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Abstract

A mixed integer linear programming model for the two-dimensional non-guillotine cutting problem with usable
leftovers was recently introduced in Andrade et al. [Journal of the Operational Research Society 65, pp. 1649-
1663, 2014]. The problem consists in cutting a set of ordered items using a set of objects of minimum cost and,
within the set of solutions of minimum cost, maximizing the value of the usable leftovers. Since the concept of
usable leftovers assumes they can potentially be used to attend new arriving orders, the problem is extended to the
multiperiod framework in this work. In this way, the decision at each instant does not minimize in a myopic way
the cost of the objects required to attend the orders of the current instant; but it aims to minimize the overall cost
of the objects up to the considered time horizon. Some variants of the proposed model are analyzed and numerical
results are presented.
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1. Introduction

Cutting stock problems appear in a wide range of industrial processes where a variety of large pieces of
material, such as paper, glass, steel, wood, or fabric, need to be cut in order to produce smaller pieces
of ordered sizes and quantities. Aiming to reduce operating costs, several aspects of the cutting process
may be taken into account; and returning leftovers to stock so they can be used in future orders is one
of them. See, for example, Koch et al. (2009) and Chen et al. (2019), where the usage of leftovers in the
wood-processing and plastic-film industries are considered.
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In this work, we are concerned with the two-dimensional non-guillotine cutting problem of cutting an
heterogeneous set of small rectangular pieces (items) from a set of large rectangular pieces (objects). The
problem is said to be two-dimensional because it involves the widths and heights of items and objects;
while it is said to be non-guillotine because cuts are not restricted to be guillotine cuts. A multiperiod
scenario is considered in which, at each instant p (0 ≤ p ≤ P − 1), there are ordered items and available
purchasable objects; and items ordered at instant pmust be produced within the period [p, p+1]. An item
ordered at instant p may be produced from a purchased object available at that instant or from a leftover
of a previously used object. Thus, we consider that, at each instant, an heterogeneous set of objects is
available.

In Andrade et al. (2014), the single-period scenario of the problem described in the paragraph above
was tackled. In the single-period scenario, the goal is to minimize the cost of the objects required to
produce all ordered items; and, within the set of solutions with minimum cost, to maximize the value of
objects’ usable leftovers. (The formal definition of usable leftover adopted in this work will be given in
the next section.) The consideration of usable leftovers assumes their utilization to produce forthcoming
orders of items; thus, extending the problem considered in Andrade et al. (2014) to the multiperiod
scenario appears as a natural option. In the multiperiod scenario, given a time horizon represented by
P instants 0, . . . , P − 1, the goal is to minimize the overall cost of the objects required to produce all
items ordered at instants 0, . . . , P − 1; and, within the set of solutions with minimum cost, to maximize
the value of usable leftovers available at instant P (i.e. at the end of the considered time horizon). It
is very clear that it is expected this formulation of the problem to produce better quality solutions than
the myopic alternative of solving a single-period problem at each instant. Note that, following Andrade
et al. (2014), in the present work there is a clear hierarchy between the two considered objectives—cost
must be minimized in first place and, among solutions of minimum cost, a solution with maximum value
of usable leftovers is seek. This goals’ hierarchy fits the tackled problem in the bilevel optimization
framework Dempe (2002), in opposition to the multiobjective approach Miettinen (1998).

Several works were written regarding one-dimensional cutting problems with leftovers. See the pi-
onners’ works Roodman (1986) and Scheithauer (1991), the recent survey Cherri et al. (2014) and the
references therein, and the works Poldi and Arenales (2010), Cherri et al. (2013), and Tomat and Gradis̆ar
(2017). In Poldi and Arenales (2010), the authors introduce a mixed integer linear programming model,
a column generation approach to solve its linear relaxation, and a heuristic rolling horizon approach for
rounding off fractional solutions. In Tomat and Gradis̆ar (2017), a multiperiod problem that combines
the minimization of the trim-loss and the amount of usable leftovers in stock is considered; and a heuris-
tic method is proposed an tested. In Cherri et al. (2013), in order to avoid leftovers remaining in stock
for a long period of time, it is considered that the leftovers have a priority-in-use compared to standard
objects in stock. A heuristic approach is also proposed and tested.

On the other hand, only a few works address two- and three-dimensional cutting problems with left-
overs. In Andrade et al. (2014), a mixed integer linear programming model for the two-dimensional non-
guillotine cutting stock problem with usable leftovers was introduced. In the considered single-period
problem, the goal is to minimize the cost of the objects required to produce a given set of ordered items
and, within the set of minimum cost, maximize the value of the usable leftovers. In Andrade et al. (2016),
the non-exact two-stage guillotine cutting stock version of the same problem was analyzed. In Viegas
et al. (2016), a heuristic cutting decision process for daily tailored orders of a real-life steel retailer is
proposed. The considered problem is a three-dimensional cutting and packing problem in which usable



leftovers of preceding periods may be used to produce items of the current period. A three-staged two-
dimensional cutting stock problem with usable leftover is studied in Chen et al. (2015), where an heuristic
beam search approach is developed. Exact and non-exact two- and three-stage two-dimensional cutting
stock problems are also considered in Silva et al. (2010). Mixed integer linear programming models, that
can be seen as extensions of the model proposed in Dyckhoff (1981) for the one-dimensional cutting
stock, are proposed. Introduced models are based on the enumeration of all possible ways of producing
an item from an object. Since the production of an item from an object produces the item and also two
residual objects that can be used to generate other items, this work also considers leftovers. Upper bounds
on the number of variables and constraints of the proposed models are given. In Silva et al. (2014), the
problem introduced in Silva et al. (2010) is extended to the multiperiod framework and integrated with
the lot-sizing problem. In this context, the goal is to minimize a total cost that includes raw material,
waste, and storage costs. Mixed integer linear programming models and two heuristic approaches based
on the industrial practice are proposed. A multiperiod three-dimensional packing problem is addressed
in Alonso et al. (2019); in which the problem of putting products on pallets and then loading the pallets
into trucks is considered. Mixed integer linear programming models, that include maximum weight con-
straints as well as stability constraints, are presented an tested on real instances related to the everyday
distribution activity of a company.

The rest of this paper is organized as follows. Section 2 describes and motivates the multiperiod two-
dimensional non-guillotine cutting stock problem with leftovers. Section 3 introduces its mixed integer
linear programming formulation. In particular, Section 3.6 introduces a model that minimizes the overall
cost of the used objects; while Section 3.7 introduces the model that, within the set of solutions with
minimum cost, maximizes the value of the leftovers available at the end of the considered time horizon.
Section 4 presents illustrative numerical experiments. Conclusions and lines for future research are given
in the last section.

2. The multiperiod two-dimensional non-guillotine cutting stock problem with leftovers

Following Andrade et al. (2014), in this work we consider that object’s leftovers are obtained by per-
forming a couple of guillotine pre-cuts on the object that separate the leftovers from the “cutting area”
of the object (region from where the items will be cut). As depicted in Figure 1, there are two possible
ways of performing those two cuts: (i) the vertical cut before the horizontal cut or (ii) the horizontal cut
before the vertical cut. Given a catalogue of items, we say a leftover is usable if it can fit any item from
the catalogue. In this case, the leftover’s value is given by its area times the cost per unit of area of the
object. Otherwise, the leftover is disposable and has no value at all. This is why the added values of the
two leftovers in Figure 1a may differ from the added values of the two leftovers in Figure 1b. It is worth
noting that this definition of leftovers implies that any part of the cutting area of the object that is not
used to produce an item is considered waste. (See Andrade et al. (2016) and Andrade et al. (2014) for
other definitions of leftovers in two-dimensional problems.)

Assume that there are given (i) a set of m available objects Oj with width Wj , height Hj , and cost cj
per unit of area (j = 1, . . . ,m), (ii) a set of n ordered items Ii with widthwi and height hi (i = 1, . . . , n),
and (iii) a catalogue composed by d items Īi with width w̄i and height h̄i (i = 1, . . . , d). Items from
the catalogue are used only to determine whether a leftover is usable or not. Consider the problem of
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Fig. 1. Graphs (a) and (b) represent the two possible ways of generating leftovers performing a vertical and a horizontal
guillotine pre-cut. Leftovers are usable if they can fit any item from a given catalogue of items.

cutting all the ordered items from a set of objects of minimum cost. Moreover, assume that when items
are cut from an object, two leftovers can be generated (as described above) and that, among all solutions
of minimum cost, we want a solution that maximizes the value of the leftovers. This was one of the
problems modelled as a mixed integer linear programming problem in Andrade et al. (2014). Clearly,
the idea of considering a leftover usable if it can fit an item from the catalogue assumes (a) that new
orders will arrive; (b) that new ordered items might be items from the catalogue; and (c) that using the
leftovers to cut some of the new ordered items might reduce the cost of purchasing new objects. This
suggests the existence of an underlying multiperiod framework.

Consider now P instants of time and assume that, at each instant p (p = 0, . . . , P − 1), there are
given (i) a set of mp available objects Opj with width Wpj , height Hpj , and cost cpj per unit of area
(j = 1, . . . ,mp) and (ii) a set of np ordered items Ipi with width wpi and height hpi (i = 1, . . . , np).
A catalogue composed by d items Īi with width w̄i and height h̄i (i = 1, . . . , d) is also given. At each
instant p (p = 0, . . . , P −1), we must decide the way of cutting all the np ordered items. This means that
the cut of ordered items can not be anticipated or delayed. Items may be cut from available objects or
from usable leftovers from previous periods. The objective is to minimize the overall cost of the objects
required to execute the orders of all instants. Among all solutions of minimum cost, we want a solution
that maximizes the value of the leftovers at instant P (the end of the considered time horizon). A leftover
is considered valuable if it can fit an item from the catalogue; otherwise it is disposable and it has no
value. We assume this problem is part of a larger scenario within which an agent takes the decision of
which orders must be placed at each instant considering the demand and existing constraints related to
profit, penalties, stock, labor hours, cash flow, etcetera. This means that the presented problem focuses
on the determination of the (non-guillotine) cut patterns that minimize the usage of raw material taking
advantage of usable leftovers.

Figure 2 illustrates a small instance of the considered problem. Since, all ordered items must be cut,
if the objects available at some instant are not enough to produce all items ordered at that instant, the
instance may be infeasible. (The possibility of using leftovers from previous periods exists.) To complete
the instance, it must be said that the cost per unit of area of all the objects is one and that the catalogue



is composed by the four ordered items. Note that the existence of the catalogue gives some flexibility to
the definition of usable leftovers. If, for example, one desires leftovers to be usable whenever they have
a minimum width ŵ and a minimum height ĥ then the catalogue may be given by a single item with
width ŵ and height ĥ. In this way, leftovers that can fit this item are considered usable and the others are
not.

A
va

ila
bl

e
ob

je
ct

s
O

rd
er

ed
ite

m
s

Instant p = 0

O01

6×4

O02

5×5

3×3

Instant p = 1

O11

4×7

O12

4×8

4×5

3×1

Instant p = 2

O21

5×5

2×
5

Fig. 2. Illustration a small instance of the considered problem with P = 3 periods. The number of available objects at each
instant is given by m0 = m1 = 2 and m2 = 1 and the number of ordered items at each instant is given by n0 = n2 = 1 and
n1 = 2. The cost per unit of area of all the objects is one (i.e. c01 = c02 = c11 = c12 = c21 = 1) and the catalogue with d = 4

items is composed by the four ordered items (i.e. w̄1 = h̄1 = 3, w̄2 = 4, h̄2 = 5, w̄3 = 3, h̄3 = 1, w̄4 = 2, and h̄4 = 5).

Figure 3 illustrates three different feasible solutions to the instance in Figure 2. Figure 3a represents
a solution that can be found by a myopic approach that proceeds as follows. At each instant, available
objects are the objects that can be bought and also the usable leftovers from previous periods (with no
cost). The solution to each instant can be found by solving the model introduced in Andrade et al. (2014)
that consists in minimizing the cost of the objects required to cut the ordered items and, among solutions
with minimum cost, chooses one with maximum value of the usable leftovers. The solution in Figure 3a
uses objects O01, O11, and O21 whose total cost is 24 + 28 + 25 = 77 and, at instant p = 3, has three
remaining usable leftovers whose total value is given by 12 + 8 + 15 = 35. Solutions in Figures 3b
and 3c use objects O02 and O11 only, whose total cost is 25 + 28 = 53, implying that the solution in
Figure 3a is not optimal. Note that the smaller total cost of both solutions was obtained by buying a more
expensive object at instant p = 0. Moreover, the solution in Figure 3b has usable leftovers at instant
p = 3 whose total value is 6 + 4 = 10; while Figure 3c has usable leftovers at instant p = 3 whose total
value is 3 + 8 = 11, being in fact the optimal solution we are looking for.



3. Mixed integer linear programming formulation

In this section, a mixed integer linear programming formulation for the multiperiod two-dimensional
non-guillotine cutting problem with usable leftovers, described in the previous section, is given. The
formulation is an extension of the single-period model considered in Andrade et al. (2014) and the
novelty relies on the existence, on a given period, of objects that are usable leftovers of previous periods.
The dimensions of that objects are not constants but depend on the cutting patterns of the previous
periods.

3.1. Instance data

Let P be the number of instants to be considered. Assume that, for each p = 0, . . . , P − 1, there are
given (a) mp ≥ 0 and a set of mp available objects Opj with width Wpj , height Hpj , and cost cpj per
unit of area (j = 1, . . . ,mp) and (b) np ≥ 0 and a set of np ordered items Ipi with width wpi and height
hpi (i = 1, . . . , np). A catalogue composed by d items Īi with width w̄i and height h̄i (i = 1, . . . , d)
is also given. As explained in the previous section, each object available at instant p generates two
leftovers (that may be usable or not) at instant p + 1; those two leftovers generate two leftovers each at
instant p + 2; and so on. This means that after ∆p instants there will be 2∆p leftovers associated with
each object of instant p. This fact would make intractable (to be solved to global optimality) instances
with even moderate values of P . Therefore, from the theoretical point of view, it makes sense to add to
the problem an integer parameter ξ ∈ [0, P ] that says for how many periods leftovers of an object may
be available. If ξ = 0 then the problem considers no leftovers at all. If ξ = P then all leftovers will be
available up to instant P . Parameter ξ is considered to be the same for all objects of all instants with the
only purpose of simplifying the presentation. In practice, each object of each instant might have its own
“duration” parameter ξ that would represent the perishability of the raw material it is made of.

3.2. Additional computable constants

By definition, each object generates two leftovers; and leftovers generated in a period [p, p + 1] remain
available up to period [p + ξ, p + ξ + 1]; ξ = 0 meaning that leftovers are not being considered at all.
This means that the number m̄p ≥ mp of available objects at a given period p, composed by the mp

purchasable objects plus the objects that are leftovers of previous periods, is given by

m̄p =

 mp, p = 0,
mp + leftovers(p, ξ), p = 1, . . . , P − 1,
leftovers(p, ξ), p = P,

(1)

where

leftovers(p, ξ) =

min{p,ξ}∑
`=1

2`mp−`.



Note that, since, by definition, there are no purchasable objects at instant P , m̄P represents the number
of leftovers available at instant P only.

By definition, the cost (or value) per unit of area of a leftover is the cost per unit of area of the
object that originated the leftover. We aim to define c̄pj as the cost per unit of area of each object Opj
(p = 0, . . . , P , j = 1, . . . , m̄p). If we name Op+1,j1 and Op+1,j2 , with j1 = mp+1 + 2j − 1 and
j2 = mp+1 + 2j, the leftovers generated by object Opj (p = 0, . . . , P − 1, j = 1, . . . , m̄p) then we have
that

c̄p+1,j1 = c̄p+1,j2 = c̄pj = cpj for p = 0, . . . , P − 1, j = 1, . . . ,mp.

The relevant costs that will be used later in this section are the costs c̄Pj (j = 1, . . . , m̄P ) that correspond
to the value (per unit of area) of the leftovers available at instant P ; i.e. at the end of the considered time
horizon.

3.3. Assignment of items to objects

Let vpij ∈ {0, 1} (p = 0, . . . , P − 1, i = 1, . . . , np, j = 1, . . . , m̄p) be such that vpij = 1 if item Ipi
must be produced from object Opj and vpij = 0, otherwise. The fact that each item must be produced
from exactly one object can be modeled with the constraints

m̄p∑
j=1

vpij = 1, p = 0, . . . , P − 1, i = 1, . . . , np. (2)

Let upj ∈ {0, 1} (p = 0, . . . , P − 1, j = 1, . . . , m̄p) be such that upj = 1 if at least one item is
produced from the object Opj and upj = 0, otherwise. This can be modeled with the constraints

upj ≥ vpij , p = 0, . . . , P − 1, j = 1, . . . , m̄p, i = 1, . . . , np (3)

and

upj ≤
np∑
i=1

vpij , p = 0, . . . , P − 1, j = 1, . . . , m̄p. (4)

3.4. Objects’ dimensions

Let W̄pj and H̄pj (p = 0, . . . , P , j = 1, . . . , m̄p) be the width and height of object Opj , respectively.
Clearly, for every p and j ≤ mp, we have that W̄pj = Wpj and H̄pj = Hpj . We now turn our attention
to the dimensions W̄pj and H̄pj for j ∈ {mp+1, . . . , m̄p}, i.e. dimensions of objectsOpj with p > 0 that
are leftovers from previous periods. Assuming that the dimensions of all objects of a given instant p are
already known (and this is true for p = 0), we show how to determine the dimensions of the objects of
instant p+ 1.



Let p ∈ {0, . . . , P − 1} be an instant and let tpj and rpj (j = 1, . . . , m̄p), satisfying

0 ≤ tpj ≤ H̄pj and 0 ≤ rpj ≤ W̄pj , j = 1, . . . , m̄p, (5)

be such that H̄pj − tpj and W̄pj − rpj are the height and the width, respectively, of the “cutting area” of
object Opj (see Figure 1); and let ηpj ∈ {0, 1} be such that ηpj = 1 if the vertical pre-cut is made in first
place (see Figure 1a) and ηpj = 0 otherwise (see Figure 1b).

With the help of these three variables (tpj , rpj , and ηpj), we are able to determine the dimensions of
the two leftovers generated by the usage or not of objectOpj , that correspond to two available objects at
instant p+ 1. As it can be seen in Figure 1, if the object is used and ηpj = 1 then the leftover at the top
of the object has width W̄pj − rpj and height tpj ; while the leftover on the right hand side of the object
has width rpj and height H̄pj . On the other hand, if the object is used and ηpj = 0 then the leftover at
the top of the object has width W̄pj and height tpj ; while the leftover on the right hand side of the object
has width rpj and height H̄pj − tpj . When the object is not used, we must consider in separate the case
in which the object is a purchasable object (1 ≤ j ≤ mp) and the case in which the object is a leftover
from a previous period (mp + 1 ≤ j ≤ m̄p).

In the case of an unused purchasable object Opj , since an object that is not purchased generates no
leftovers, we must define the dimensions of its leftovers as null. Thus, we can model the dimensions of
the leftovers of a purchasable object as

0 ≤ H̄p+1,j1 ≤ Ĥupj ,

tpj − (1− upj)Ĥ ≤ H̄p+1,j1 ≤ tpj + (1− upj)Ĥ,

0 ≤ W̄p+1,j1 ≤ Ŵupj ,

W̄pj − rpj − (1− ηpj)Ŵ − (1− upj)Ŵ ≤ W̄p+1,j1 ≤ W̄pj − rpj + (1− ηpj)Ŵ + (1− upj)Ŵ ,

W̄pj − ηpjŴ − (1− upj)Ŵ ≤ W̄p+1,j1 ≤ W̄pj + ηpjŴ + (1− upj)Ŵ ,

0 ≤ W̄p+1,j2 ≤ Ŵupj ,

rpj − (1− upj)Ŵ ≤ W̄p+1,j2 ≤ rpj + (1− upj)Ŵ ,

0 ≤ H̄p+1,j2 ≤ Ĥupj ,

H̄pj − (1− ηpj)Ĥ − (1− upj)Ĥ ≤ H̄p+1,j2 ≤ H̄pj + (1− ηpj)Ĥ + (1− upj)Ĥ,
H̄pj − tpj − ηpjĤ − (1− upj)Ĥ ≤ H̄p+1,j2 ≤ H̄pj − tpj + ηpjĤ + (1− upj)Ĥ,

(6)

for j = 1, . . . ,mp, where j1 = mp+1 + 2j − 1, j2 = mp+1 + 2j, and the constants Ŵ and Ĥ are given
by Ŵ = max{Wpj | p = 0, . . . , P − 1, j = 1, . . . ,mp} and Ĥ = max{Hpj | p = 0, . . . , P − 1, j =
1, . . . ,mp}.

In the case of an unused object Opj that is a leftover from a previous period, we must have an ob-
ject Op+1,j1 identical to Opj and an object Op+1,j2 with null dimensions; or the analogous situation in
which objects Op+1,j1 and Op+1,j2 change their places. If we arbitrary consider the first case, we can



model the dimensions of the leftovers of an object that is a leftover from a previous period as

H̄pj − Ĥupj ≤ H̄p+1,j1 ≤ H̄pj + Ĥupj ,

tpj − (1− upj)Ĥ ≤ H̄p+1,j1 ≤ tpj + (1− upj)Ĥ,

W̄pj − Ŵupj ≤ W̄p+1,j1 ≤ W̄pj + Ŵupj ,

W̄pj − rpj − (1− ηpj)Ŵ − (1− upj)Ŵ ≤ W̄p+1,j1 ≤ W̄pj − rpj + (1− ηpj)Ŵ + (1− upj)Ŵ ,

W̄pj − ηpjŴ − (1− upj)Ŵ ≤ W̄p+1,j1 ≤ W̄pj + ηpjŴ + (1− upj)Ŵ ,

0 ≤ W̄p+1,j2 ≤ Ŵupj ,

rpj − (1− upj)Ŵ ≤ W̄p+1,j2 ≤ rpj + (1− upj)Ŵ ,

0 ≤ H̄p+1,j2 ≤ Ĥupj ,

H̄pj − (1− ηpj)Ĥ − (1− upj)Ĥ ≤ H̄p+1,j2 ≤ H̄pj + (1− ηpj)Ĥ + (1− upj)Ĥ,
H̄pj − tpj − ηpjĤ − (1− upj)Ĥ ≤ H̄p+1,j2 ≤ H̄pj − tpj + ηpjĤ + (1− upj)Ĥ,

(7)

for j = mp + 1, . . . , m̄p. Note that (6) and (7) differ only in the constraints that apply to W̄p+1,j1 and
H̄p+1,j1 when upj = 0. While (6) says that in this case we must have W̄p+1,j1 = H̄p+1,j1 = 0; (7) says
that it must hold W̄p+1,j1 = W̄pj and H̄p+1,j1 = H̄pj .

A technicality is missing and, therefore, there is some abuse of notation in the description of con-
straints (6) and (7). In both constraints, it is assumed that every object generates two leftovers (as it is
in fact when ξ = P ). Thus, it is written that constraint (6) applies to all j = 1, . . . ,mp, constraints (7)
applies to all j = mp + 1, . . . , m̄p, and we define j1 = mp+1 + 2j − 1 and j2 = mp+1 + 2j. In
practice, every object Opj has an associated “shelf life”. A purchasable object has shelf life ξ; while an
object that is a leftovers has a shelf life that is one less than the shelf life of the object that generated the
leftover. Then, only objects with a strictly positive shelf life generate leftovers; and the leftovers must
be numbered accordingly. For example, if, at a period p, Op,ja ,Op,jb , . . . (with ja ≤ jb ≤ . . . ) are the
objects that generate leftovers (i.e. the objects with a strictly positive shelf life) then the two leftovers of
Op,ja should be numbered mp+1 +1 and mp+1 +2; while the two leftovers ofOp,jb should be numbered
mp+1 + 3 and mp+1 + 4. In any case, note that the number of leftovers at every period p, given by
m̄p−mp, where m̄p is defined in (1), is fixed and it depends only on the instance data and the additional
computable constants described in Sections 3.1 and 3.2.

3.5. Avoiding overlapping and fitting items within objects’ “cutting area”

We now consider the positioning constraints that avoid overlapping of items produced from the same
object and the constraints that fit the items within the cutting area of the objects. For this, let (xpi, ypi)
be the Cartesian coordinates of the center of item Ipi (p = 0, . . . , P − 1, i = 1, . . . , np). The fitting
constraints, given by

0 ≤ xpi − 1
2wpi and xpi + 1

2wpi ≤ W̄pj − rpj + (1− vpij)Ŵ ,

0 ≤ ypi − 1
2hpi and ypi + 1

2hpi ≤ H̄pj − tpj + (1− vpij)Ĥ,
(8)



for p = 0, . . . , P − 1, i = 1, . . . , np, j = 1, . . . , m̄p, say that item Ipi must be placed within the cutting
area of the object Opj to which it was assigned. Note that we have assumed, without loss of generality,
that the bottom-left corner of all objects corresponds to the origin of the Cartesian plane.

Let Ipi and Ipi′ with i′ > i be two items that are being assigned to the same object Opj , i.e. vpij =
vpi′j = 1. The non-overlapping constraints must say that |xpi − xpi′ | ≥ 1

2(wpi + wpi′) or |ypi − ypi′ | ≥
1
2(hpi+hpi′). Using that |a| ≥ b is the same that a ≥ b or−a ≥ b, these disjunction can be written using
their big-M formulation as

xpi − xpi′ ≥ 1
2(wpi + wpi′) − Ŵ [(1− vpij) + (1− vpi′j) + πpii′ + τpii′ ] ,

−xpi + xpi′ ≥ 1
2(wpi + wpi′) − Ŵ [(1− vpij) + (1− vpi′j) + πpii′ + (1− τpii′)] ,

ypi − ypi′ ≥ 1
2(hpi + hpi′) − Ĥ [(1− vpij) + (1− vpi′j) + (1− πpii′) + τpii′ ] ,

−ypi + ypi′ ≥ 1
2(hpi + hpi′) − Ĥ [(1− vpij) + (1− vpi′j) + (1− πpii′) + (1− τpii′)] ,

(9)

for p = 0, . . . , P −1, j = 1, . . . , m̄p, i = 1, . . . , np, i′ = i+1, . . . , np, where πpii′ and τpii′ ∈ {0, 1} for
p = 0, . . . , P − 1, i = 1, . . . , np, and i′ = i+ 1, . . . , np are auxiliary variables. When two items ordered
at the same instant are identical (i.e. they have identical dimensions), additional constraints (introduced
in (Andrade and Birgin, 2013, §3)) may be added in order to avoid symmetric solutions in which both
items interchange their places. See also (Andrade et al., 2014, p.1651).

3.6. Minimizing the cost of the used objects

Up to this point, we have all the elements to build up the mixed integer linear programming formulation
of the problem of minimizing the overall cost of the objects required to satisfy the orders of all instants
making use of leftovers. Variables of the problem are vpij ∈ {0, 1} (p = 0, . . . , P − 1, j = 1, . . . , m̄p,
i = 1, . . . , np), upj ∈ {0, 1}, (p = 0, . . . , P − 1, j = 1, . . . ,mp), ηpj ∈ {0, 1}, W̄pj , H̄pj , tpj , rpj ∈ R
(p = 0, . . . , P − 1, j = 1, . . . , m̄p), and πpii′ , τpii′ ∈ {0, 1} (p = 0, . . . , P − 1, i = 1, . . . , np,
i′ = i+ 1, . . . , np). Since the cost of the used objects is given by

P−1∑
p=0

mp∑
j=1

cpjWpjHpjupj , (10)

the problem is given by minimizing (10) subject to the constraints (2), (3), and (4) that assign items to
objects, the constraints (5), (6), and (7), that determine the dimensions of the leftovers, and the constraints
(8) and (9) that avoid overlapping between the items and fit the items within the cutting area of the
objects, respectively.



3.7. Maximizing the value of usable leftovers at the end of the time horizon

If we consider the instance depicted in Figure 2, solutions illustrated in Figures 3b and 3c are both
optimal solutions to the model introduced in Section 3.6. This is because, although leftovers are being
used to reduce the cost of the required objects; the value of the usable leftovers available at instant P are
not being consider in the model to determine that, in fact, the solution in Figure 3c is preferred. Thus,
we now need to model that, by definition, usable leftovers are the ones that can fit at least an item from
the catalogue, while the other ones are disposable; and that, also by definition, the value of an usable
leftover is given by its area times the cost per unit of area of the object that generated the leftover. Then,
the value of the usable leftovers available at instant P must be incorporated into the model as a tie break
to differentiate solutions with minimum cost of the used objects.

All objects available at instant P are, by definition, leftovers of previous periods, since there are no
purchasable objects at this (last) instant. Moreover, they are exactly m̄P objects and they have width W̄Pj

and height H̄Pj for j = 1, . . . , m̄P . Each object OPj that can fit an item from the catalogue has value
c̄PjW̄PjH̄Pj ; while the others have no value and are disposable. Assume we are able to introduce vari-
ables γj (j = 1, . . . , m̄P ) and additional constraints that impose that γj = W̄PjH̄Pj if there exists an
item Ii (i = 1, . . . , d) from the catalogue such that w̄i ≤ W̄Pj and h̄i ≤ H̄Pj ; and γj = 0 otherwise. In
this case, the value of the usable leftovers at instant P is given by

m̄P∑
j=1

c̄Pjγj .

Since leftovers come from objects, the value of all leftovers is strictly smaller than the cost of the objects
they come from. Thus,

m̄P∑
j=1

c̄Pjγj ≤
m̄P∑
j=1

c̄PjW̄PjH̄Pj <

P−1∑
p=0

mp∑
j=1

cpjWpjHpjupj ≤
P−1∑
p=0

mp∑
j=1

cpjWpjHpj .

If we assume that cpj , Wpj , and Hpj (p = 0, . . . , P − 1, j = 1, . . . ,mp) are integer numbers then
minimizing

P−1∑
p=0

mp∑
j=1

cpjWpjHpjupj −

(
1∑P−1

p=0

∑mp

j=1 cpjWpjHpj

)
m̄P∑
j=1

c̄Pjγj

or, equivalently,P−1∑
p=0

mp∑
j=1

cpjWpjHpj

P−1∑
p=0

mp∑
j=1

cpjWpjHpjupj

− m̄P∑
j=1

c̄Pjγj (11)

has the effect of minimizing the overall cost of the used objects and, within the set of solutions with
minimum cost, maximizing the value of the usable leftovers available at instants P .



3.7.1. Modelling the area of the usable leftovers
It remains to describe the constraints that produce the desired effect on the variables γj (j = 1, . . . , m̄P ),
i.e.

γj =

{
W̄PjH̄Pj , if there exists i ∈ {1, . . . , d} such that w̄i ≤ W̄Pj and h̄i ≤ H̄Pj ,
0, otherwise.

If, in addition to the integrality of cpj , Wpj , and Hpj (p = 0, . . . , P − 1, j = 1, . . . ,mp), we also
assume that all ordered items have integer dimensions, i.e. that wpi and hpi (p = 0, . . . , P − 1, j =
1, . . . ,mp) are all integers, then we have that there are optimal solutions for which W̄Pj and H̄Pj (j =
1, . . . , m̄P ) are all integer as well (see, for example, Birgin et al. (2010, 2012)). Therefore, we can
express W̄Pj as

W̄Pj =

L∑
`=1

2`−1θj`, (12)

where L = blog2(Ŵ )c+ 1 and θj` ∈ {0, 1} (j = 1, . . . , m̄P , ` = 1, . . . , L), i.e. θjLθj,L−1 . . . θj1 being
the binary representation of W̄Pj and L being an upper bound on the number of required bits. With this,
we have that, for j = 1, . . . , m̄P ,

W̄PjH̄Pj =

L∑
`=1

2`−1H̄Pjθj`;

thus representing the product of two integers by the sum of products of an integer and a binary vari-
able (see, for example, Harjunkoski et al. (1997); Yanasse and Morabito (2006)). The value of each of
these products coincides with the value of the integer if the binary variable is one; and zero otherwise.
Introducing (continuous) variables ωj` (j = 1, . . . , m̄P , ` = 1, . . . , L), this products can be modelled as

0 ≤ ωj` ≤ H̄Pj and H̄Pj − (1− θj`)Ĥ ≤ ωj` ≤ θj`Ĥ for j = 1, . . . , m̄P , ` = 1, . . . , L. (13)

Up to now, we have that, with the variables θj` ∈ {0, 1} and ωj` (j = 1, . . . , m̄P , ` = 1, . . . , L) and the
constraints (13), each product W̄PjH̄Pj (j = 1, . . . , m̄P ) is given by

L∑
`=1

2`−1ωj`.

Now consider variables ζji ∈ {0, 1} (j = 1, . . . m̄P , i = 1, . . . , d). The idea is that ζji = 0 if item Ii
from the catalogue does not fit within object OPj , i.e. if w̄i > W̄Pj or h̄i > H̄Pj . We model this with
the constraints

w̄i ≤ W̄Pj + Ŵ (1− ζji) and h̄i ≤ H̄Pj + Ĥ(1− ζji) for j = 1, . . . , m̄P , i = 1, . . . , d. (14)



Now, constraints

0 ≤ γj ≤
L∑
`=1

2`−1ωj` and γj ≤

(
d∑
i=1

ζji

)
Ŵ Ĥ for j = 1, . . . , m̄P (15)

say that the value of γj may vary between zero and the area of object OPj ; and that γj = 0 if no
item from the catalogue fits within object OPj . Since each γj appears with a negative coefficient in the
objective function being minimized, in any solution we will have γj equal to its maximum possible value
as desired.

3.7.2. The full model
Summing up, we now have all the ingredients to build up the complete mixed integer linear programming
formulation of the problem of minimizing the overall cost of the objects required to satisfy the demand
of instants from 0 to P − 1 making use of leftovers; and, among all solutions with minimum cost,
maximizing the value of the usable leftovers at instant P .

Variables of the problem are vpij ∈ {0, 1} (p = 0, . . . , P − 1, j = 1, . . . , m̄p, i = 1, . . . , np), upj ∈
{0, 1} (p = 0, . . . , P , j = 1, . . . ,mp), ηpj ∈ {0, 1}, tpj , rpj ∈ R (p = 0, . . . , P − 1, j = 1, . . . , m̄p),
W̄pj , H̄pj (p = 0, . . . , P , j = 1, . . . , m̄p), πpii′ , τpii′ ∈ {0, 1} (p = 0, . . . , P − 1, i = 1, . . . , np, i′ =
i + 1, . . . , np), γj , θj` ∈ {0, 1}, ωj` (j = 1, . . . , m̄P , ` = 1, . . . , L), and ζji ∈ {0, 1} (j = 1, . . . , m̄P ,
i = 1, . . . , d).

The problem is given by minimize (11) subject to the constraints (2), (3), and (4), that assign items to
objects, the constraints (5), (6), and (7), that determine the dimensions of the leftovers, the constraints
(8) and (9) that avoid overlapping between the items and fit the items within the cutting area of the
objects, respectively, and the constraints (13), (14), and (15) that model the value of the usable leftovers
at instant P . (Note that, due to (12), or (12) for j = 1, . . . , m̄P is added to the model or variables W̄Pj

(j = 1, . . . , m̄P ) are eliminated as variables and all their occurrences are replaced by the right hand side
of (12). In the numerical experiments included in the next section, we arbitrarily opted by including (12)
for j = 1, . . . , m̄P as constraints of the model.)

4. Illustrative numerical examples

In this section, we present numerical experiments with the proposed model. The goal of the numerical
experiments is to analyze the influence of considering leftovers in the overall cost of the purchased
objects; so each considered instance will be solved varying ξ ∈ {0, 1, . . . , P}. Recall that ξ = 0 means
that leftovers are not considered at all; while ξ = P means that leftovers generated at any period are
available up to the end of the considered time horizon. Twenty five small-sized instances with up to four
periods will be solved with an exact commercial solver. Tables 1 and 2 describe the instances. In the
tables, for each instance, P is the number of periods. For each instant p = 0, 1, . . . , P − 1, mp is the
number of purchasable objects and np is the number of ordered items. Notation a(b × c)[s] means that
there are a objects or items with width b and height c; and, in the case of objects, that the cost per unit
of area is s. When a is omitted, it means that there is a single copy of the described object or item; and,
when s is omitted, it means that the cost per unit of area is 1. In the last column, d is the number of



items in the catalogue. Items in the catalogue are the ones whose dimensions are underlined in the table.
Table 3 displays the number of binary and continuous variables and the number of constraints of each
one of the twenty five considered instances varying ξ ∈ {0, 1, . . . , P}. From the table, it is easy to see
how these figures grow as a function of ξ.

The model was implemented in C/C++ using the ILOG Concert Technology and compiled with g++
from gcc version 5.4.0 (GNU compiler collection) with the -O3 option enable. Numerical experiments
were conducted using a machine with Intel Xeon Processor X5650, 8GB of RAM memory, and Ubuntu
16.04 operating system. Instances were solved using IBM ILOG CPLEX 12.8.0. By default, a solution
is reported as optimal by the solver when

absolute gap = best feasible solution− best lower bound ≤ εabs

or

relative gap =
| best feasible solution− best lower bound |

10−10 + | best feasible solution |
≤ εrel,

with εabs = 10−6 and εrel = 10−4, where “best feasible solution” means the smallest value of the
objective function related to a feasible solution generated by the method. The objective function (11) has
the particular property of assuming relatively large integer values at feasible points. Hence, a stopping
criterion based on a relative error less than or equal to εrel = 10−4 may have the undesired effect of
stopping the method prematurely. On the other hand, due to the integrality of the objective function
values, an absolute error strictly smaller than 1 is enough to prove the optimality of the incumbent
solution. Therefore, in the numerical experiments, we considered εabs = 1 − 10−6 and εrel = 0. In
addition, NodeFileInd and WorkMem parameters were set to 3 and 6,000, respectively; so the Branch
& Bound tree is partially transferred to disk if memory is exhausted. All other parameters of the solver
were used with their default values.

Tables 4, 5, and 6 describe the solutions found to the twenty five considered instances for varying
values of ξ ∈ {0, 1}, ξ ∈ {2, 3}, and ξ = 4, respectively. In the tables, “Objective function optimal
value” is the value of the objective function (11) at the solution reported as optimal by the solver. “Objects
costs” and “Leftovers value” correspond to the cost of the purchased objects and the value of the leftovers
at instant P , respectively; and they are extracted from the optimal value according to (11). A CPU time
limit of two hours was imposed to the solver. When this time limit is reached, as it is the case in some
instances with ξ = 4, the “best lower bound”, “the best feasible solution”, and the “gap in %” are
reported instead of the unknown optimal value. Remaining columns “MIP iterations”, “B&B Nodes”,
and “CPU time” (in seconds) are self-explanatory and state the effort required by the solver to obtain
the reported solution. Figure 4 shows the influence of considering leftovers in the reduction of the cost
of the objects that need to be purchased to satisfy the overall demand of items along the considered
time horizon. As expected, the use of leftovers significantly reduces the cost of the purchased objects.
It should be noted that for ξ = 3 and ξ = 4 the costs of the purchased objects coincide in all the 25
instances. The difference in these two scenarios relies on the value of the remaining leftovers. When
ξ = 3 there are remaining leftovers in five instances only (namely, instances 1, 2, 3, 5, and 22). When
ξ = 4 there are remaining leftovers in all instances but instance 4. It can be highlighted the case of
instance 14 that has no remaining leftovers when ξ = 3 and it has remaining leftovers with value 582



when ξ = 4.
As it can be seen in Table 4, instances 4, 5, and 9 are infeasible when ξ = 0. This is because these

instances have instants with ordered items and no available objects; and ξ = 0 impair the use of leftovers.
The same happens with instance 9 for the case ξ = 1 since it has two consecutive periods with ordered
items and no available objects. Tables 4 and 5 show that for ξ ∈ {0, 1, 2, 3} the solver was able to detect
infeasibility or to find an optimal solution for all the 25 instances, within the CPU time limit. For the
case ξ = 4 (see Table 6), the CPU time limit was reached for instances 6, 9, 10, 14, 15, 18, 23, and 25.
However, it should be noted that the final gap was larger than 1% in only one instance. The median CPU
times for ξ ∈ {0, 1, 2, 3, 4} are 0.01, 1.36, 4.69, 2.92, and 204.76, respectively.

Figures 5–7 show the graphical representation (cutting/packing patterns) of the solutions obtained for
(the arbitrarily chosen) instances 6, 7, and 8, varying ξ ∈ {0, 1, 2, 3, 4}. Figure 5a shows that, when
ξ = 0, i.e. when leftovers are not considered, four objects that cost 1,177 are needed to cut the ordered
items; and, of course, there are no leftovers at the end of time horizon. When ξ = 1, leftovers can be
used only in the period that follows the period in which they were generated. Figure 5b shows that, in
this case, only two objects that cost 716 are required. One is bought at instant p = 0 and the other at
instant p = 2. The first one is used to cut the items ordered at instant p = 0 and it generates a leftover
that is used to cut the items ordered at instant p = 1. The same happens at instant p = 2, where an object
is bought that is used to cut the items ordered at that instant and generates two leftovers that are used to
cut the items ordered at instant p = 3. Since no object is bough at instant p = 3 and ξ = 1, there are no
leftovers at the end of the time horizon. The case ξ = 2 is depicted in Figure 5c. In this case, the leftovers
of the object bought at instant p = 0 are used to cut the items ordered at instants p = 1 and p = 2. A
new object is bought at instant p = 3 and two leftovers remain at the end of the time horizon. The two
purchased objects cost 595. When ξ = 3 (see Figure 5d), a single object that costs 374 is bought at
instant p = 0. This object and its leftovers are enough to cut all ordered items (at instants p = 0, 1, 2, 3).
Since ξ = 3 and the only object is bought at instant p = 0, there are no leftovers remaining at the end of
the time horizon. When ξ = 4 (see Figure 5e) the same object is bought at instant p = 0, but the cutting
pattern is chosen in order to maximize the value of the leftovers remaining at the end of the time horizon.

Figures 6 and 7 correspond to instances 7 and 8, respectively. These two instances are very similar, the
only difference being that they have the cost per unit of area of the two objects with dimensions 10× 12
and 12× 10 that are available at instant p = 0 interchanged. The figures show that, in the case ξ = 4, the
cutting pattern is such that the value of the remaining leftovers at the end of the horizon is maximized.
And this is achieved concentrating the leftovers in the object with a larger cost per unit of area. Note that,
in instance 7, the overall area of the remaining leftovers is 95, but its value is 190 (see Table 6); while in
instance 8 the overall leftovers’ area is 107 with a value of 175 (see Table 6).

As it can be seen in Tables 1 and 2, instance 1 has three periods; while all the other twenty four
considered instances have four periods. It is very clear from the problem formulation that the number
binary variables in the proposed model depends on the number of periods P and on the number of
available objects m̄p and ordered items np at each instant p = 0, . . . , P − 1. Moreover, since, as defined
in (1), the number of available objects m̄p at a given instant p corresponds to the number of purchasable
objects mp plus the number usable leftovers from previous periods, m̄p depends exponentially on p
and on parameter ξ that says for how many periods leftovers of previous periods may be available. This
dependency is illustrated in Table 3. Moreover, the results in Tables 4, 5, and 6 illustrate that, as expected,
the solver’s effort increases as a function of ξ and that several instances with ξ = 4 can not be solved to



optimality within the CPU time limit of two hours. It should also be stressed that, as already mentioned,
the goal of the numerical experiments was to analyze the influence of considering leftovers in the overall
cost of the purchased objects. Therefore, the set of instances was chosen in such a way that the solver
were able to find optimal solution within an affordable time limit; while it is not a surprise the solver
would not be able to find optimal solutions within a reasonable amount of time for much larger instances.

5. Concluding remarks

Two-dimensional non-guillotine cutting stock problems with leftovers in which leftovers can be gen-
erated by two guillotine pre-cuts were considered in this work. In particular, the cutting problem with
leftovers introduced in Andrade et al. (2014) was embedded into a multiperiod framework. In this way,
objects and leftovers at each period can be better chosen in order to minimize the overall cost of the
objects that are required to execute a given set of sorted orders. Some alternative variants of the problem
were analyzed. A MIP formulation of the considered problem was introduced and illustrative numerical
experiments were presented. On the one hand, since, as expected, practical instances could not be solved
to optimality with an exact solver, developing heuristic methods for the introduced problem would be
a possible direction for future research. On the other hand, considering uncertainty in the problem data
would make the problem closer to practice. A more ambitious goal would be to integrate this multi-
period cutting problem with leftovers with a lot sizing problem in order to simultaneously determine the
demanded items that must be placed as orders and their optimal cutting pattern.
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Fig. 3. Illustration of solutions that, at each period, may cut ordered items from usable leftovers from previous periods. (a)
Greedy solution obtained by a myopic method that, at each instant, minimizes the cost of the objects required to cut the

ordered items of that instant, assuming that usable leftovers from previous periods are free. (b) Solution that minimizes the
overall cost of the required objects. (c) Solution with minimum cost of the required objects and, in addition, maximum value of

the usable leftovers at instant p = 3.



#Inst. P
Objects Items

p mp W ×H np w × h d

1 3
0 3 21 × 17, 19 × 19, 24 × 13 2 10 × 11, 9 × 11

11 1 10 × 16 3 7 × 6, 7 × 5, 7 × 4
2 1 10 × 12 2 2(6 × 3)

2 4

0 2 14 × 8, 16 × 6 3 3 × 7, 6 × 8, 4 × 8

21 1 15 × 10 3 5 × 3, 2(2 × 5)
2 1 20 × 15 2 5 × 3, 3 × 2
3 1 15 × 10 2 2(2 × 3)

3 4

0 2 15 × 6, 15 × 5 3 2(1 × 6), 10 × 6

21 1 12 × 7 1 3 × 5
2 1 20 × 10 2 5 × 3, 3 × 2
3 1 20 × 8 6 2(2 × 3), 10 × 1, 2 × 2, 2(5 × 2)

4 4

0 2 13 × 8, 12 × 6 5 1 × 5, 2 × 5, 1 × 4, 1 × 3, 3 × 2

21 3 10 × 8, 12 × 10, 15 × 10 3 3 × 7, 2 × 3, 2 × 4
2 1 8 × 4 2 10 × 1, 1 × 3
3 0 3 3 × 1, 3 × 3, 4 × 4

5 4

0 2 10 × 4, 13 × 8 4 2(1 × 5), 2 × 5, 3 × 5

11 2 10 × 9, 12 × 9 2 5 × 3, 6 × 3
2 3 10 × 10, 2(12 × 9) 3 5 × 3, 6 × 2, 3 × 3
3 0 3 1 × 2, 5 × 4, 4 × 2

6 4

0 2 22 × 17, 14 × 30 5 3(2 × 11), 2(5 × 5)

41 2 17 × 29, 24 × 10 2 2(4 × 10)
2 2 18 × 19, 26 × 22 3 3(5 × 4)
3 3 24 × 12, 15 × 18, 17 × 13 8 4(3 × 3), 4 × 2, 2(7 × 1), 11 × 1

7 4

0 2 (10 × 12)[2], 12 × 10 3 5 × 4, 8 × 2, 2 × 2

11 1 17 × 15 1 3 × 7
2 1 17 × 15 1 8 × 4
3 1 17 × 15 1 4 × 9

8 4

0 2 10 × 12, (12 × 10)[2] 3 5 × 4, 8 × 2, 2 × 2

11 1 17 × 15 1 3 × 7
2 1 17 × 15 1 8 × 4
3 1 17 × 15 1 4 × 9

9 4

0 3 30 × 20, 2(10 × 10)[3] 6 3 × 7, 8 × 2, 10 × 1, 5 × 4, 2 × 9, 2 × 2

21 3 (30 × 20)[3], 2(10 × 10)[3] 6 5 × 3, 9 × 3, 6 × 1, 3 × 8, 4 × 1, 7 × 3
2 0 4 3 × 2, 7 × 2, 4 × 5, 4 × 1
3 0 4 8 × 4, 4 × 2, 3 × 7, 6 × 2

10 4

0 2 14 × 21, 19 × 19 7 2(11 × 3), 3(2 × 11), 2(5 × 5)

11 1 27 × 23 9 9 × 7, 4(9 × 6), 2(5 × 3), 2(5 × 4)
2 1 20 × 15 9 5(3 × 2), 4(3 × 1)
3 1 17 × 17 7 4(3 × 4), 3(2 × 1)

11 4

0 2 30 × 10, 23 × 16 1 6 × 6

21 1 28 × 12 3 2 × 5, 2(4 × 1)
2 2 22 × 11, 26 × 23 3 2(9 × 3), 6 × 6
3 1 17 × 29 3 2(4 × 3), 7 × 2

12 4

0 2 37 × 20, 22 × 24 2 2(11 × 6)

11 1 21 × 23 1 6 × 6
2 1 36 × 30 2 2(13 × 5)
3 2 13 × 18, 10 × 17 2 4 × 5, 4 × 2

13 4

0 2 25 × 34, 36 × 14 2 2(6 × 6)

21 2 23 × 18, 33 × 33 1 6 × 3
2 1 17 × 26 1 1 × 6
3 2 38 × 23, 30 × 36 1 4 × 10

Table 1
Description of the considered set of instances.



#Inst. P
Objects Items

p mp W ×H np w × h d

14 4

0 1 40 × 33 4 2(3 × 12), 2(15 × 10)

11 1 26 × 36 4 2(3 × 4), 2(10 × 9)
2 1 13 × 19 4 2(5 × 3), 2(2 × 3)
3 1 32 × 19 2 2(8 × 6)

15 4

0 2 10 × 24, 26 × 38 2 2(11 × 13)

21 1 25 × 23 2 2(6 × 2)
2 1 36 × 36 4 2(3 × 4), 2(6 × 13)
3 1 39 × 25 4 2(2 × 4), 2(14 × 3)

16 4

0 3 20 × 38, 2(11 × 17) 4 2(2 × 4), 2(6 × 16)

31 1 33 × 21 2 2(8 × 9)
2 1 12 × 22 2 2(4 × 2)
3 1 30 × 14 2 2(5 × 1)

17 4

0 1 15 × 39 3 2(6 × 2), 5 × 9

21 1 19 × 13 4 2(7 × 2), 2(5 × 6)
2 1 20 × 40 2 2(3 × 4)
3 2 38 × 40, 22 × 26 3 2(4 × 13), 4 × 8

18 4

0 1 22 × 38 1 2 × 11

11 3 2(22 × 12), 33 × 17 4 2(14 × 5), 2(12 × 7)
2 2 12 × 13, 23 × 11 2 2(7 × 5)
3 2 10 × 23, 14 × 20 3 2(1 × 2), 4 × 10

19 4

0 2 14 × 14, 39 × 11 2 11 × 6, 8 × 5

21 1 15 × 23 3 2(6 × 10), 2 × 10
2 1 39 × 14 3 2(5 × 5), 7 × 2
3 1 36 × 11 2 3 × 1, 3 × 2

20 4

0 1 27 × 24 3 4 × 6, 2(10 × 2)

41 2 35 × 27, 27 × 11 1 14 × 5
2 2 23 × 30, 17 × 13 3 2(6 × 8), 5 × 5
3 1 24 × 34 2 2(3 × 7)

21 4

0 3 10 × 17, 26 × 15, 12 × 11 1 2 × 1

11 1 23 × 20 1 10 × 3
2 3 11 × 16, 22 × 15, 28 × 30 1 3 × 10
3 1 30 × 28 2 2(8 × 2)

22 4

0 2 16 × 24, 20 × 10 4 5 × 9, 8 × 6, 2(2 × 4)

11 1 11 × 13 1 2 × 5
2 3 22 × 17, 13 × 11, 29 × 29 1 3 × 7
3 2 30 × 23, 18 × 23 2 2(4 × 8)

23 4

0 3 16 × 12, 12 × 10, 19 × 25 6 2(4 × 5), 2(1 × 10), 2(4 × 3)

21 3 18 × 20, 25 × 13, 21 × 16 2 2(2 × 5)
2 2 12 × 24, 14 × 16 5 2(2 × 2), 5 × 9, 2(6 × 2)
3 1 14 × 27 4 3 × 6, 2(4 × 6), 1 × 4

24 4

0 1 21 × 21 5 4 × 2, 2(3 × 9), 2(8 × 3)

31 2 19 × 30, 23 × 12 3 2 × 6, 8 × 5, 5 × 4
2 2 21 × 28, 24 × 11 1 10 × 2
3 1 29 × 16 2 2(3 × 5)

25 4

0 3 22 × 28, 30 × 25, 19 × 22 2 2(6 × 5)

21 2 22 × 22, 12 × 22 4 2(4 × 8), 2(2 × 3)
2 1 22 × 11 4 3 × 3, 3 × 1, 2(8 × 1)
3 2 23 × 19, 12 × 23 4 4 × 9, 4 × 8, 2(7 × 9)

Table 2
Description of the considered set of instances (continued).



#Inst. ξ = 0 ξ = 1 ξ = 2 ξ = 3 ξ = 4
BV CV CO BV CV CO BV CV CO BV CV CO BV CV CO

1 31 34 112 81 82 410 153 162 802 297 354 1,498 297 354 1,498
2 39 40 143 89 88 423 165 168 823 285 296 1,439 509 552 2,431
3 63 44 199 115 92 547 211 172 1,227 403 300 2,947 659 556 4,003
4 61 50 258 121 98 588 237 206 1,292 461 438 2,508 653 662 3,404
5 55 52 233 127 108 651 267 256 1,507 427 432 2,467 587 656 3,299
6 146 72 688 276 168 1,704 468 296 3,448 772 488 6,392 1,060 744 7,512
7 25 32 99 61 80 275 121 160 583 217 288 1,071 409 544 1,999
8 25 32 99 61 80 275 121 160 583 217 288 1,071 409 544 1,999
9 108 64 564 204 112 1,392 360 208 2,568 672 496 4,488 1,008 880 5,976

10 277 84 783 373 132 2,171 521 212 4,231 713 340 6,351 905 596 7,279
11 44 44 156 108 100 546 224 212 1,202 360 340 1,994 584 596 2,986
12 29 38 110 85 106 382 161 190 786 281 326 1,410 505 614 2,434
13 25 38 92 87 114 374 167 214 766 343 422 1,566 599 710 2,654
14 60 44 184 106 86 482 174 154 898 262 258 1,338 374 402 1,850
15 52 44 168 108 94 514 212 178 1,238 372 314 2,294 628 602 3,382
16 48 44 204 106 102 494 206 202 1,006 374 370 1,846 806 802 3,574
17 51 44 175 113 104 513 181 172 877 285 276 1,421 413 420 1,965
18 59 52 251 143 136 735 275 272 1,491 483 520 2,531 595 664 3,043
19 38 40 132 92 90 440 180 174 940 308 310 1,580 564 598 2,668
20 39 42 142 101 100 466 233 220 1,090 425 396 1,882 585 540 2,490
21 27 42 94 87 114 402 211 274 1,034 355 434 1,818 643 818 3,210
22 46 48 176 112 128 510 224 272 1,078 336 400 1,678 528 656 2,606
23 120 70 515 224 150 1,301 436 310 2,953 748 598 4,873 1,084 982 6,361
24 55 46 182 109 102 460 217 214 972 377 374 1,684 505 502 2,212
25 80 60 300 180 140 996 328 252 2,100 584 476 3,772 920 860 5,260

Table 3
Number of binary variables (BV), continuous variables (CV), and constraints (CO) of the twenty five considered instances.



#Inst.

ξ = 0 ξ = 1
Solutions description Effort measurements Solutions description Effort measurements

Objective function Objects MIP B&B CPU Objective function Objects Leftovers MIP B&B CPU
optimal value cost Iterations Nodes Time optimal value cost value Iterations Nodes Time

1 775,520 592 7 0 0.20 624,810 477 60 974 122 4.53
2 575,296 712 0 0 0.01 332,758 412 138 73 0 2.02
3 325,206 534 0 0 0.01 176,610 290 0 97 0 0.57
4 Infeasible – – – – 102,672 184 0 113 0 0.81
5 Infeasible – – – – 134,232 204 0 80 0 2.31
6 3,789,940 1,177 45 0 0.03 2,305,520 716 0 427 0 1.30
7 995,625 885 8 0 0.01 421,875 375 0 77 0 1.42
8 995,625 885 6 0 0.01 556,875 495 0 110 0 1.20
9 Infeasible – – – – Infeasible – – – – –

10 4,448,565 1,881 0 0 0.10 3,072,135 1,299 0 62,212 7,794 24.64
11 3,204,027 1,371 5 0 0.01 1,266,654 542 0 108 0 1.15
12 7,314,335 2,261 4 0 0.01 3,820,393 1,181 142 190 2 2.39
13 11,735,202 2,234 4 0 0.01 4,969,338 946 0 100 0 0.62
14 9,678,321 3,111 0 0 0.01 4,874,937 1,567 0 112 0 1.31
15 15,619,716 3,834 0 0 0.01 9,305,016 2,284 0 117 0 1.41
16 4,396,761 1,751 16 0 0.33 2,571,264 1,024 0 185 0 1.76
17 8,207,696 2,204 0 0 0.02 5,157,740 1,385 0 96 0 0.81
18 4,977,000 1,750 32 0 0.40 2,821,248 992 0 133 0 1.65
19 2,835,496 1,483 0 0 0.01 1,791,157 937 387 185 0 5.12
20 7,168,894 1,982 7 0 0.01 4,217,422 1,166 0 143 0 6.31
21 5,367,504 1,608 0 0 0.01 1,028,104 308 0 58 0 0.02
22 2,870,100 900 2 0 0.01 1,093,827 343 0 136 0 1.00
23 2,824,806 1,047 28 0 0.03 928,112 344 0 303 0 0.73
24 3,761,335 1,445 0 0 0.01 1,835,115 705 0 117 0 0.80
25 4,184,400 1,200 11 0 0.02 3,221,988 924 0 289 0 1.78

Table 4
Description of the solutions found and the effort measurements corresponding to the twenty five considered instances with
ξ = 0 and ξ = 1.



#Inst.

ξ = 2 ξ = 3
Solutions description Effort measurements Solutions description Effort measurements

Objective function Objects Leftovers MIP B&B CPU Objective function Objects Leftovers MIP B&B CPU
optimal value cost value Iterations Nodes Time optimal value cost value Iterations Nodes Time

1 624,810 477 60 2,768 829 5.30 624,810 477 60 10,639 1,147 4.11
2 211,696 262 0 177 0 0.44 211,619 262 77 2,376,889 263,942 21.86
3 176,480 290 130 1,483,474 481,658 32.61 176,480 290 130 961,431 257,043 25.87
4 75,888 136 0 469 0 1.03 58,032 104 0 1,099 0 1.19
5 127,652 194 0 373 0 2.53 127,597 194 55 2,202,637 479,702 46.13
6 1,915,751 595 149 208,811 33,801 4.69 1,204,280 374 0 48,335 5,419 4.97
7 421,656 375 219 753 32 6.58 405,000 360 0 229 0 1.22
8 421,875 375 0 454 0 1.67 405,000 360 0 771 0 1.49
9 4,320,000 1,200 0 46,946 2,576 2.66 2,160,000 600 0 279,079 6,895 7.26
10 2,341,350 990 0 36,240,062 569,320 771.02 1,889,635 799 0 7,009,845 216,734 188.53
11 1,266,477 542 177 17,972 4,062 8.69 701,100 300 0 659 0 3.27
12 2,257,888 698 142 281 0 1.53 1,708,080 528 0 407 0 2.37
13 4,822,254 918 0 266 0 1.64 2,647,512 504 0 568 0 0.14
14 4,874,792 1,567 145 1,783 231 4.82 4,106,520 1,320 0 399 0 1.04
15 6,367,662 1,563 0 291 0 1.33 4,025,112 988 0 547 0 1.46
16 2,571,018 1,024 246 127,651 7,755 2.60 1,908,360 760 0 873 0 2.37
17 3,098,368 832 0 317 0 1.65 2,178,540 585 0 404 0 1.64
18 2,821,171 992 77 796 81 9.38 2,377,584 836 0 883 0 2.92
19 1,034,392 541 0 294 0 2.05 820,248 429 0 529 0 0.87
20 3,143,019 869 154 2,276 432 3.58 2,343,816 648 0 677 0 0.53
21 1,027,990 308 114 926 73 6.51 567,460 170 0 651 0 4.78
22 1,093,793 343 34 743 37 5.26 1,093,726 343 101 4,284 740 5.55
23 928,063 344 49 6,041,800 684,437 35.32 841,776 312 0 112,177 4,854 7.45
24 1,834,901 705 214 3,391 801 9.20 1,147,923 441 0 483 0 1.08
25 2,301,376 660 44 44,647 9,552 6.02 1,457,566 418 0 39,019 2,396 3.19

Table 5
Description of the solutions found and the effort measurements corresponding to the twenty five considered instances with
ξ = 2 and ξ = 3.
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Fig. 4. Graphical representation of the influence of the usage of leftovers in the reduction of the cost of the purchased objects
required to satisfy the demand.



#Inst.

ξ = 4
Solutions description Effort measurements

Ceiling of best Best feasible Objects Leftovers gap in % MIP B&B CPU
lower bound solution cost value Iterations Nodes Time

1 624,810 624,810 477 60 – 10,639 1,147 0.84
2 211,619 211,619 262 77 – 2,160,643 201,861 18.03
3 176,480 176,480 290 130 – 841,436 237,602 17.58
4 58,032 58,032 104 0 – 850,790 23,572 15.78
5 127,592 127,592 194 60 – 229,858,101 31,994,580 2,987.59
6 1,204,205 1,204,236 374 44 0.00257 159,153,968 14,968,217 >7,200.00
7 404,810 404,810 360 190 – 19,283 1,844 0.93
8 404,825 404,825 360 175 – 15,865 2,084 1.08
9 2,158,783 2,159,724 600 276 0.04357 262,314,681 7,630,137 >7,200.00

10 1,143,263 1,889,492 799 143 39.49363 233,353,289 2,425,193 >7,200.00
11 700,984 700,984 300 116 – 17,734,163 2,369,734 204.76
12 1,707,878 1,707,878 528 202 – 175,060 27,057 4.11
13 2,647,144 2,647,144 504 368 – 56,098 7,948 2.40
14 4,105,120 4,105,938 1,320 582 0.01992 246,817,566 16,454,312 >7,200.00
15 4,024,518 4,024,714 988 398 0.00487 316,265,168 23,099,236 >7,200.00
16 1,907,986 1,907,986 760 374 – 180,021,974 39,120,509 4,258.83
17 2,178,286 2,178,286 585 254 – 393,331,330 59,172,386 5,388.47
18 2,376,937 2,377,194 836 390 0.01081 226,180,153 28,601,529 >7,200.00
19 820,152 820,152 429 96 – 796,992 114,618 11.97
20 2,343,485 2,343,485 648 331 – 14,533,560 2,123,452 170.81
21 567,386 567,386 170 74 – 1,479 235 0.87
22 1,093,712 1,093,712 343 115 – 10,229 1,594 0.78
23 841,259 841,715 312 61 0.05418 486,159,219 15,462,361 >7,200.00
24 1,147,735 1,147,735 441 188 – 30,166,459 3,731,902 316.14
25 1,457,411 1,457,506 418 60 0.00652 169,625,339 14,676,677 >7,200.00

Table 6
Description of the solutions found and the effort measurements corresponding to the twenty five considered instances with
ξ = 4.
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Fig. 5. Graphical representation of the solutions to instance 6 with ξ ∈ {0, 1, . . . , 4}.
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Fig. 6. Graphical representation of the solutions to instance 7 with ξ ∈ {0, 1, . . . , 4}.
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Fig. 7. Graphical representation of the solution to instance 8 with ξ = 4.
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