with the domain to be cov-870

ered. Studying and generalizing these techniques to three dimensions and to other871

types of nonsmooth domains will be a subject of future research. Regarding the cov-872

ering problem, the numerical computation of the integrals defining the problem and873

its derivatives, as well as the availability of first-order information only, impaired the874

computation of precise solutions that may be required in some applications or for aca-875

demic purposes. Therefore, a line for future research consists in deriving analytical876

expressions for second-order derivatives that would allow the application of quadrat-877

ically convergent optimization methods. In some particular cases, like for example878

when the region A to be covered is a ball or a polygon, the objective function and its879

first- and second-order derivatives can be computed exactly using Voronoi diagrams.880

Two related problem can also be tackled with the approach introduced in the881

current work. In one of them, each ball can have its own radius ri and the goal may882

be minimizing the sum of the balls’ perimeters, that is proportional to
∑m
i=1 ri, or883

the sum of the balls’ areas, that is proportional to
∑m
i=1 r

2
i . Redefining Ω(x, r) :=884

∪mi=1B(xi, ri) and G(x, r) := Vol(A \ Ω(x, r)), where r := {ri}mi=1, expressions and885

algorithms to approximate G(x, r) and ∇G(x, r) can be easily obtained with minor886

modifications to the introduced approach; see Remark 2.1. In the second related887

problem, the radius r common to all balls is fixed and the goal is to find the smallest888

m ∈ {1, 2, . . . } and centers x1, . . . , xm such that the balls cover a given region A. In889
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this case, for a fixed radius r and a fixed number of balls m̄, we define Gr,m̄(x) :=890

Vol(A \ Ωr,m̄(x)). The reasonable approach consists in starting with a large m̄ and,891

while an x∗ such that Gr,m̄(x∗) = 0 is found, reducing m̄ by one. The feasible point892

x∗ may be found by minimizing Fr,m̄(x) := 1
2‖Gr,m̄(x)‖22, whose gradient is given by893

∇Fr,m̄(x) = Gr,m̄(x)∇Gr,m̄(x).894
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nonsmooth domains, Journal de Mathématiques Pures et Appliquées, 134 (2020), pp. 328–967
368, https://doi.org/10.1016/j.matpur.2019.09.002.968

[25] A. Laurain and K. Sturm, Distributed shape derivative via averaged adjoint method and ap-969
plications, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), pp. 1241–970
1267, https://doi.org/10.1051/m2an/2015075.971

[26] L. Liberti, N. Maculan, and Y. Zhang, Optimal configuration of gamma ray machine radio-972
surgery units: the sphere covering subproblem, Optimization Letters, 3 (2009), pp. 109–121,973
https://doi.org/10.1007/s11590-008-0095-4.974

[27] J. B. M. Melissen, Loosest circle coverings of an equilateral triangle, Mathematics Magazine,975
70 (1997), pp. 118–124, https://doi.org/10.1080/0025570X.1997.11996514.976

[28] J. B. M. Melissen and P. C. Schuur, Improved coverings of a square with six and eight977
equal circles, The Electronic Journal of Combinatorics, 3 (1996), p. R32, https://doi.org/978
10.37236/1256.979

[29] J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag New York, New980
York, NY, 2nd ed., 2006, https://doi.org/10.1007/978-0-387-40065-5.981

[30] K. J. Nurmela, Conjecturally optimal coverings of an equilateral triangle with up to 36982
equal circles, Experimental Mathematics, 9 (2000), pp. 241–250, https://doi.org/10.1080/983
10586458.2000.10504649.984
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r ≈ 0.7949 r ≈ 0.5366 r ≈ 0.4100 r ≈ 0.3476

r ≈ 0.6578 r ≈ 0.4754 r ≈ 0.3564 r ≈ 0.3154

r ≈ 0.3810 r ≈ 0.2317 r ≈ 0.4295 r ≈ 0.2465 r ≈ 0.2146

r ≈ 0.2474 r ≈ 0.1892 r ≈ 0.2149 r ≈ 0.1211 r ≈ 0.1122

r ≈ 0.2064 r ≈ 0.1300 r ≈ 0.1441 r ≈ 0.0964 r ≈ 0.0938

r ≈ 1.7067 r ≈ 1.1774 r ≈ 0.7820

Fig. 5: Solutions found for covering regions in Table 1: heart-shape and soap-shape
regions with m = 3, 7, 11, 15, two-squares region with m = 4, 9, 12, peaked star region
with m = 4, 5, 9, ring, half-ring, and two-half-rings regions with m = 3, 7, 11, and
disconnected region with m = 3, 7, 15.
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r0 ≈ 7.222× 10−2

G(x0, r0) ≈ 1
r1 ≈ 2.288× 10−1

G(x1, r1) ≈ 0.4
r2 ≈ 2.709× 10−1

G(x2, r2) ≈ 0.06

r3 ≈ 2.709× 10−1

G(x3, r3) ≈ 0.06
r4 ≈ 2.752× 10−1

G(x4, r4) ≈ 0.03
r5 ≈ 2.388× 10−1

G(x5, r5) ≈ 4× 10−3

r6 ≈ 2.405× 10−1

G(x6, r6) ≈ 3× 10−3
r7 ≈ 2.436× 10−1

G(x7, r7) ≈ 1× 10−3
r8 ≈ 2.446× 10−1

G(x8, r8) ≈ 6× 10−4

r9 ≈ 2.463× 10−1

G(x9, r9) ≈ 2× 10−4
r10 ≈ 2.467× 10−1

G(x10, r10) ≈ 2× 10−4
r11 ≈ 2.474× 10−1

G(x11, r11) ≈ 6× 10−5

Fig. 6: Evolution of the optimization process in the “two squares” problems with
m = 9 balls, starting from the 70th initial guess (x0, r0) which is the one that leaves
to the best solution found.
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0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

m = 4 m = 9 m = 12

r

Fig. 7: Boxplot representation of the radii found in 100 runs of the “two squares”
problem with m ∈ {4, 9, 12}.

(a) h = 0.1 (b) h = 10−2 (c) h = 10−3 (d) h = 10−4

(e) h = 0.1 (f) h = 10−2 (g) h = 10−3 (h) h = 10−4

Fig. 8: Solutions found varying h ∈ {0.1, 10−2, 10−3, 10−4}, with εfeas = 0.1h and
εopt = 0.1, in problems (a–d) “two squares” and (e–h) “peaked star” with m = 9.
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Fig. 9: An example of a degenerate case: A is the union of two tangent unitary-
diameter balls to be covered by m = 2 balls. Even though this singular case is not
covered by the theory, the solution, which is the set A itself, was found with a single
run of the method.

(a) m = 15, r ≈ 0.08556 (b) m = 20, r ≈ 0.07459 (c) m = 25, r ≈ 0.06728

Fig. 10: Solutions found for covering region America with m = 15, 20, 25.
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