
A concise and friendly introduction to
complexity in continuous optimization

Ernesto G. Birgin

AbstractThis paper aims to give a brief introduction to the concept of computational
complexity in the context of continuous optimization.

1 Introduction

This paper is related to the plenary lecture titled “Complexity results in nonlinear
optimization” given by Ernesto G. Birgin at the Brazil-Portugal Joint Meeting on
Mathematics (Encontro Conjunto Brasil-Portugal em Matemática) that took place
from August 14 to 20, 2022, at the Federal University of Bahia, Salvador, Brazil.
In the same way as the presentation, this paper aims to introduce the concept of
complexity in continuous optimization to a wide audience of non-specialists and to
briefly review some recent results obtained by the author and collaborators.

Optimization is the area of Mathematics that studies the problem of finding
x ∈ Rn that realizes the smallest possible value of a given objective function, among
those points that belong to a predefined feasible region. If the objective function is a
continuous function and the feasible region is determined by the points that satisfy a
given set of equalities and inequalities defined by continuous functions, then we are
dealing with a continuous optimization problem.

Given f : Rn → R, g : Rn → Rp , h : Rn → Rm, and a set Ω ⊆ Rn, a standard
continuous optimization problem can be written as follows

Minimize
x∈Rn

f (x) subject to h(x) = 0, g(x) ≤ 0, x ∈ Ω. (1)

If Ω = Rn and g and h are absent, the problem is an unconstrained optimization
problem. If g and h are absent and Ω = {x ∈ Rn | ` ≤ x ≤ u}, where ` = (`i),

Ernesto G. Birgin
Dept. of Computer Science, Institute ofMathematics and Statistics, University of São Paulo, Rua do
Matão, 1010, Cidade Universtária, São Paulo, SP, Brazil, 05508-090, e-mail: egbirgin@ime.usp.br

1

2 Ernesto G. Birgin

u = (ui), `i ∈ R ∪ {−∞}, and ui ∈ R ∪ {+∞} for i = 1, . . . , n, the problem is a
bound-constrained minimization problem. If g is missing the problem is an equality-
constrained optimization problem (with or without bound constraints), while if h is
missing the problem is an inequality-constrained optimization problem.

Even in the simplest case of unconstrained minimization, a continuous optimiza-
tion problem can rarely be solved analytically. Therefore, optimization methods are
developed. In general, optimizationmethods are iterative and, given an initial approx-
imation x0, generate a sequence of iterates {xk}∞

k=0 that, hopefully, as k increases,
will better approximate a solution or satisfy some desirable condition.

Given an optimization method, there are basically two tasks necessary to show
its value. First, it must be shown that it is well defined. That is, that given xk−1,
the steps that must be followed at iteration k to define xk can be carried out.
Secondly, the asymptotic properties of the sequence generated by the method must
be studied. For example, in unconstrained minimization, a necessary condition for a
point to be a local minimizer is that the gradient of the objective function vanishes
at the point. Accordingly, a classical asymptotic result consists in showing that
limk→+∞ ∇ f (xk) = 0 or that limk∈K ∇ f (xk) = 0 for some K ⊂∞ N.

Optimization problems are an object of study of Mathematics. However, besides
that, they have an enormous number of practical applications in the most diverse
areas of science such as Physics, Chemistry, Engineering, Economics, Medicine,
and Social Sciences, among others. This practical appeal means that, in practice,
optimization methods are equipped with a stopping criterion, since practitioners
cannot wait infinite time. When equipped with a stopping criterion, the methods are
transformed into algorithms (finite and well-defined sequence of operations). For the
example of unconstrained minimization considered in the previous paragraph, given
ε > 0, a natural stopping criterion would be “to interrupt the execution of the method
when finding xk such that ‖∇ f (xk)‖ ≤ ε .” This is the point where computational
complexity comes in to answer the following question: In the worst case, what is the
computational cost of finding xk that satisfies the pre-specified stopping criterion
of a given optimization algorithm? It is worth noting that this “computational cost”
can be measured in terms of number of arithmetic operations, number of iterations
of the algorithm or number of evaluations of the objective function f , among other
possibilities. In the last two cases, we are talking about iteration complexity and
evaluation complexity, respectively.

The convergence theory of optimizationmethods consisted basically in the asymp-
totic study of the infinite sequences generated by the methods until the beginning of
the current millennium. It was only in 2006 that a paper by Nesterov and Polyak [21]
introduced the idea of computational complexity in continuous optimization. The
idea caught the interest of the academic optimization community and gained great
prominence in the last sixteen years. In 2022, the first book [18] specifically dedicated
to the subject was released.

The rest of this paper is organized as follows. In Section 2, we present as sim-
ply as possible an algorithm for unconstrained minimization and its computational
complexity analysis. In Section 3, we deal with the computational complexity of an
augmented Lagrangian algorithm applied to the solution of the most general contin-

A concise and friendly introduction to complexity in continuous optimization 3

uous optimization problem. The final section presents some perspectives of current
and future work.

Notation. The symbol ‖ · ‖ denotes the Euclidean norm of vectors and matrices.
For v ∈ Rn, v+ = (max{0, v1}, . . . ,max{0, vn})T . If K = {k1, k2, . . . } ⊆ N (with
k j < k j+1 for all j), we denote K ⊂∞ N. Given φ : Rn → Rm, φ = (φ1, . . . , φm)

T ,
we denote ∇φ(x) = (∇φ1(x), . . . ,∇φm(x)). Rn+ = {x ∈ Rn | x ≥ 0}. Given two
functions a : R→ R and b : R→ R, we say a(ε) = O(b(ε)) as ε → 0 if there exist
positive numbers δ and M such that |a(ε)| ≤ Mb(x) for all 0 < ε < δ.

2 A didactic example of computational complexity for
unconstrained minimization

In this section we consider an unconstrained minimization problem given by

Minimize
x∈Rn

f (x), (2)

where f : Rn → R. To tackle problem (2), we introduce a method based on “cubic
regularization” that, given an initial guess x0 ∈ Rn, generates a sequence {xk}∞

k=0.
We show that, given a tolerance ε > 0, the method uses a finite number of iterations
of order ε−3/2 to find a point xk such that ‖∇ f (xk)‖ ≤ ε . In fact, we show more than
that. We show that the (finite) number of iterations such that ‖∇ f (xk)‖ > ε is of the
order of ε−3/2. The results are different because from the former one it would follow
that limk∈K ∇ f (xk) = 0 for some K ⊂∞ N, while from the latter one it follows that
limk→+∞ ∇ f (xk) = 0. The complexity results on the number of iterations also follow
for the number of evaluations of f , because in the introduced method the number of
evaluations of f per iterations is O(1) with respect to ε .

The method follows below.

Method 2.1. Let α > 0 and x0 ∈ Rn be given. Set k ← 1.

Step 1. Define xk = xk−1 + sk , where sk is such that

f (xk) ≤ f (xk−1) − α‖sk ‖3. (3)

Step 2. Set k ← k + 1 and go to Step 1.

At this point, Method 2.1 is not very elucidative, because we did not say yet in
what way an sk satisfying (3) can be computed. (In fact we did not even mention
under what conditions an sk satisfying (3) exists, so it is not clear yet under what
hypotheses the method is well defined.) However, it is interesting to understand what
properties Method 2.1 has under suitable assumptions.

Let us assume that there exists γ > 0 such that

4 Ernesto G. Birgin√
‖∇ f (xk)‖

γ
≤ ‖sk ‖ (4)

for all k ∈ N. (Later in this section we will give sufficient conditions for this
assumption to be satisfied.) From (3) and (4), it trivially follows that, for all k ∈ N,

f (xk) ≤ f (xk−1) − c‖∇ f (xk)‖3/2 (5)

with c = α/γ3/2.
Assume now that, given a tolerance ε > 0, we desire to stop Method 2.1 the first

time an iterate xk satisfying ‖∇ f (xk)‖ ≤ ε is computed. Assume the method is at
(the end of) iteration kcurrent and it did not stop. It means that ‖∇ f (xk)‖ > ε for
k = 1, . . . , kcurrent. Thus, by (5), f (xk) ≤ f (xk−1) − cε3/2 for k = 1, . . . , kcurrent, i.e.
the value of the objective function decreased at least cε3/2 at every iteration already
executed. At this point there are two alternatives. Or the method is in the way to
compute a sequence {xk}∞

k=0 such that limk∈K f (xk) = −∞ for some K ⊂∞ N (in
which case f is unbounded below) or there exists flow ∈ R such that f (xk) ≥ flow
for all k ∈ N and

kcurrent ≤ kε :=
⌊

f (x0) − flow

cε3/2

⌋
= O(ε−3/2).

We name the assumption “there exists flow ∈ R such that f (xk) ≥ flow for all k ∈ N”
Assumption A1 from now on. This assumption is an assumption in the sequence
generated by the method, which is undesired. On the other hand, it holds trivially if
there exists flow such that f (x) ≥ flow for all x ∈ Rn.

Up to this point, we have shown that, under assumption (4) and Assumption A1,
given ε > 0, there exists k ≤ kε + 1 such that ‖∇ f (xk)‖ ≤ ε and that the num-
ber of iterations such that ‖∇ f (xk)‖ > ε is limited by kε . From the former it
follows limk∈K ∇ f (xk) = 0 for some K ⊂∞ N, while from the latter it follows
limk→+∞ ∇ f (xk) = 0. It remains to show how to compute sk at each iteration k
using O(1) functional evaluations. By showing this we will also address the satis-
faction of (4) and we will reveal from where the qualifier “cubic regularized” for
Method 2.1 comes from.

There are several alternatives to compute, at iteration k, a step sk satisfying
the sufficient descent condition (3) plus (4). A simple choice will be present here
for didactical purposes. Consider the the cubic regularized second-order Taylor
polynomial of f around xk−1 given by

Mk(s, σ) := Tk(s) +
σ

3
‖s‖3,

where
Tk(s) := f (xk−1) + ∇ f (xk−1)T s +

1
2

sT∇2 f (xk−1)s

A concise and friendly introduction to complexity in continuous optimization 5

and σ > 0 plays the role of a regularization parameter. The procedure to compute
sk is described by the method below.

Method 2.2. Let σk,1 ≥ σlow > 0 and θ > 0 be given (with σlow and θ being the
same for all k.) Let ` ← 1.

Step 1. Compute sk,` such that

Mk(sk,`, σk,`) ≤ Mk(0, σk,`) (6)

and
‖∇sMk(sk,`, σk,`)‖ ≤ θ‖sk,` ‖2. (7)

Step 2. If (3) does not holdwith sk ≡ sk,` then defineσk,`+1 := 2σk,` , set ` ← `+1
and go to Step 1.

Step 3. Define σk := σk,` and sk := sk,` .

The first task is to show that Method 2.2 is well defined and that it is in fact an
algorithm, i.e. that it stops in a finite number of iterations (having computed a step sk

that satisfies (3) plus (6,7) as desired.) The fact that the method is well defined comes
from the fact that sk,` satisfying (6,7) can be computed for all k and `. This is because
the models Mk(s, σk,`) with σk,` > 0 have bounded level sets and, thus, have at least
one global minimizer. At the global minimizer, the functional value is upper bounded
by Mk(0, σk,`) and the gradient vanishes. Therefore, (6,7) hold. Moreover, the step
sk,` can be computed in finite time by any monotone unconstrained minimization
method that possesses worst-case complexity starting from s ≡ 0. It is worth noting
that this task does not depend on ε and does not require evaluations of the objective
function f .

The task of showing that Method 2.2 stops in a finite number of iterations requires
to assume that there exist non-negative constants ξ1 and ξ2 such that the second-order
Taylor polynomials Tk satisfy

f (xk−1 + sk,`) − Tk(sk,`) ≤ ξ1‖sk,` ‖3 (8)

and
‖∇ f (xk−1 + sk,`) − ∇sTk(sk,`)‖ ≤ ξ2‖sk,` ‖2 (9)

for all k and `. We name it Assumption A2. This assumption is fulfilled when f
is three times continuously differentiable on Rn and the third-order derivative of
f is bounded or when f is twice continuously differentiable and the second-order
derivative is Lipschitz continuous; see, for example, [4]. With these assumptions, in
particular using (8), (6), and the fact that Mk(0, ·) = f (xk−1), we have that, if

σk,` ≥ 3(ξ1 + α), (10)

then

6 Ernesto G. Birgin

f (xk−1 + sk,`) ≤ Tk(sk,`) + ξ1‖sk,` ‖3

= Tk(sk,`) +
σk,`

3 ‖s
k,` ‖3 − (

σk,`

3 − ξ1)‖sk,` ‖3

= Mk(sk,`, σk,`) − (
σk,`

3 − ξ1)‖sk,` ‖3

≤ Mk(0, σk,`) − α‖sk,` ‖3

= f (xk−1) − α‖sk,` ‖3,

i.e. that sk,` satisfies (3). Since σk,1 ≥ σlow and σk,` = 2σk,`−1 for ` = 2, 3, . . . then
it is clear that Method 2.2 achieves a sufficiently large value for the regularization
parameter in at most dlog2((3(ξ1 + α))/σlow)+ 1e iterations, a quantity that does not
depend on ε . At each iteration `, Method 2.2 needs to check if the computed trial
step sk,` satisfies (3). This verification involves an evaluation of f .

Now observe that, by the increasing rule of the regularization parameter in
Method 2.2 (i.e. doubling it) and the fact that σk,` ≥ 3(ξ1 + α) makes sk,` to
satisfy the sufficient descent condition (3), it holds that

σk < σmax := 6(ξ1 + α) (11)

for all k. We now aim to show that (11), (9), and (7) imply (4). Let us write

‖∇ f (xk)‖ = ‖∇ f (xk−1 + sk)‖ = ‖∇ f (xk−1 + sk) − ∇sMk(sk, σk) + ∇sMk(sk, σk)‖.
(12)

Now, since
∇sMk(s, σ) = ∇sTk(s) + σ‖s‖2

s
‖s‖

, (13)

by substituting (13) in (12), applying the triangle inequality, and then using (9,11,7),
we have

‖∇ f (xk)‖ = ‖∇ f (xk−1 + sk) − ∇sTk(sk) − σk ‖sk ‖2 sk

‖sk ‖
+ ∇sMk(sk, σk)‖

≤ ‖∇ f (xk−1 + sk) − ∇sTk(sk)‖ + ‖σk ‖sk ‖2‖ + ‖∇sMk(sk, σk)‖

≤ (ξ2 + σmax + θ)‖sk ‖2.

So (4) holds with γ = ξ2 + σmax + θ.
Summarizing, we showed in this section an algorithm that, given f : Rn → R and

ε > 0, finds a point xk that satisfies ‖ f (xk)‖ ≤ ε in a finite number of iterations of
order ε−3/2. For that, Assumptions A1 and A2 are required, and sufficient conditions
for their satisfaction are that (i) f is bounded from below by flow in Rn and that (ii)a
f is three times continuously differentiable on Rn and the third-order derivative of
f is bounded or (ii)b f is twice continuously differentiable and the second-order
derivative is Lipschitz continuous.

It is important to mention that the derivations presented in this section are nowa-
days standard in the literature and can be found, among many others, in, for example,
[1, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 21] applied in proofs of complexity results of
algorithms for unconstrained minimization, minimization with bound-constraints or
convex sets, and nonlinear programming in general. Moreover, the presented results
can also be extended, as in fact they already were, for arbitrary norms, models of

A concise and friendly introduction to complexity in continuous optimization 7

order p (other than Taylor polynomials) with regularization of order p+1 and to find
stationary points of order q instead of first-order stationary points only.

3 The case of augmented Lagrangians for nonlinear optimization

In this section we consider the constrained problem given by

Minimize
x∈Rn

f (x) subject to h(x) = 0, g(x) ≤ 0, ` ≤ x ≤ u (14)

where f : Rn → R, g : Rn → Rp and h : Rn → Rm are continuously differentiable
and `, u ∈ Rn.

Augmented Lagrangians represent a well-established family of methods for solv-
ing nonlinear programming problems of the form (14). The computational complex-
ity of different augmented Lagrangian methods was studied in [13, 19, 24]. In [13],
the complexity of Algencan was analyzed. Algencan [2, 3, 9] is an implementation
of a safeguarded augmented Lagrangian method relying on the Powell-Hestenes-
Rockafellar augmented Lagrangian function [22, 20, 23]. Each iteration of Algencan
consists of (a) minimization of the objective function plus a term that penalizes
violation of the constraints with respect to appropriate shifted tolerances and (b)
updating of the Lagrange multipliers approximations.

The Powell-Hestenes-Rockafellar augmented Lagrangian function is given by

Lρ(x, λ, µ) := f (x) +
ρ

2

[
m∑
i=1

(
hi(x) +

λi
ρ

)2
+

p∑
i=1

(
gi(x) +

µi
ρ

)2

+

]
for all x ∈ [`, u], ρ > 0, λ ∈ Rm, and µ ∈ Rp

+, where ρ is the penalty parameter and
λ and µ represent the Lagrange multipliers associated with the equality constraints
h(x) = 0 and the inequality constraints g(x) ≤ 0, respectively.

Method 3.1 below describes Algencan.

Method 3.1: Assume that x0 ∈ Rn, λmin < λmax, λ̄1 ∈ [λmin, λmax]
m, µmax > 0,

µ̄1 ∈ [0, µmax]
p , ρ1 > 0, γ > 1, 0 < τ < 1, and {εk}∞k=1 are given. Initialize k ← 1.

Step 1. Compute xk ∈ [`, u] satisfyingP[`,u]
(
xk − ∇Lρk (x

k, λ̄k, µ̄k)
)
− xk

∞
≤ εk (15)

by approximately solving

Minimize
x∈Rn

Lρk (x, λ̄
k, µ̄k) subject to x ∈ [`, u].

Step 2. Define

8 Ernesto G. Birgin

Vk = min
{
−g(xk),

µ̄k

ρk

}
.

If k = 1 or

max
{
‖h(xk)‖∞, ‖Vk ‖∞

}
≤ τmax

{
‖h(xk−1)‖∞, ‖Vk−1‖∞

}
,

choose ρk+1 ≥ ρk . Otherwise, choose ρk+1 ≥ γρk .
Step 3. Compute

λk+1 = λ̄k + ρkh(xk) and µk+1 =
(
µ̄k + ρkg(xk)

)
+
.

Compute λ̄k+1 ∈ [λmin, λmax]
m and µ̄k+1

i ∈ [0, µmax]
p . Set k ← k + 1 and go to

Step 1.

Algencan was introduced in [2, 3] and it is fully described in the book [9]. In
particular, [9] describes the asymptotic convergence theory of Algencan. On the
other hand, [13] complements Algencan’s theory presented in [9] by presenting
its computational complexity theory. In this section we summarize the Algencan
computational complexity theory presented in [13].

Method 3.1 has interesting properties for the case of sequences of arbitrary
tolerances {εk}∞k=1, which are used as tolerance for the approximate solution of
the subproblems in Step 1; see [9] for details. However, in the present work, we are
interested in the case εk → 0. For that reason, from here on, we will analyze this case
only. When Method 3.1 is applied to problem (14), the method generates sequences
of primal iterands {xk} and sequences of Lagrange multipliers {λk} and {µk}. If
limk∈K xk = x∗ for some K ⊂∞ N, then there are two possibilities for x∗. Either
x∗ is infeasible and satisfies the first-order optimality conditions for the problem of
minimizing the squared infeasibility given by

Minimize
x∈[`,u]

‖h(x)‖2 + ‖g(x)+‖2

or x∗ is feasible and satisfies the sequential optimality condition AKKT of prob-
lem (14) given by

lim
k∈K

P[`,u]
(
xk −

(
∇ f (xk) + ∇h(xk)λk+1 + ∇g(xk)µk+1

))
− xk

 = 0

and
lim
k∈K

max
{
‖h(xk)‖, ‖min{−g(xk), µk+1}‖

}
= 0.

As in this workwe are interested in complexity results associatedwithMethod 3.1,
our objective is to transform Method 3.1 into an algorithm incorporating stopping
criteria associated with the two possibilities mentioned in the previous paragraph
and to quantify the computational cost that the resulting algorithm consumes to stop
due to either of the two criteria.

A concise and friendly introduction to complexity in continuous optimization 9

Stating the complexity results requires a couple of lemmas that we present below.
Proofs of the lemmas can be found at [13]. We record here that these lemmas involve
hypotheses on problem (14), namely, the bondedness of [`, u] and the continuity of
f , g h, and their gradients. The main complexity results of Method 3.1 are stated in
the sequel. Additional results can be found in [13].

Lemma 3.1 [13, Lem. 3.2] There exists cbig > 0 such that, for all k ≥ 1,

max{‖h(xk)‖∞, ‖Vk ‖∞} ≤ cbig.

Lemma 3.2 [13, Lem. 3.3] There exist clips > 0 and cf > 0 such that, for all
x ∈ [`, u], λ ∈ [λmin, λmax]

m, and µ ∈ [0, µmax]
p , one has

‖∇h(x)‖‖λ‖ + ‖∇g(x)‖‖µ‖ ≤ clips

and
‖∇ f (x)‖ ≤ cf .

Theorem 3.3 [13, Thm. 3.5] Let δ > 0, δlow ∈ (0, δ), and ε > 0 be given. Let
N(δlow, ε) be such that εk ≤ min{ε, δlow}/4 for all k ≥ N(δlow, ε). Then, after at
most

max
{

N(δlow, ε),

[log(δ/cbig)

log(τ)

]
×

[
log (ρmax/ρ1)

log(γ)

]}
iterations, where

ρmax = max
{
1,

4clips

δlow
,
µmax
δ

,
4cf
δlow

}
, (16)

we obtain an iteration k such that one of the following two facts takes place:

1. The iterate xk ∈ [`, u] verifiesP[`,u]
(
xk − ∇

[
‖h(xk)‖2 + ‖g(xk)+‖2

])
− xk

∞
≤ δlow (17)

and
max{‖h(xk)‖∞, ‖g(xk)+‖∞} > δ. (18)

2. The multipliers λk+1 ∈ Rm and µk+1 ∈ R
p
+ are such thatP[`,u]

(
xk −

(
∇ f (xk) + ∇h(xk)λk+1 + ∇g(xk)µk+1

))
− xk

∞
≤ ε, (19)

‖h(xk)‖∞ ≤ δ, ‖g(xk)+‖∞ ≤ δ, (20)

and, for all j = 1, . . . , p,

µk+1
j = 0 whenever gj(xk) < −δ. (21)

Theorem 3.4 [13, Thm. 3.6] In addition to the hypotheses of Theorem 3.3, assume
that there exist c̄inner > 0, v > 0, and q > 0, where c̄inner only depends on λmin,

10 Ernesto G. Birgin

λmax, µmax, `, u, and characteristics of the functions f , h, and g, such that the
number of inner iterations, function and derivative evaluations that are necessary to
obtain (15) is bounded above by c̄inner ρ

v
k
ε
−q
k

. Then, the number of inner iterations,
function evaluations, and derivative evaluations that are necessary to obtain k such
that (17) and (18) hold or (19), (20) and (21) hold is bounded above by

c̄inner ρ
v
maxε

−q
min,3 max

{
N(δlow, ε),

[log(δ/cbig)

log(τ)
)

]
×

[
log (ρmax/ρ1)

log(γ)

]}
,

where ρmax is given by (16) and

εmin,3 = min
{
εk | k ≤ max

{
N(δlow, ε),

[log(δ/cbig)

log(τ)
)

]
×

[
log (ρmax/ρ1)

log(γ)

]}}
.

Note that, in Theorem 3.4, it is assumed that the number of inner iterations,
function and derivative evaluations that are necessary to obtain (15) is bounded
above by c̄inner ρ

v
k
ε
−q
k

. Therefore, due to (16), cinner depends on the tolerances δ
and δlow. The complexity theory of the algorithm that Algencan uses to solve the
subproblems, andwhich satisfies the hypotheses of Theorem 3.4, is presented in [13].

It is worth keeping in mind that the hypotheses used on problem (14) to obtain
the complexity results mentioned above are minimal and they do not include any
constraint qualification. Consider an algorithm that, given a problem of the form (14)
and a tolerance ε > 0, checks whether (x, λ, µ) = 0 satisfies first-order optimality
conditions with precision ε . If it satisfies, it returns (x, λ, µ) = 0. Otherwise, it de-
clares that it failed. With the hypothesis “(x, λ, µ) = 0 is a first-order stationary point
of the problem”, we would prove that the method finds a solution to problem (14)
with computational complexityO(1). It would definitely be the most efficient method
in the world, but it would be of little use.

4 Conclusions and perspectives for future work

In this text, we introduced the concept of computational complexity in the area of
continuous optimization. We illustrated the idea with the simplest possible case of
unconstrained minimization and concluded by addressing the more general case of
an augmented Lagrangian algorithm for nonlinear programming. In between, many
problems and algorithms can and have been considered in the literature. A careful
look at the references in this work or a search on the author’s web page, his Google
Scholar profile or the references of the book [18] would be a good starting point for
the interested reader.

One line of research widely used in the literature consists of, for a given problem,
trying to develop the algorithm with the best possible complexity. Two important
points must be considered when this point of view is used. The first is related to the
hypotheses that the algorithm (with potentially low complexity) needs to find points
with the desired properties. In other words, doesn’t the search for a competitive

A concise and friendly introduction to complexity in continuous optimization 11

complexity leave out many problems that do not satisfy the necessary hypotheses?
(See [8, Table 2].) The second question concerns the applicability of the proposed
method. Often, an algorithm with low complexity is known to be useless in practice,
because it suffers from known issues, such as generating too short steps far from a
solution.

The effective contribution of complexity analysis to the development of novel
continuous optimization algorithms that are clean, easy to understand and imple-
ment, and have significantly better performance than existing, well-established ones
remains to be verified. For the reasons mentioned in the previous paragraph, this
author believes that the genuine and already verified contribution of complexity
analysis of continuous optimization algorithms lies in deepening or closing a gap in
the study of existing consolidated algorithms. In-depth knowledge of existing algo-
rithms helps to use them in the best possible way, to better interpret their behavior
and, potentially, to incorporate improvements.

References

1. Amaral, V.A., Andreani, R., Birgin, E.G., Marcondes, D.S., Martínez, J.M.: On complexity
and convergence of high-order coordinate descent algorithms for smooth nonconvex box-
constrained minimization. Journal of Global Optimization 84, 527–561 (2022).

2. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: Augmented Lagrangian meth-
ods under the Constant Positive Linear Dependence constraint qualification. Mathematical
Programming 111, 5–32 (2008).

3. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On Augmented Lagrangian
methods with general lower-level constraints. SIAM Journal on Optimization 18, 1286–1309
(2008).

4. Bertsekas, D.P.: Nonlinear Programming. 2ed. Athena Scientific, Belmont, MA (1999).
5. Birgin, E.G., Bueno, L.F., Martínez, J.M.: On the complexity of solving feasibility problems

with quadratically regularized models. Optimization Methods and Software 37, 405–424
(2022).

6. Birgin, E.G., Gardenghi, J. L., Martínez, J.M., Santos, S.A.: On the use of third-order models
with fourth-order regularization for unconstrained optimization. Optimization Letters 14,
815–838 (2020).

7. Birgin, E.G.,Gardenghi, J. L.,Martínez, J.M., Santos, S.A., Toint, Ph.L.:Worst-case evaluation
complexity for unconstrained nonlinear optimization using high-order regularized models.
Mathematical Programming 163, 359–368 (2017).

8. Birgin, E.G., Gardenghi, J. L., Martínez, J.M., Santos, S.A., Toint, Ph.L.: Evaluation com-
plexity for nonlinear constrained optimization using unscaled KKT conditions and high-order
models. SIAM Journal on Optimization 26, 951–967 (2016).

9. Birgin, E.G., Martínez, J.M.: Practical Augmented Lagrangian Methods for Constrained Op-
timization. Society for Industrial and Applied Mathematics, Philadelphia, PA (2014).

10. Birgin, E.G.,Martínez, J.M.: The use of quadratic regularizationwith a cubic descent condition
for unconstrained optimization. SIAM Journal on Optimization 27, 1049–1074 (2017).

11. Birgin, E.G., Martínez, J.M.: On regularization and active-set methods with complexity for
constrained optimization. SIAM Journal on Optimization 28, 1367–1395 (2018).

12. Birgin, E.G., Martínez, J.M.: A Newton-like method with mixed factorizations and cubic
regularization for unconstrained minimization. Computational Optimization and Applications
73, 707–753 (2019).

12 Ernesto G. Birgin

13. Birgin, E.G., Martínez, J.M.: Complexity and performance of an Augmented Lagrangian
algorithm. Optimization Methods and Software 35, pp. 885-920 (2020).

14. Birgin, E.G., Martínez, J.M.: Block Coordinate Descent for smooth nonconvex constrained
minimization. Computational Optimization and Applications 83, 1–27 (2022).

15. Cartis, C., Gould, N.I.M., Toint, Ph.L.: On the complexity of steepest descent, Newton’s and
regularized Newton’s methods for nonconvex unconstrained optimization. SIAM Journal on
Optimization, 20, 2833–2852, (2010).

16. Cartis, C., Gould, N.I.M., Toint, Ph.L.: Adaptive cubic overestimation methods for un- con-
strained optimization. Part II: worst-case function-evaluation complexity. Mathematical Pro-
gramming, Series A, 130, 295-319 (2011).

17. Cartis, C., Gould, N.I.M., Toint, Ph.L.: An adaptive cubic regularization algorithm for noncon-
vex optimization with convex constraints and its function-evaluation complexity. IMA Journal
of Numerical Analysis, 32, 1662–1645 (2012).

18. Cartis, C., Gould, N.I.M., Toint, Ph.L.: Evaluation Complexity of Algorithms for Nonconvex
Optimization: Theory, Computation, and Perspectives. SIAM, Philadelphia, PA (2022).

19. Grapiglia, G.N., Yuan, Y.: On the complexity of an augmented Lagrangian method for non-
convex optimization. IMA Journal of Numerical Analysis, 41, 1546–1568 (2021).

20. Hestenes, M.R.: Multiplier and gradient methods. Journal of Optimization Theory and Appli-
cations 4, 303–320 (1969).

21. Nesterov, Y., Polyak, B.T.: Cubic regularization of Newtonmethod and its global performance.
Mathematical Programming 108, 177–205 (2006).

22. Powell,M.J.D.: Amethod for nonlinear constraints inminimization problems, inOptimization,
R. Fletcher (ed.), Academic Press, New York, NY, 283–298 (1969).

23. Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex pro-
gramming. SIAM Journal on Control and Optimization 12, 268–285 (1974).

24. Xie, Y., Wright, S.J.: Complexity of Proximal Augmented Lagrangian for Nonconvex Opti-
mization with Nonlinear Equality Constraints. Journal of Scientific Computing 86, 38 (2021).

