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Abstract

Dykstra’s algorithm is a suitable alternating projection scheme for solving the op-
timization problem of finding the closest point to a given one in the intersection of a
finite number of closed and convex sets. It has been recently used in a wide variety
of applications. However, in practice, the commonly used stopping criteria are not
robust and could stop the iterative process prematurely at a point that does not solve
the optimization problem. In this work we present a counter-example to illustrate the
weakness of the commonly used criteria, and then we develop robust stopping rules.
Additional experimental results are shown to illustrate the advantages of this new
stopping criteria, including their associated computational cost.

Key words: Convex optimization, alternating projection methods, Dykstra’s algo-
rithm, stopping criteria.

1 Introduction

We consider Dykstra’s algorithm for solving the optimization problem

min
x∈Ω

‖x0 − x‖, (1)

where x0 is a given point, Ω is a closed and convex set, and ‖z‖2 = 〈z, z〉 defines a real
inner product in the space. The solution x∗ is called the projection of x0 onto Ω and is
denoted by PΩ(x0). Dykstra’s algorithm for solving (1) has been extensively studied since
it fits in many different applications (see [1, 2, 4, 8, 9, 11, 12, 13, 18, 21, 23, 24, 26, 28, 29]).

Here, we consider the case
Ω = ∩p

i=1Ωi, (2)
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where Ωi are closed and convex sets in IRn, for i = 1, 2, . . . , p, and Ω 6= ∅. Moreover, we
assume that for any z ∈ IRn the calculation of PΩ(z) is not trivial; whereas, for each Ωi,
PΩi

(z) is easy to obtain as in the case of a box, an affine subspace, or a ball.
Roughly speaking, Dykstra’s algorithm [2, 10] projects in a clever way onto each of the

convex sets individually to complete a cycle which is repeated iteratively. We are mainly
concerned with the criterion to stop the process within a certain previously established
tolerance that indicates the distance of the current iterate to the unique solution.

This paper is organized as follows. In Section 2 we describe Dykstra’s alternating
projection method for solving (1)–(2), and discuss some of its properties. In Section 3 we
discuss the difficulties with the typical and somehow informal stopping criteria that are
frequently associated with Dykstra’s algorithm. In Section 4 we introduce and analyze
the new stopping criteria. In Section 5 we draw some conclusions.

2 Dykstra’s algorithm

A suitable tool for solving (1) when Ω has the form (2) is Dykstra’s alternating projection
algorithm [2, 10], that will be described below. Dykstra’s algorithm can also be obtained
via duality [14, 20]. See also Hildreth [22], for the pioneer version on dual alternating
projection methods for half spaces. Hildreth’s algorithm has been extended for quadratic
programming problems [24, 27].

Let us recall that for a given nonempty closed and convex set Ω of IRn, and any
x0 ∈ IRn, there exists a unique solution x∗ to problem (1), which is called the projection
of x0 onto Ω, it is denoted by PΩ(x0), and it is characterized by the Kolmogorov’s criterion:

〈x0 − x∗, x∗ − x〉 ≥ 0 for all x ∈ Ω, x∗ ∈ Ω. (3)

Dykstra’s algorithm solves (1)–(2) by generating two sequences: the iterates {xk
i } and

the increments {yk
i }. These sequences are defined by the following recursive formulae:

xk
0 = xk−1

p

xk
i = PΩi

(xk
i−1 − yk−1

i ) , i = 1, 2, . . . , p,

yk
i = xk

i − (xk
i−1 − yk−1

i ) , i = 1, 2, . . . , p,

(4)

for k = 1, 2, . . . with initial values x0
p = x0 and y0

i = 0 for i = 1, 2, . . . , p.

Remarks

1. The increment yk−1
i associated with Ωi in the previous cycle is always subtracted

before projecting onto Ωi. Only one increment (the last one) for each Ωi needs to
be stored.

2. If Ωi is a closed affine subspace, then the operator PΩi
is linear and it is not required,

in the kth cycle, to subtract the increment yk−1
i before projecting onto Ωi. Thus, for

affine subspaces, Dykstra’s procedure reduces to the alternating projection method
of von Neumann [30]. To be precise, in this case, PΩi

(yk−1
i ) = 0.
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3. For k = 1, 2, . . . and i = 1, 2, . . . , p, it is clear from (4) that the following relations
hold

xk−1
p − xk

1 = yk−1
1 − yk

1 , (5)

xk
i−1 − xk

i = yk−1
i − yk

i , (6)

where x0
p = x0 and y0

i = 0, for all i = 1, 2, . . . , p.

For the sake of completeness we now present the key theorem associated with Dykstra’s
algorithm.

Theorem 2.1 (Boyle and Dykstra, 1986 [2]) Let Ω1, . . . ,Ωp be closed and convex sets
of IRn such that Ω = ∩p

i=1Ωi 6= ∅. For any i = 1, 2, . . . , p and any x0 ∈ IRn, the sequence
{xk

i } generated by (4) converges to x∗ = PΩ(x0) (i.e., ‖xk
i − x∗‖ → 0 as k → ∞).

3 Difficulties with some commonly used stopping criteria

In some applications it is possible to obtain a somehow natural stopping rule, associated
with the problem at hand. For example, when solving a linear system, Ax = b, by
alternating projection methods [3, 15], the residual vector (r(x) = b − Ax) is usually
available and yields some interesting and robust stopping rules. Another example appears
in image reconstruction for which a good and feasible image tells the user that it is time to
stop the process [5, 6]. Similar circumstances are present in some other specific applications
(e.g. molecular biology [18, 19]).

However, in general, this is not the case, and we are left with the information produced
only by the internal computations, i.e., the sequence of iterates and perhaps the sequence
of increments, and some inner products. For this general case, a popular stopping rule is
to monitor the subsequence of projections onto one particular convex set, Ωi, and stop the
process when the distance, in norm, of two consecutive projections is less than or equal to
a previously established tolerance [16, 17, 21, 28].

Another commonly used criterion, that is claimed to improve the previous one (e.g.
[2, 12, 18, 29]) is to somehow compute an average of all the projections at each cycle of
projections, and then stop the process when the distance, in norm, of two consecutive of
those average projections is less than or equal to a previously established tolerance.

Finally, we would like to mention that another criterion, that is also designed to im-
prove any of the two criteria above, is to check any of the previously described rules during
N consecutive cycles, where N is a fixed positive integer.

None of these stopping rules is a trustable choice. The example below establishes that
they can fail even for a two dimensional problem (see Figures 1 and 2).

To illustrate the difficulties with the previously described stopping criteria, consider
the closed and convex set Ω = Ω1 ∩ Ω2, where Ω1 = {x ∈ IR2 | x1 + x2 ≥ 10} is a half
space and Ω2 = {x ∈ IR2 | 3 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 4} is a box. This closed and convex set
in IR2 is shown in Figure 1.
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(6, 4)T(3, 4)T

x1 + x2 ≥ 10

x1 ≥ 3 x1 ≤ 10

x2 ≤ 4

x2 ≥ 0

x1

x2

Figure 1: Feasible set Ω = Ω1 ∩ Ω2 in IR2.

Let x0 = (−49, 50)T and let us use Dykstra’s algorithm to find the closest point
to x0 in Ω. In Figure 2 we can see the first two cycles of this convergent process. Since
y0
1 = y0

2 = 0 (null initial increments) then for the first cycle we project x0 onto Ω1 to obtain
p2 = x1

1 = (−44.5, 54.5)T and then we project p2 onto Ω2 to obtain p3 = x1
2 = (3, 4)T . For

the second cycle, the increments are not null (y1
1 = (4.5, 4.5)T and y1

2 = (47.5,−50.5)T ),
and we start from p3. First we project p4 = p3 − y1

1 onto Ω1 to obtain p5 = x2
1. Then we

project p6 = p5−y1
2 onto Ω2 to obtain p3 again. Hence x2

2 = x1
2. The increment associated

with Ω2 is large enough to take the iterate back to the quadrant where the projection
onto the box is again p3. As it can be seen in Table 1, this phenomenon will occur until
cycle 32, i.e., p3 = x1

2 = x2
2 = . . . = x32

2 .
Moreover, by choosing x0 far enough, we can guarantee that this misleading event can

be repeated for as many cycles as any previously established positive integer N . Eventually
the size of the increments will be reduced and convergence to x∗ will be observed.
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Current iterate Proposed stopping criteria

k xk
p ck ck

L
ck
I

0 (−4.900E+01, 5.000E+01) 0.0000000E+00 0.0000000E+00
1 ( 3.000E+00, 4.000E+00) 4.8470000E+03 4.8470000E+03 4.8470000E+03
2 ( 3.000E+00, 4.000E+00) 4.8560000E+03 4.8560000E+03 9.0000000E+00
3 ( 3.000E+00, 4.000E+00) 4.8650000E+03 4.8650000E+03 9.0000000E+00
4 ( 3.000E+00, 4.000E+00) 4.8740000E+03 4.8740000E+03 9.0000000E+00
5 ( 3.000E+00, 4.000E+00) 4.8830000E+03 4.8830000E+03 9.0000000E+00
6 ( 3.000E+00, 4.000E+00) 4.8920000E+03 4.8920000E+03 9.0000000E+00
7 ( 3.000E+00, 4.000E+00) 4.9010000E+03 4.9010000E+03 9.0000000E+00
8 ( 3.000E+00, 4.000E+00) 4.9100000E+03 4.9100000E+03 9.0000000E+00
9 ( 3.000E+00, 4.000E+00) 4.9190000E+03 4.9190000E+03 9.0000000E+00

10 ( 3.000E+00, 4.000E+00) 4.9280000E+03 4.9280000E+03 9.0000000E+00
11 ( 3.000E+00, 4.000E+00) 4.9370000E+03 4.9370000E+03 9.0000000E+00
12 ( 3.000E+00, 4.000E+00) 4.9460000E+03 4.9460000E+03 9.0000000E+00
13 ( 3.000E+00, 4.000E+00) 4.9550000E+03 4.9550000E+03 9.0000000E+00
14 ( 3.000E+00, 4.000E+00) 4.9640000E+03 4.9640000E+03 9.0000000E+00
15 ( 3.000E+00, 4.000E+00) 4.9730000E+03 4.9730000E+03 9.0000000E+00
16 ( 3.000E+00, 4.000E+00) 4.9820000E+03 4.9820000E+03 9.0000000E+00
17 ( 3.000E+00, 4.000E+00) 4.9910000E+03 4.9910000E+03 9.0000000E+00
18 ( 3.000E+00, 4.000E+00) 5.0000000E+03 5.0000000E+03 9.0000000E+00
19 ( 3.000E+00, 4.000E+00) 5.0090000E+03 5.0090000E+03 9.0000000E+00
20 ( 3.000E+00, 4.000E+00) 5.0180000E+03 5.0180000E+03 9.0000000E+00
21 ( 3.000E+00, 4.000E+00) 5.0270000E+03 5.0270000E+03 9.0000000E+00
22 ( 3.000E+00, 4.000E+00) 5.0360000E+03 5.0360000E+03 9.0000000E+00
23 ( 3.000E+00, 4.000E+00) 5.0450000E+03 5.0450000E+03 9.0000000E+00
24 ( 3.000E+00, 4.000E+00) 5.0540000E+03 5.0540000E+03 9.0000000E+00
25 ( 3.000E+00, 4.000E+00) 5.0630000E+03 5.0630000E+03 9.0000000E+00
26 ( 3.000E+00, 4.000E+00) 5.0720000E+03 5.0720000E+03 9.0000000E+00
27 ( 3.000E+00, 4.000E+00) 5.0810000E+03 5.0810000E+03 9.0000000E+00
28 ( 3.000E+00, 4.000E+00) 5.0900000E+03 5.0900000E+03 9.0000000E+00
29 ( 3.000E+00, 4.000E+00) 5.0990000E+03 5.0990000E+03 9.0000000E+00
30 ( 3.000E+00, 4.000E+00) 5.1080000E+03 5.1080000E+03 9.0000000E+00
31 ( 3.000E+00, 4.000E+00) 5.1170000E+03 5.1170000E+03 9.0000000E+00
32 ( 3.000E+00, 4.000E+00) 5.1260000E+03 5.1260000E+03 9.0000000E+00
33 ( 3.500E+00, 4.000E+00) 5.1347500E+03 5.1337500E+03 7.7500000E+00
34 ( 4.750E+00, 4.000E+00) 5.1394375E+03 5.1384375E+03 4.6875000E+00
35 ( 5.375E+00, 4.000E+00) 5.1406094E+03 5.1396094E+03 1.1718750E+00
36 ( 5.688E+00, 4.000E+00) 5.1409023E+03 5.1399023E+03 2.9296875E−01
37 ( 5.844E+00, 4.000E+00) 5.1409756E+03 5.1399756E+03 7.3242188E−02
38 ( 5.922E+00, 4.000E+00) 5.1409939E+03 5.1399939E+03 1.8310547E−02
39 ( 5.961E+00, 4.000E+00) 5.1409985E+03 5.1399985E+03 4.5776367E−03
40 ( 5.980E+00, 4.000E+00) 5.1409996E+03 5.1399996E+03 1.1444092E−03
41 ( 5.990E+00, 4.000E+00) 5.1409999E+03 5.1399999E+03 2.8610229E−04
42 ( 5.995E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 7.1525574E−05
43 ( 5.998E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 1.7881393E−05
44 ( 5.999E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 4.4703484E−06
45 ( 5.999E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 1.1175871E−06
46 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 2.7939677E−07
47 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 6.9849193E−08
48 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 1.7462298E−08
49 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 4.3655746E−09
50 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 1.0913936E−09
51 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 2.7284841E−10
52 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 6.8212103E−11
53 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 1.7053026E−11

Table 1: Dykstra’s Algorithm for the projection of x0 = (−49, 50)T onto Ω = Ω1
⋂

Ω2 (see
Figures 1 and 2). Note that the sum of the distances among consecutive increments, ck

I ,
is a strictly positive quantity which goes to zero when the method arrives to the solution.
This fact warranties the monotonically increase of ck

L and, as a consequence, of ck.
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x1
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Figure 2: First two cycles of Dykstra’s algorithm to find the projection of x0 = (−49, 50)T

onto Ω = Ω1 ∩ Ω2.

4 Robust stopping criteria

In order to develop robust stopping criteria for Dykstra’s algorithm, we first need to
establish an interesting inequality, that is obtained after a close inspection of the proof of
the Boyle-Dykstra convergence theorem.

Theorem 4.1 Let x0 be any element of IRn. Consider the sequences {xk
i } and {yk

i }
generated by (4) and define ck as

ck =
k∑

m=1

p∑

i=1

‖ym−1
i − ym

i ‖2 + 2
k−1∑

m=1

p∑

i=1

〈ym
i , xm+1

i − xm
i 〉. (7)

6



Then, in the kth cycle of Dykstra’s algorithm,

‖x0 − x∗‖2 ≥ ck. (8)

Moreover, at the limit when k goes to infinity, equality is attained in (8).

Proof. In the proof of Theorem 2.1, the following equation is obtained for k > 1 (Boyle
and Dykstra [2]) (see also Deutsch [7], Lemma 9.19):

‖x0 − x∗‖2 = ‖xk
p − x∗‖2 +

k∑

m=1

p∑

i=1

‖ym−1
i − ym

i ‖2

+ 2
k−1∑

m=1

p∑

i=1

〈xm
i−1 − ym−1

i − xm
i , xm

i − xm+1
i 〉

+ 2
p∑

i=1

〈xk
i−1 − yk−1

i − xk
i , x

k
i − x∗〉,

(9)

where all terms involved are nonnegative for all k. Recall that xm
0 = xm−1

p , and y0
i = 0 for

all i. From (9) we obtain

‖x0 − x∗‖2 ≥
k∑

m=1

p∑

i=1

‖ym−1
i − ym

i ‖2 + 2
k−1∑

m=1

p∑

i=1

〈xm
i−1 − ym−1

i − xm
i , xm

i − xm+1
i 〉. (10)

Finally, (8) is obtained by substituting (5) and (6) in (10).
Clearly, in (9) all terms in the right hand side are bounded. In particular, using (5) and

(6), the fourth term can be written as 2
∑p

i=1〈y
k
i , xk

i −x∗〉, and using the Cauchy-Schwarz
inequality and Theorem 2.1, we notice that it vanishes when k goes to infinity. Similarly,
the first term in (9) tends to zero when k goes to infinity, and so at the limit equality is
attained in (8). 2

Let us now write ck as follows:

ck = ck
L + ck

S ,

where

ck
L =

k∑

m=1

cm
I , (11)

cm
I =

p∑

i=1

‖ym−1
i − ym

i ‖2 (12)

and

ck
S = 2

k−1∑

m=1

p∑

i=1

〈ym
i , xm+1

i − xm
i 〉.

Both ck
L and ck

S are monotonically nondecreasing by definition. However, in the example
shown in the previous section, it can be seen that the sequence of projections {xm

i } onto Ωi
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could remain constant for several consecutive cycles, and hence ck
S could also remain

constant for the same consecutive cycles. On the other hand, if the p increments yk
i , i =

1, 2, . . . , p, also remain constant for two consecutive cycles m and m + 1, then, by (4), all
the forthcoming projections and forthcoming increments (for all k ≥ m + 1) will remain
the same, proving that we have already obtained the solution vector x∗. Hence, unless the
solution has been attained, at least one of the increments must change (Table 1 illustrates
this fact), and so ck+1

I will be strictly positive and ck+1
L = ck

L + ck+1
I > ck

L, i.e., ck
L must

increase monotonically. This argument establishes the following result.

Theorem 4.2 Consider the sequences {xk
i } and {yk

i } generated by (4), and ck, ck
L and ck

I

as defined in (7), (11) and (12), respectively. For any k ∈ IN , if xk 6= x∗ then ck+1
I > 0

and, hence, ck
L < ck+1

L and ck < ck+1.

We can combine the results established in Theorems 4.1 and 4.2 to propose robust
stopping criteria. Notice that {ck

L} and {ck} are monotonically increasing and convergent,
and also that {ck

I} converges to zero (these facts are illustrated in Table 1). Therefore we
can stop the process when

ck
I =

p∑

i=1

‖yk−1
i − yk

i ‖
2 ≤ ε

or, similarly, when

ck − ck−1 = ck
I + 2

p∑

i=1

〈yk−1
i , xk

i − xk−1
i 〉 ≤ ε, (13)

where ε > 0 is a sufficiently small tolerance. As ck may grow fast, computing ck − ck−1

may give innacurate results due to loss of accuracy in floating point representation and,
hence, cancellation. So, for the criterion in (13), it is recommendable to test convergence
with the second expression.

In Table 1 we can observe the robustness of our proposed criteria for the example
described in Figures 1 and 2. Notice that, indeed, ck and ck

L are monotonically increasing
during the process, and that they only stop growing when the method arrives at the
solution x∗, when ck reveals the optimal Euclidean distance ‖x0 − x∗‖2. Notice also that
ck
I tends to zero as k goes to ∞.

The computation of ck
I involves the squared-norm ‖yk−1

i − yk
i ‖

2, for i = 1, 2, . . . , p.
By (6), yk

i = yk−1
i + v, where v = xk

i − xk
i−1 is a temporary n-dimensional array needed

in the computation of Dykstra’s algorithm. So, the computational cost involved in the
calculation of ck

I is just the cost of the extra inner product 〈v, v〉 at each iteration.
The computation of ck involves the calculation of ck

I plus an extra term. The compu-
tational of this extra term is also small and involves an inner product and the difference
of two vectors per iteration. But, in contrast with the computation of ck

I which does not
require additional savings, the computation of the extra term requires to save p extra
n-dimensional arrays (the same amount of memory required in Dykstra’s algorithm to
save the increments). So, the computation of ck requires some additional calculations and
memory savings, and hence it is more expensive. However, it also has the advantage of
revealing the optimal distance: ‖x0 − x∗‖2, that could be of interest in some applications.
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We close this section with some comments concerning the behavior of the new stopping
criteria when the problem is not feasible. First of all, due to errors or noise in the given
data, it is a priori not always known whether the intersection set Ω is nonempty. Therefore,
it is an interesting issue in real applications. In this case (Ω = ∅), there is no solution and
we know from Theorem 4.2 that the sequences {ck

L} and {ck} are monotonically increasing.
Moreover, under some mild assumptions on the sets Ωi, the sequences {xk

i } converge for
1 ≤ i ≤ p, and there exists a real constant δ > 0 such that

∑p
i=1 ‖x

k
i−1 − xk

i ‖
2 ≥ δ for all

k. A discussion on this topic is presented in [1, Section 6], including a notion of distance
between all the sets Ωi (see also [25]). Now using (6), we obtain

p∑

i=1

‖xk
i−1 − xk

i ‖
2 =

p∑

i=1

‖yk−1
i − yk

i ‖
2 = ck

I .

Therefore, the sequence {ck
I} remains bounded away from zero, whereas {ck

L} and {ck}
tend to infinity. Consequently, none of the new proposed stopping criteria will be satisfied
for any k.

Regarding the mild assumptions discussed in [1, 25], for which the sequences {xk
i }

converge for 1 ≤ i ≤ p, and ck
I ≥ δ for all k, we can list the following cases that appear

frequently in applications: (a) at least one of the sets Ωi is bounded, (b) all of them are
polyhedral, (c) there exists zi ∈ Ωi such that ‖zi − zj‖ equals the distance between Ωi and
Ωj for all possible 1 ≤ i, j ≤ p. In other words, if any of these cases holds and one of the
new proposed stopping rules is used, then Dykstra’s algorithm stops only if a solution of (1)
is reached. In that sense, they are robust stopping criteria. Nevertheless, there are cases,
also discussed in [1, 25] for which the distance is not attained, and they establish that ‖xk

i ‖
tend to +∞ for 1 ≤ i ≤ p. In the presence of one of these cases, the stopping rules may
stop erroneously due to the numerical cancellation of very large numbers. For example,
consider the following two convex sets: Ω1 = {(x, y)T ∈ IR2 | x > 0 and y ≥ M + 1/x},
and Ω2 = {(x, y)T ∈ IR2 | x > 0 and y ≤ −M − 1/x}, where M > 0 is a fixed real
constant. None of the conditions above ((a), (b), or (c)) holds in this case, and in fact,
the iterates tend to (+∞,M)T and (+∞,−M)T , respectively. In theory, ck

I > 2M for
all k, and our stopping criteria would not be satisfied. However, in practice, the size of
the iterates could be very large, and cancellation might occur, producing a floating point
representation of ck

I very close to zero.

5 Conclusions

We pointed out that the frequently used stopping criteria for Dykstra’s algorithm are not
trustable and showed a two-dimensional example, using a box and a half space, in which
these rules fail to detect convergence of the Dykstra’s iterative procedure.

We introduced robust stopping criteria and applied them to an example in which the
commonly used criteria failed. We proved that our criteria are well defined and that one
of the sequences involved, {ck}, converges to the distance among the point to be projected
and its projection. We also establish that if there is no solution (empty intersection) then
under mild assumptions the new criteria are not satisfied. Finally, we elaborated on the
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computational cost of the proposed stopping rules.
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