
Inexact Spectral Projected Gradient Methods on Convex Sets

Ernesto G. Birgin ∗ José Mario Mart́ınez † Marcos Raydan ‡

March 26, 2003

Abstract

A new method is introduced for large scale convex constrained optimization. The
general model algorithm involves, at each iteration, the approximate minimization
of a convex quadratic on the feasible set of the original problem and global conver-
gence is obtained by means of nonmonotone line searches. A specific algorithm, the
Inexact Spectral Projected Gradient method (ISPG), is implemented using inexact
projections computed by Dykstra’s alternating projection method and generates inte-
rior iterates. The ISPG method is a generalization of the Spectral Projected Gradient
method (SPG), but can be used when projections are difficult to compute. Numerical
results for constrained least-squares rectangular matrix problems are presented.

Key words: Convex constrained optimization, projected gradient, nonmonotone line
search, spectral gradient, Dykstra’s algorithm.

AMS Subject Classification: 49M07, 49M10, 65K, 90C06, 90C20.

1 Introduction

We consider the problem

Minimize f(x) subject to x ∈ Ω, (1)

where Ω is a closed convex set in IRn. Throughout this paper we assume that f is defined
and has continuous partial derivatives on an open set that contains Ω.

The Spectral Projected Gradient (SPG) method [6, 7] was recently proposed for solving
(1), especially for large-scale problems since the storage requirements are minimal. This

∗Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua
do Matão 1010 Cidade Universitária, 05508-090 São Paulo, SP - Brazil (egbirgin@ime.usp.br). Sponsored
by FAPESP (Grants 01/04597-4 and 02/00094-0), CNPq (Grant 300151/00-4) and Pronex.

†Departamento de Matemática Aplicada, IMECC-UNICAMP, CP 6065, 13081-970 Campinas SP, Brazil
(martinez@ime.unicamp.br). Sponsored by FAPESP (Grant 01/04597-4), CNPq and FAEP-UNICAMP.

‡Departamento de Computación, Facultad de Ciencias, Universidad Central de Venezuela, Ap. 47002,
Caracas 1041-A, Venezuela (mraydan@reacciun.ve). Sponsored by the Center of Scientific Computing at
UCV.

1

method has proved to be effective for very large-scale convex programming problems.
In [7] a family of location problems was described with a variable number of variables
and constraints. The SPG method was able to solve problems of this family with up to
96254 variables and up to 578648 constraints in very few seconds of computer time. The
computer code that implements SPG and produces the mentioned results is published [7]
and available. More recently, in [5] an active-set method which uses SPG to leave the faces
was introduced, and bound-constrained problems with up to 107 variables were solved.

The SPG method is related to the practical version of Bertsekas [3] of the classical
gradient projected method of Goldstein, Levitin and Polyak [21, 25]. However, some
critical differences make this method much more efficient than its gradient-projection
predecessors. The main point is that the first trial step at each iteration is taken using
the spectral steplength (also known as the Barzilai-Borwein choice) introduced in [2] and
later analyzed in [9, 19, 27] among others. The spectral step is a Rayleigh quotient related
with an average Hessian matrix. For a review containing the more recent advances on this
special choice of steplength see [20]. The second improvement over traditional gradient
projection methods is that a nonmonotone search must be used [10, 22]. This feature seems
to be essential to preserve the nice and nonmonotone behaviour of the iterates produced
by single spectral gradient steps.

The reported efficiency of the SPG method in very large problems motivated us to
introduce the inexact-projection version of the method. In fact, the main drawback of the
SPG method is that it requires the exact projection of an arbitrary point of IRn onto Ω
at every iteration.

Projecting onto Ω is a difficult problem unless Ω is an easy set (i.e. it is easy to
project onto it) as a box, an affine subspace, a ball, etc. However, for many important
applications, Ω is not an easy set and the projection can only be achieved inexactly. For
example, if Ω is the intersection of a finite collection of closed and convex easy sets, cycles
of alternating projection methods could be used. This sequence of cycles could be stopped
prematurely leading to an inexact iterative scheme. In this work we are mainly concerned
with extending the machinery developed in [6, 7] for the more general case in which the
projection onto Ω can only be achieved inexactly.

In Section 2 we define a general model algorithm and prove global convergence. In
Section 3 we introduce the ISPG method and we describe the use of Dykstra’s alternat-
ing projection method for obtaining inexact projections onto closed and convex sets. In
Section 4 we present numerical experiments and in Section 5 we draw some conclusions.

2 A general model algorithm and its global convergence

We say that a point x ∈ Ω is stationary, for problem (1), if

g(x)T d ≥ 0 (2)

for all d ∈ IRn such that x + d ∈ Ω.
In this work ‖ ·‖ denotes the 2-norm of vectors and matrices, although in some cases it

can be replaced by an arbitrary norm. We also denote g(x) = ∇f(x) and IN = {0, 1, 2, . . .}.

2

Let B be the set of n×n positive definite matrices such that ‖B‖ ≤ L and ‖B−1‖ ≤ L.
Therefore, B is a compact set of IRn×n. In the spectral gradient approach, the matrices
will be diagonal. However, the algorithm and theorem that we present below are quite
general. The matrices Bk may be thought as defining a sequence of different metrics in IRn

according to which we perform projections. For this reason, we give the name “Inexact
Variable Metric” to the method introduced below.

Algorithm 2.1: Inexact Variable Metric Method

Assume η ∈ (0, 1], γ ∈ (0, 1), 0 < σ1 < σ2 < 1, M a positive integer. Let x0 ∈ Ω be an
arbitrary initial point. We denote gk = g(xk) for all k ∈ IN . Given xk ∈ Ω, Bk ∈ B, the
steps of the k−th iteration of the algorithm are:

Step 1. Compute the search direction

Consider the subproblem

Minimize Qk(d) subject to xk + d ∈ Ω, (3)

where

Qk(d) =
1

2
dT Bkd + gT

k d.

Let d̄k be the minimizer of (3). (This minimizer exists and is unique by the strict convexity
of the subproblem (3), but we will see later that we do not need to compute it.)

Let dk be such that xk + dk ∈ Ω and

Qk(dk) ≤ η Qk(d̄k). (4)

If dk = 0, stop the execution of the algorithm declaring that xk is a stationary point.

Step 2. Compute the steplength

Set α← 1 and fmax = max{f(xk−j+1) | 1 ≤ j ≤ min{k + 1,M}}.
If

f(xk + αdk) ≤ fmax + γαgT
k dk, (5)

set αk = α, xk+1 = xk+αkdk and finish the iteration. Otherwise, choose αnew ∈ [σ1α, σ2α],
set α← αnew and repeat test (5).

Remark. In the definition of Algorithm 2.1 the possibility η = 1 corresponds to the case
in which the subproblem (3) is solved exactly.

Lemma 2.1. The algorithm is well defined.

3

Proof. Since Qk is strictly convex and the domain of (3) is convex, the problem (3) has a
unique solution d̄k. If d̄k = 0 then Qk(d̄k) = 0. Since dk is a feasible point of (3), and, by
(4), Qk(dk) ≤ 0, it turns out that dk = d̄k. Therefore, dk = 0 and the algorithm stops.

If d̄k 6= 0, then, since Qk(0) = 0 and the solution of (3) is unique, it follows that
Qk(d̄k) < 0. Then, by (4), Qk(dk) < 0. Since Qk is convex and Qk(0) = 0, it follows that
dk is a descent direction for Qk, therefore, gT

k dk < 0. So, for α > 0 small enough,

f(xk + αdk) ≤ f(xk) + γαgT
k dk.

Therefore, the condition (5) must be satisfied if α is small enough. This completes the
proof. 2

Theorem 2.1. Assume that the level set {x ∈ Ω | f(x) ≤ f(x0)} is bounded. Then, ei-
ther the algorithm stops at some stationary point xk, or every limit point of the generated
sequence is stationary.

The proof of Theorem 2.1 is based on the following lemmas.

Lemma 2.2. Assume that the sequence generated by Algorithm 2.1 stops at xk. Then, xk

is stationary.

Proof. If the algorithm stops at some xk, we have that dk = 0. Therefore, Qk(dk) = 0.
Then, by (4), Qk(d̄k) = 0. So, d̄k = 0. Therefore, for all d ∈ IRn such that xk + d ∈ Ω we
have gT

k d ≥ 0. Thus, xk is a stationary point. 2

For the remaining results of this section we assume that the algorithm does not stop.
So, infinitely many iterates {xk}k∈IN are generated and, by (5), f(xk) ≤ f(x0) for all
k ∈ IN . Thus, under the hypothesis of Theorem 2.1, the sequence {xk}k∈IN is bounded.

Lemma 2.3. Assume that {xk}k∈IN is a sequence generated by Algorithm 2.1. Define,
for all j = 1, 2, 3, . . .,

Vj = max{f(xjM−M+1), f(xjM−M+2) . . . , f(xjM)},

and ν(j) ∈ {jM −M + 1, jM −M + 2, . . . , jM} such that

f(xν(j)) = Vj.

Then,

Vj+1 ≤ Vj + γαν(j+1)−1 gT
ν(j+1)−1 dν(j+1)−1. (6)

for all j = 1, 2, 3,

Proof. We will prove by induction on ℓ that for all ℓ = 1, 2, . . . ,M and for all j = 1, 2, 3, . . .,

f(xjM+ℓ) ≤ Vj + γαjM+ℓ−1g
T
jM+ℓ−1djM+ℓ−1 < Vj . (7)

4

By (5) we have that, for all j ∈ IN ,

f(xjM+1) ≤ Vj + γαjM gT
jM djM < Vj,

so (7) holds for ℓ = 1.
Assume, as the inductive hypothesis, that

f(xjM+ℓ′) ≤ Vj + γαjM+ℓ′−1g
T
jM+ℓ′−1djM+ℓ′−1 < Vj (8)

for ℓ′ = 1, . . . , ℓ.
Now, by (5), and the definition of Vj , we have that

f(xjM+ℓ+1) ≤ max
1≤t≤M

{f(xjM+ℓ+1−t}+ γαjM+ℓ gT
jM+ℓ djM+ℓ

= max{f(x(j−1)M+ℓ+1), . . . , f(xjM+ℓ)}+ γαjM+ℓ gT
jM+ℓ djM+ℓ

≤ max{Vj , f(xjM+1), . . . , f(xjM+ℓ)}+ γαjM+ℓ gT
jM+ℓ djM+ℓ.

But, by the inductive hypothesis,

max{f(xjM+1), . . . , f(xjM+ℓ)} < Vj ,

so,

f(xjM+ℓ+1) ≤ Vj + γαjM+ℓ gT
jM+ℓ djM+ℓ < Vj .

Therefore, the inductive proof is complete and, so, (7) is proved. Since ν(j + 1) = jM + ℓ
for some ℓ ∈ {1, . . . ,M}, this implies the desired result. 2

From now on, we define

K = {ν(1) − 1, ν(2)− 1, ν(3)− 1, . . .},

where {ν(j)} is the sequence of indices defined in Lemma 2.3. Clearly,

ν(j) < ν(j + 1) ≤ ν(j) + 2M (9)

for all j = 1, 2, 3,

Lemma 2.4.
lim
k∈K

αkQk(d̄k) = 0.

Proof. By (6), since f is continuous and bounded below,

lim
k∈K

αkg
T
k dk = 0. (10)

But, by (4),

0 > Qk(dk) =
1

2
dT

k Bkdk + gT
k dk ≥ gT

k dk ∀ k ∈ IN.

5

So,
0 > ηQk(d̄k) ≥ Qk(dk) ≥ gT

k dk ∀ k ∈ IN.

Therefore,
0 > ηαkQk(d̄k) ≥ αkQk(dk) ≥ αkg

T
k dk ∀ k ∈ K.

Hence, by (10),
lim
k∈K

αkQk(d̄k) = 0,

as we wanted to prove. 2

Lemma 2.5. Assume that K1 ⊂ IN is a sequence of indices such that

lim
k∈K1

xk = x∗ ∈ Ω

and
lim

k∈K1

Qk(d̄k) = 0.

Then, x∗ is stationary.

Proof. By the compactness of B we can extract a subsequence of indices K2 ⊂ K1 such
that

lim
k∈K2

Bk = B,

where B also belongs to B.
We define

Q(d) =
1

2
dT Bd + g(x∗)

T d ∀ d ∈ IRn.

Suppose that there exists d̂ ∈ IRn such that x∗ + d̂ ∈ Ω and

Q(d̂) < 0. (11)

Define
d̂k = x∗ + d̂− xk ∀ k ∈ K2.

Clearly, xk + d̂k ∈ Ω for all k ∈ K2. By continuity, since limk∈K2
xk = x∗, we have that

lim
k∈K2

Qk(d̂k) = Q(d̂) < 0. (12)

But, by the definition of d̄k, we have that Qk(d̄k) ≤ Qk(d̂k), therefore, by (12),

Qk(d̄k) ≤
Q(d̂)

2
< 0

for k ∈ K2 large enough. This contradicts the fact that limk∈K2
Qk(d̄k) = 0. The con-

tradiction came from the assumption that d̂ with the property (11) exists. Therefore,
Q(d) ≥ 0 for all d ∈ IRn such that x∗ + d ∈ Ω. Therefore, g(x∗)

T d ≥ 0 for all d ∈ IRn such

6

that x∗ + d ∈ Ω. So, x∗ is stationary. 2

Lemma 2.6. {dk}k∈IN is bounded.

Proof. For all k ∈ IN ,
1

2
dT

k Bkdk + gT
k dk < 0,

therefore, by the definition of B,

1

2L
‖dk‖

2 + gT
k dk < 0 ∀ k ∈ IN.

So, by Cauchy-Schwarz inequality

‖dk‖
2 < −2LgT

k dk ≤ 2L‖gk‖ ‖dk‖ ∀ k ∈ IN.

Therefore,
‖dk‖ < 2L‖gk‖ ∀ k ∈ IN.

Since {xk}k∈IN is bounded and f has continuous derivatives, {gk}k∈IN is bounded. There-
fore, the set {dk}k∈IN is bounded. 2

Lemma 2.7. Assume that K3 ⊂ IN is a sequence of indices such that

lim
k∈K3

xk = x∗ ∈ Ω and lim
k∈K3

αk = 0.

Then,
lim

k∈K3

Qk(d̄k) = 0 (13)

and, hence, x∗ is stationary.

Proof. Suppose that (13) is not true. Then, for some infinite set of indices K4 ⊂ K3,
Qk(d̄k) is bounded away from zero.

Now, since αk → 0, for k ∈ K4 large enough there exists α′
k such that limk∈K4

α′
k = 0,

and (5) does not hold when α = α′
k. So,

f(xk + α′
kdk) > max{f(xk−j+1) | 1 ≤ j ≤ min{k + 1,M}} + γα′

kg
T
k dk.

Hence,
f(xk + α′

kdk) > f(xk) + γα′
kg

T
k dk

for all k ∈ K4. Therefore,

f(xk + α′
kdk)− f(xk)

α′
k

> γgT
k dk

for all k ∈ K4. By the mean value theorem, there exists ξk ∈ [0, 1] such that

g(xk + ξkα
′
kdk)

T dk > γgT
k dk (14)

7

for all k ∈ K4. Since the set {dk}k∈K4
is bounded, there exists a sequence of indices

K5 ⊂ K4 such that limk∈K5
dk = d and B ∈ B such that limk∈K5

Bk = B. Taking
limits for k ∈ K5 in both sides of (14), we obtain g(x∗)

T d ≥ γg(x∗)
T d. This implies that

g(x∗)
T d ≥ 0. So,

1

2
dT Bd + g(x∗)

T d ≥ 0.

Therefore,
lim

k∈K5

dT
k Bkdk + gT

k dk = 0.

By (4) this implies that limk∈K5
Qk(d̄k) = 0. This contradicts the assumption that Qk(d̄k)

is bounded away from zero for k ∈ K4. Therefore, (13) is true. Thus the hypothesis of
Lemma 2.5 holds, with K3 replacing K1. So, by Lemma 2.5, x∗ is stationary. 2

Lemma 2.8. Every limit point of {xk}k∈K is stationary.

Proof. By Lemma 2.4, the thesis follows applying Lemma 2.5 and Lemma 2.7. 2

Lemma 2.9. Assume that {xk}k∈K6
converges to a stationary point x∗. Then,

lim
k∈K6

Qk(d̄k) = lim
k∈K6

Qk(dk) = 0. (15)

Proof. Assume that Qk(dk) does not tend to 0 for k ∈ K6. Then, there exists ε > 0 and
an infinite set of indices K7 ⊂ K6 such that

Qk(dk) =
1

2
dT

k Bkdk + gT
k dk ≤ −ε < 0.

Since {dk}k∈IN is bounded and xk + dk ∈ Ω, extracting an appropriate subsequence we
obtain d ∈ IRn and B ∈ B such that x∗ + d ∈ Ω and

1

2
dT Bd + g(x∗)

T d ≤ −ε < 0.

Therefore, g(x∗)
T d < 0, which contradicts the fact that x∗ is stationary. Then,

lim
k∈K6

Qk(dk) = 0.

So, by (4), the thesis is proved. 2

Lemma 2.10. Assume that {xk}k∈K8
converges to some stationary point x∗. Then,

lim
k∈K8

‖dk‖ = lim
k∈K8

‖xk+1 − xk‖ = 0.

Proof. Suppose that limk∈K8
‖dk‖ = 0 is not true. By Lemma 2.6, {dk}k∈K8

is bounded.
So, we can take a subsequence K9 ⊂ K8 and ε > 0 such that

xk + dk ∈ Ω ∀ k ∈ K9,

8

‖dk‖ ≥ ε > 0 ∀ k ∈ K9,

lim
k∈K9

Bk = B ∈ B, lim
k∈K9

xk = x∗ ∈ Ω (16)

and
lim

k∈K9

dk = d 6= 0. (17)

By (15), (16), (17), we have that

1

2
dT Bd + g(x∗)

T d = 0.

So, g(x∗)
T d < 0. Since x∗ is stationary, this is impossible. 2

Lemma 2.11. For all r = 0, 1, . . . , 2M ,

lim
k∈K

Qk(d̄k+r) = 0. (18)

Proof. By Lemma 2.10, the limit points of {xk}k∈K are the same as the limit points of
{xk+1}k∈K . Then, by Lemma 2.9,

lim
k∈K

Qk(d̄k+1) = 0.

and, by Lemma 2.10,
lim
k∈K
‖dk+1‖ = 0.

So, by an inductive argument, we get

lim
k∈K

Qk(d̄k+r) = 0

for all r = 0, 1, . . . , 2M . 2

Lemma 2.12.
lim
k∈IN

Qk(d̄k) = 0. (19)

Proof. Suppose that (19) is not true. Then there exists a subsequence K10 ⊂ IN such that
Qk(d̄k) is bounded away from zero for k ∈ K10. But, by (9), every k ∈ IN can be written
as

k = k′ + r

for some k′ ∈ K and r ∈ {0, 1, . . . , 2M}. In particular, this happens for all k ∈ K10. Since
{0, 1, . . . , 2M} is finite, there exists a subsequence K11 ⊂ K10 such that for all k ∈ K11,
k = k′ + r for some k′ ∈ K and the same r ∈ {0, 1, . . . , 2M}. Then, the fact that Qk(d̄k)
is bounded away from zero for k ∈ K11 contradicts (18). Therefore, (19) is proved. 2

Proof of Theorem 2.1. Let {xk}k∈K0
an arbitrary convergent subsequence of {xk}k∈IN . By

(19) we see that the hypothesis of Lemma 2.5 above holds with K0 replacing K1. There-
fore, the limit of {xk}k∈K0

is stationary, as we wanted to prove. 2

9

Remark. We are especially interested in the spectral gradient choice of Bk. In this case,

Bk =
1

λspg
k

I

where

λspg
k =

{

min(λmax,max(λmin, sT
k sk/s

T
k yk)), if sT

k yk > 0,
λmax, otherwise,

sk = xk − xk−1 and yk = gk − gk−1; so that

Qk(d) =
‖d‖2

2λspg
k

+ gT
k d. (20)

3 Computing approximate projections

When Bk = (1/λspg
k)I (spectral choice) the optimal direction d̄k is obtained by projecting

xk − λspg
k gk onto Ω, with respect to the Euclidean norm. Projecting onto Ω is a difficult

problem unless Ω is an easy set (i.e. it is easy to project onto it) as a box, an affine subspace,
a ball, etc. Fortunately, in many important applications, either Ω is an easy set or can be
written as the intersection of a finite collection of closed and convex easy sets. In this work
we are mainly concerned with extending the machinery developed in [6, 7] for the first
case, to the second case. A suitable tool for this task is Dykstra’s alternating projection
algorithm, that will be described below. Dykstra’s algorithm can also be obtained via
duality [23] (see [12] for a complete discussion on this topic). Roughly speaking, Dykstra’s
algorithm projects in a clever way onto the easy convex sets individually to complete a
cycle which is repeated iteratively. As an iterative method, it can be stopped prematurely
to obtain dk, instead of d̄k, such that xk +dk ∈ Ω and (4) holds. The fact that the process
can be stopped prematurely could save significant computational work, and represents the
inexactness of our algorithm.

Let us recall that for a given nonempty closed and convex set Ω of IRn, and any
y0 ∈ IRn, there exists a unique solution y∗ to the problem

min
y ∈ Ω

‖y0 − y‖, (21)

which is called the projection of y0 onto Ω and is denoted by PΩ(y0). Consider the case
Ω = ∩p

i=1Ωi, where, for i = 1, . . . , p, Ωi are closed and convex sets. Moreover, we assume
that for all y ∈ IRn, the calculation of PΩ(y) is a difficult task, whereas, for each Ωi, PΩi

(y)
is easy to obtain.

Dykstra’s algorithm [8, 13], solves (21) by generating two sequences, {yℓ
i} and {zℓ

i }.
These sequences are defined by the following recursive formulae:

yℓ
0 = yℓ−1

p

yℓ
i = PΩi

(yℓ
i−1 − zℓ−1

i) , i = 1, . . . , p,

zℓ
i = yℓ

i − (yℓ
i−1 − zℓ−1

i) , i = 1, . . . , p,

(22)

10

for ℓ = 1, 2, . . . with initial values y0
p = y0 and z0

i = 0 for i = 1, . . . , p.

Remarks

1. The increment zℓ−1
i associated with Ωi in the previous cycle is always subtracted

before projecting onto Ωi. Therefore, only one increment (the last one) for each Ωi

needs to be stored.

2. If Ωi is a closed affine subspace, then the operator PΩi
is linear and it is not necessary

in the ℓth cycle to subtract the increment zℓ−1
i before projecting onto Ωi. Thus, for

affine subspaces, Dykstra’s procedure reduces to the alternating projection method
of von Neumann [30]. To be precise, in this case, PΩi

(zℓ−1
i) = 0.

3. For ℓ = 1, 2, . . . and i = 1, . . . , p, it is clear from (22) that the following relations
hold

yℓ−1
p − yℓ

1 = zℓ−1
1 − zℓ

1, (23)

yℓ
i−1 − yℓ

i = zℓ−1
i − zℓ

i , (24)

where y0
p = y0 and z0

i = 0, for all i = 1, . . . , p.

For the sake of completeness we now present the key theorem associated with Dykstra’s
algorithm.

Theorem 3.1 (Boyle and Dykstra, 1986 [8]) Let Ω1, . . . ,Ωp be closed and convex sets
of IRn such that Ω = ∩p

i=1Ωi 6= ∅. For any i = 1, . . . , p and any y0 ∈ IRn, the sequence
{yℓ

i} generated by (22) converges to y∗ = PΩ(y0) (i.e., ‖yℓ
i − y∗‖ → 0 as ℓ→∞).

A close inspection of the proof of the Boyle-Dykstra convergence theorem allows us
to establish, in our next result, an interesting inequality that is suitable for the stopping
process of our inexact algorithm.

Theorem 3.2 Let y0 be any element of IRn and define cℓ as

cℓ =
ℓ

∑

m=1

p
∑

i=1

‖ym
i−1 − ym

i ‖
2 + 2

ℓ−1
∑

m=1

p
∑

i=1

〈zm
i , ym+1

i − ym
i 〉. (25)

Then, in the ℓth cycle of Dykstra’s algorithm,

‖y0 − y∗‖2 ≥ cℓ (26)

Moreover, at the limit when ℓ goes to infinity, equality is attained in (26).

11

Proof. In the proof of Theorem 3.1, the following equation is obtained [8, p. 34] (see
also Lemma 9.19) in [12])

‖y0 − y∗‖2 = ‖yℓ
p − y∗‖2 +

ℓ
∑

m=1

p
∑

i=1

‖zm−1
i − zm

i ‖
2

+ 2
ℓ−1
∑

m=1

p
∑

i=1

〈ym
i−1 − zm−1

i − ym
i , ym

i − ym+1
i 〉

+ 2
p

∑

i=1

〈yℓ
i−1 − zℓ−1

i − yℓ
i , y

ℓ
i − y∗〉,

(27)

where all terms involved are nonnegative for all ℓ. Hence, we obtain

‖y0 − y∗‖2 ≥
ℓ

∑

m=1

p
∑

i=1

‖zm−1
i − zm

i ‖
2 + 2

ℓ−1
∑

m=1

p
∑

i=1

〈ym
i−1 − zm−1

i − ym
i , ym

i − ym+1
i 〉. (28)

Finally, (26) is obtained by replacing (23) and (24) in (28).
Clearly, in (27) all terms in the right hand side are bounded. In particular, using (23)

and (24), the fourth term can be written as 2
∑p

i=1〈z
ℓ
i , y

ℓ
i − y∗〉, and using the Cauchy-

Schwarz inequality and Theorem 3.1, we notice that it vanishes when ℓ goes to infinity.
Similarly, the first term in (27) tends to zero when ℓ goes to infinity, and so at the limit
equality is attained in (26). 2

Each iterate of the Dykstra’s method is labeled by two indices i and ℓ. From now on
we considered the subsequence with i = p so that only one index ℓ is necessary. This will
simplify considerably the notation without loss of generality. So, we assume that Dykstra’s
algorithm generates a single sequence {yℓ}, so that

y0 = xk − λspg
k gk

and
lim

k→∞
yℓ = y∗ = PΩ(y0).

Moreover, by Theorem 3.2 we have that limℓ→∞ cℓ = ‖y0 − y∗‖2.
In the rest of this section we show how Dykstra’s algorithm can be used to obtain a

direction dk that satisfies (4). First, we need a simple lemma related to convergence of
sequences to points in convex sets whose interior is not empty.

Lemma 3.1 Assume that Ω is a closed and convex set, x ∈ Int(Ω) and {yℓ} ⊂ IRn is a
sequence such that

lim
ℓ→∞

yℓ = y∗ ∈ Ω.

For all ℓ ∈ IN we define

αℓ
max = max{α ≥ 0 | [x, x + α(yℓ − x)] ⊂ Ω} (29)

12

and
xℓ = x + min(αℓ

max, 1)(y
ℓ − x). (30)

Then,
lim
ℓ→∞

xℓ = y∗.

Proof. By (30), it is enough to prove that

lim
ℓ→∞

min(αℓ
max, 1) = 1.

Assume that this is not true. Since min(αℓ
max, 1) ≤ 1 there exists ᾱ < 1 such that for an

infinite set of indices ℓ,
min(αℓ

max, 1) ≤ ᾱ. (31)

Now, by the convexity of Ω and the fact that x belongs to its interior, we have that

x +
ᾱ + 1

2
(y∗ − x) ∈ Int(Ω).

But

lim
ℓ→∞

x +
ᾱ + 1

2
(yℓ − x) = x +

ᾱ + 1

2
(y∗ − x),

then, for ℓ large enough

x +
ᾱ + 1

2
(yℓ − x) ∈ Int(Ω).

This contradicts the fact that (31) holds for infinitely many indices. 2

Lemma 3.2 For all z ∈ IRn,

‖y0 − z‖2 = 2λspg
k Qk(z − xk) + ‖λspg

k gk‖
2. (32)

Moreover,
‖y0 − y∗‖2 = 2λspg

k Qk(d̄k) + ‖λspg
k gk‖

2. (33)

Proof.
‖y0 − z‖2 = ‖xk − λspg

k gk − z‖2

= ‖xk − z‖2 − 2λspg
k (xk − z)T gk + ‖λspg

k gk‖
2

= 2λspg
k [
‖z − xk‖

2

2λspg
k

+ (z − xk)
T gk] + ‖λspg

k gk‖
2

= 2λspg
k Qk(z − xk) + ‖λspg

k gk‖
2

Therefore, (32) is proved. By this identity, if y∗ is the minimizer of ‖y0 − z‖2 for z ∈ Ω,
then y∗ − xk must be the minimizer of Qk(d) for xk + d ∈ Ω. Therefore,

y∗ = xk + d̄k.

So, (33) also holds. 2

13

Lemma 3.3 For all ℓ ∈ IN , define

aℓ =
cℓ − ‖λ

spg
k gk‖

2

2λspg
k

. (34)

Then
aℓ ≤ Qk(d̄k) ∀ℓ ∈ IN (35)

and
lim
ℓ→∞

aℓ = Qk(d̄k).

Proof. By Lemma 3.2,

Qk(z − xk) =
‖y0 − z‖2 − ‖λspg

k gk‖
2

2λspg
k

.

By (26), ‖yℓ − z‖2 ≥ cℓ for all z ∈ Ω and for all ℓ ∈ IN . Therefore, for all z ∈ Ω, ℓ ∈ IN ,

Qk(z − xk) ≥
cℓ − ‖λ

spg
k gk‖

2

2λspg
k

= aℓ.

In particular, if z − xk = d̄k, we obtain (35). Moreover, since limℓ→∞ cℓ = ‖y0 − y∗‖2, we
have that

lim
ℓ→∞

aℓ = Qk(y
∗ − xk) = Qk(d̄k).

This completes the proof. 2

By the three lemmas above, we have established that, using Dykstra’s algorithm we
are able to compute a sequence {xℓ

k}ℓ∈IN such that

xℓ
k ∈ Ω ∀ℓ ∈ IN and xℓ

k − xk → d̄k

and, consequently,
Qk(x

ℓ
k − xk)→ Qk(d̄k). (36)

Moreover, we proved that aℓ ≤ Qk(d̄k) for all ℓ ∈ IN and that

lim
ℓ→∞

aℓ = Qk(d̄k). (37)

Since xℓ
k ∈ Ω we also have that Qk(x

ℓ
k − xk) ≥ Qk(d̄k) for all ℓ ∈ IN .

If xk is not stationary (so Qk(d̄k) < 0), given an arbitrary η′ ∈ (η, 1), the properties
(36) and (37) guarantee that, for ℓ large enough,

Qk(x
ℓ
k − xk) ≤ η′aℓ. (38)

So,
Qk(x

ℓ
k − xk) ≤ η′Qk(d̄k). (39)

14

The inequality (38) can be tested at each iteration of the Dykstra’s algorithm. When it
holds, we obtain xℓ

k satisfying (39).
The success of this procedure depends on the fact of xk being interior. The point xℓ

k

so far obtained belongs to Ω but is not necessarily interior. A measure of the “interiority”
of xℓ

k can be given by αℓ
max (defined by (29)). Define β = η/η′. If αℓ

max ≥ 1/β, the point
xℓ

k is considered to be safely interior. If αℓ
max ≤ 1/β, the point xℓ

k may be interior but
excessively close to the boundary or even on the boundary (if αℓ

max ≤ 1). Therefore, the
direction dk is taken as

dk =

(xℓ
k − xk), if αℓ

max ∈ [1/β,∞),
β αℓ

max (xℓ
k − xk), if αℓ

max ∈ [1, 1/β],
β (xℓ

k − xk), if αℓ
max ∈ [0, 1].

(40)

Note that dk = ω(xℓ
k − xk) with ω ∈ [β, 1]. In this way, xk + dk ∈ Int(Ω) and, by the

convexity of Qk,

Qk(dk) = Qk(ω(xℓ
k − xk)) ≤ ωQk(x

ℓ
k − xk) ≤ βη′Qk(d̄k) = ηQk(d̄k).

Therefore, the vector dk obtained in (40) satisfies (4). Observe that the “reduction” (40)
is performed only once, at the end of the Dykstra’s process, when (39) has already been
satisfied. Moreover, by (29) and (30), definition (40) is equivalent to

dk =

{

(yℓ − xk), if αℓ
max ≥ 1/β,

β αℓ
max (yℓ − xk), otherwise.

The following algorithm condenses the procedure described above for computing a di-
rection that satisfies (4).

Algorithm 3.1: Compute approximate projection

Assume that ε > 0 (small), β ∈ (0, 1) and η′ ∈ (0, 1) are given (η ≡ β η′).

Step 1.
Set ℓ← 0, y0 = xk − λspg

k gk, c0 = 0, a0 = −‖λspg
k gk‖

2, and
compute x0

k by (30) for x = xk.

Step 2.
If (38) is satisfied, compute dk by (40) and terminate the execution of the algorithm.

The approximate projection has been successfully computed.

If −aℓ ≤ ε, stop. Probably, a point satisfying (38) does not exist.

Step 3.
Compute yℓ+1 using Dykstra’s algorithm (22), cℓ+1 by (25), aℓ+1 by (34),
and xℓ+1

k by (30) for x = xk.

15

Step 4.
Set ℓ← ℓ + 1 and go to Step 2.

The results in this section show that Algorithm 3.1 stops giving a direction that satisfies
(4) whenever Qk(d̄k) < 0. The case Qk(d̄k) = 0 is possible, and corresponds to the
case in which xk is stationary. Accordingly, a criterion for stopping the algorithm when
Qk(d̄k) ≈ 0 has been incorporated. The lower bound aℓ allows one to establish such
criterion. Since aℓ ≤ Qk(d̄k) and aℓ → Qk(d̄k) the algorithm is stopped when −aℓ ≤ ε
where ε > 0 is a small tolerance given by the user. When this happens, the point xk can
be considered nearly stationary for the original problem.

4 Numerical Results

4.1 Test problem

Interesting applications appear as constrained least-squares rectangular matrix problems.
In particular, we consider the following problem:

Minimize ‖AX −B‖2F
subject to

X ∈ SDD+

0 ≤ L ≤ X ≤ U,

(41)

where A and B are given nrows× ncols real matrices, nrows ≥ ncols, rank(A) = ncols,
and X is the symmetric ncols×ncols matrix that we wish to find. For the feasible region,
L and U are given ncols×ncols real matrices, and SDD+ represents the cone of symmetric
and diagonally dominant matrices with positive diagonal, i.e.,

SDD+ = {X ∈ IRncols×ncols | XT = X and xii ≥
∑

j 6=i

|xij | for all i}.

Throughout this section, the notation A ≤ B, for any two real ncols × ncols matrices,
means that Aij ≤ Bij for all 1 ≤ i, j ≤ ncols. Also, ‖A‖F denotes the Frobenius norm of
a real matrix A, defined as

‖A‖2F = 〈A,A〉 =
∑

i,j

(aij)
2 ,

where the inner product is given by 〈A,B〉 = trace(AT B). In this inner product space,
the set S of symmetric matrices form a closed subspace and SDD+ is a closed and convex
polyhedral cone [1, 18, 16]. Therefore, the feasible region is a closed and convex set in
IRncols×ncols.

Problems closely related to (41) arise naturally in statistics and mathematical eco-
nomics [13, 14, 17, 24]. An effective way of solving (41) is by means of alternating projec-
tion methods combined with a geometrical understanding of the feasible region. For the
simplified case in which nrows = ncols, A is the identity matrix, and the bounds are not

16

taken into account, the problem has been solved in [26, 29] using Dykstra’s alternating
projection algorithm. Under this approach, the symmetry and the sparsity pattern of the
given matrix B are preserved, and so it is of interest for some numerical optimization
techniques discussed in [26].

Unfortunately, the only known approach for using alternating projection methods on
the general problem (41) is based on the use of the singular value decomposition (SVD)
of the matrix A (see for instance [15]), and this could lead to a prohibitive amount of
computational work in the large scale case. However, problem (41) can be viewed as a
particular case of (1), in which f : IRncols×(ncols+1)/2 → IR, is given by

f(X) = ‖AX −B‖2F ,

and Ω = Box
⋂

SDD+, where Box = {X ∈ IRncols×ncols | L ≤ X ≤ U}. Hence, it can
be solved by means of the ISPG algorithm. Notice that, since X = XT , the function f
is defined on the subspace of symmetric matrices. Notice also that, instead of expensive
factorizations, it is now required to evaluate the gradient matrix, given by

∇f(X) = 2AT (AX −B).

In order to use the ISPG algorithm, we need to project inexactly onto the feasible
region. For that, we make use of Dykstra’s alternating projection method. For computing
the projection onto SDD+ we make use of the procedure developed introduced in [29].

4.2 Implementation details

We implemented Algorithm 2.1 with the definition (20) of Qk and Algorithm 3.1 for
computing the approximate projections.

The unknowns of our test problem are the n = ncols×(ncols+1)/2 entries of the upper
triangular part of the symmetric matrix X. The projection of X onto SDD+ consists on
several cycles of projections onto the ncols convex sets

SDD+
i = {X ∈ IRncols×ncols | xii ≥

∑

j 6=i

|xij |}

(see [29] for details). Since projecting onto SDD+
i only involves the row/column i of X,

then all the increments zℓ−1
i can be saved in a unique vector vℓ−1 ∈ IRn, which is consistent

with the low memory requirements of the SPG-like methods.
We use the convergence criteria given by

‖xℓ
k − xk‖∞ ≤ ǫ1 or ‖xℓ

k − xk‖2 ≤ ǫ2,

where xℓ
k is the iterate of Algorithm 3.1 which satisfies inequality (38).

The arbitrary initial spectral steplength λ0 ∈ [λmin, λmax] is computed as

λspg
0 =

{

min(λmax,max(λmin, s̄
T s̄/s̄T ȳ)), if s̄T ȳ > 0,

λmax, otherwise,

17

where s̄ = x̄−x0, ȳ = g(x̄)−g(x0), x̄ = x0− tsmall∇f(x0),tsmall is a small number defined
as tsmall = max(ǫrel‖x‖∞, ǫabs) with ǫrel a relative small number and ǫabs an absolute small
number.

The computation of αnew uses one-dimensional quadratic interpolation and it is safe-
guarded taking αnew ← α/2 when the minimum of the one-dimensional quadratic lies
outside [σ1, σ2α].

In the experiments, we chose ǫ1 = ǫ2 = 10−5, ǫrel = 10−7, ǫabs = 10−10, β = 0.85,
γ = 10−4, σ1 = 0.1, σ2 = 0.9, λmin = 10−3, λmax = 103, M = 10. Different runnings
were made with η′ = 0.7, 0.8, 0.9 and 0.99 (η = βη′ = 0.595, 0.68, 0.765 and 0.8415,
respectively) to compare the influence of the inexact projections in the overall performance
of the method.

4.3 Experiments

All the experiments were run on a Sun Ultra 60 Workstation with 2 UltraSPARC-II
processors at 296-Mhz, 512 Mb of main memory, and SunOS 5.7 operating system. The
compiler was Sun WorkShop Compiler Fortran 77 4.0 with flag -O to optimize the code.

We generated a set of 10 random matrices of dimensions 10 × 10 up to 100 × 100.
The matrices A, B, and the initial guess X0 are randomly generated, with elements in
the interval [0, 1]. We use the Schrage’s random number generator [31] (double precision
version) with seed equal to 1 for a machine-independent generation of random numbers.
Matrix X0 is then redefined as (X0 + XT

0)/2 and, its diagonal elements Aii are again
redefined as 2

∑

j 6=i |Aij | to guarantee an interior feasible initial guess. Bounds L and U
are defined as L ≡ 0 and U ≡ ∞.

Tables 1–4 display the performance of ISPG with η′ = 0.7, 0.8, 0.9 and 0.99, respec-
tively. The columns mean: n, dimension of the problem; IT, iterations needed to reach the
solution; FE, function evaluations; GE, gradient evaluations, DIT, Dykstra’s iterations;
Time, CPU time (seconds); f , function value at the solution; ‖d‖∞, sup-norm of the ISPG
direction; and αmax, maximum feasible step on that direction. Observe that, as expected,
αmax is close to 1 when we solve the quadratic subproblem with high precision (η′ ≈ 1).

In all the cases we found the same solutions. These solutions were never interior points.
When we compute the projections with high precision the number of outer iterations
decreases. Of course, in that case, the cost of computing an approximate projection using
Dykstra’s algorithm increases. Therefore, optimal efficiency of the algorithm comes from
a compromise between those two tendencies. The best value for η′ seems to be 0.8 in this
set of experiments.

5 Final remarks

We present a new algorithm for convex constrained optimization. At each iteration, a
search direction is computed as an approximate solution of a quadratic subproblem and,
in the implementation, the set of iterates are interior. We prove global convergence, using
a nonmonotone line search procedure of the type introduced in [22] and used in several
papers since then.

18

n IT FE GE DIT Time f ‖d‖∞ αmax

100 28 29 30 1139 0.48 2.929D+01 1.491D-05 8.566D-01
400 34 35 36 693 2.20 1.173D+02 4.130D-06 4.726D-01
900 23 24 25 615 8.03 2.770D+02 1.450D-05 1.000D+00

1600 23 24 25 808 25.16 5.108D+02 8.270D-06 7.525D-01
2500 22 23 24 473 36.07 7.962D+02 1.743D-05 7.390D-01
3600 22 23 24 513 56.75 1.170D+03 8.556D-06 7.714D-01
4900 20 21 22 399 78.39 1.616D+03 1.888D-05 7.668D-01
6400 21 22 23 523 153.77 2.133D+03 1.809D-05 7.989D-01
8100 21 22 23 610 231.07 2.664D+03 1.197D-05 7.322D-01

10000 21 22 23 541 283.07 3.238D+03 1.055D-05 7.329D-01

Table 1: ISPG performance with inexactness parameter η′ = 0.7.

n IT FE GE DIT Time f ‖d‖∞ αmax

100 25 26 27 1012 0.43 2.929D+01 1.252D-05 1.000D+00
400 30 31 32 579 1.81 1.173D+02 1.025D-04 1.000D+00
900 22 23 24 561 6.96 2.770D+02 2.045D-05 9.623D-01

1600 21 22 23 690 20.93 5.108D+02 1.403D-05 8.197D-01
2500 21 22 23 575 35.58 7.962D+02 1.087D-05 8.006D-01
3600 20 21 22 409 43.33 1.170D+03 1.485D-05 8.382D-01
4900 19 20 21 496 83.61 1.616D+03 1.683D-05 8.199D-01
6400 18 19 20 465 121.20 2.133D+03 1.356D-05 9.123D-01
8100 18 19 20 451 168.87 2.664D+03 2.333D-05 8.039D-01

10000 19 20 21 498 261.58 3.238D+03 1.209D-05 8.163D-01

Table 2: ISPG performance with inexactness parameter η′ = 0.8.

19

n IT FE GE DIT Time f ‖d‖∞ αmax

100 26 27 28 1363 0.59 2.929D+01 1.195D-05 9.942D-01
400 26 27 28 512 1.76 1.173D+02 2.981D-04 2.586D-02
900 21 22 23 527 6.62 2.770D+02 1.448D-05 9.428D-01

1600 21 22 23 886 28.64 5.108D+02 1.441D-05 9.256D-01
2500 20 21 22 537 37.21 7.962D+02 1.559D-05 9.269D-01
3600 20 21 22 518 54.69 1.170D+03 1.169D-05 9.122D-01
4900 18 19 20 509 87.27 1.616D+03 2.169D-05 9.080D-01
6400 17 18 19 557 148.49 2.133D+03 1.366D-05 9.911D-01
8100 17 18 19 510 198.69 2.664D+03 1.968D-05 9.051D-01

10000 18 19 20 585 323.51 3.238D+03 1.557D-05 9.154D-01

Table 3: ISPG performance with inexactness parameter η′ = 0.9.

n IT FE GE DIT Time f ‖d‖∞ αmax

100 21 22 23 1028 0.46 2.929D+01 2.566D-05 8.216D-01
400 25 26 27 596 1.95 1.173D+02 5.978D-05 2.682D-01
900 20 21 22 715 8.69 2.770D+02 9.671D-06 9.796D-01

1600 19 20 21 1037 31.24 5.108D+02 1.538D-05 9.890D-01
2500 19 20 21 827 50.07 7.962D+02 1.280D-05 9.904D-01
3600 17 18 19 654 69.40 1.170D+03 1.883D-05 9.911D-01
4900 17 18 19 805 153.57 1.616D+03 2.337D-05 9.926D-01
6400 16 17 18 828 229.72 2.133D+03 1.163D-05 9.999D-01
8100 16 17 18 763 312.84 2.664D+03 2.536D-05 9.924D-01

10000 16 17 18 660 403.82 3.238D+03 1.795D-05 9.920D-01

Table 4: ISPG performance with inexactness parameter η′ = 0.99.

A particular case of the model algorithm is the inexact spectral projected gradient
method (ISPG) which turns out to be a generalization of the spectral projected gradi-
ent (SPG) method introduced in [6, 7]. The ISPG must be used instead of SPG when
projections onto the feasible set are not easy to compute. In the present implementation
we use Dykstra’s algorithm [13] for computing approximate projections. If, in the future,
acceleration techniques are developed for Dykstra’s algorithm, they can be included in the
ISPG machinery (see [12, pp.235]).

Numerical experiments were presented concerning constrained least-squares rectangu-
lar matrix problems to illustrate the good features of the ISPG method.

Acknowledgements.
We are indebted to the associate editor and an anonymous referee whose comments

helped us to improve the final version of this paper.

20

References

[1] G. P. Barker and D. Carlson [1975], Cones of diagonally dominant matrices, Pacific
Journal of Mathematics 57, pp. 15-32.

[2] J. Barzilai and J. M. Borwein [1988], Two point step size gradient methods, IMA
Journal of Numerical Analysis 8, pp. 141–148.

[3] D. P. Bertsekas [1976], On the Goldstein-Levitin-Polyak gradient projection method,
IEEE Transactions on Automatic Control 21, pp. 174–184.

[4] D. P. Bertsekas [1999], Nonlinear Programming, Athena Scientific, Belmont, MA.

[5] E. G. Birgin and J. M. Mart́ınez [2002], Large-scale active-set box-constrained op-
timization method with spectral projected gradients, Computational Optimization
and Applications 23, pp. 101–125.

[6] E. G. Birgin, J. M. Mart́ınez and M. Raydan [2000], Nonmonotone spectral projected
gradient methods on convex sets, SIAM Journal on Optimization 10, pp. 1196-1211.

[7] E. G. Birgin, J. M. Mart́ınez and M. Raydan [2001], Algorithm 813: SPG - Software
for convex-constrained optimization, ACM Transactions on Mathematical Software
27, pp. 340-349.

[8] J. P. Boyle and R. L. Dykstra [1986], A method for finding projections onto the
intersection of convex sets in Hilbert spaces, Lecture Notes in Statistics 37, pp. 28–
47.

[9] Y. H. Dai and L. Z. Liao [2002], R-linear convergence of the Barzilai and Borwein
gradient method, IMA Journal on Numerical Analysis 22, pp. 1–10.

[10] Y. H. Dai [2000], On nonmonotone line search, Journal of Optimization Theory and
Applications , to appear.

[11] G. B. Dantzig, Deriving an utility function for the economy, SOL 85-6R, Department
of Operations Research, Stanford University, CA, 1985.

[12] F. Deutsch [2001], Best Approximation in Inner Product Spaces, Springer Verlag
New York, Inc.

[13] R. L. Dykstra [1983], An algorithm for restricted least-squares regression, Journal
of the American Statistical Association 78, pp. 837–842.

[14] R. Escalante and M. Raydan [1996], Dykstra’s Algorithm for a Constrained Least-
Squares Matrix Problem, Numerical Linear Algebra and Applications 3, pp. 459-471.

[15] R. Escalante and M. Raydan [1998], On Dykstra’s algorithm for constrained least-
squares rectangular matrix problems, Computers and Mathematics with Applications
35, pp. 73-79.

21

[16] M. Fiedler and V. Ptak [1967], Diagonally dominant matrices, Czech. Math. J. 17,
pp. 420-433.

[17] R. Fletcher [1981], A nonlinear programming problem in statistics (educational test-
ing), SIAM Journal on Scientific and Statistical Computing 2, pp. 257–267.

[18] R. Fletcher [1985], Semi-definite matrix constraints in optimization, SIAM Journal
on Control and Optimization 23, pp. 493–513.

[19] R. Fletcher [1990], Low storage methods for unconstrained optimization, Lectures
in Applied Mathematics (AMS) 26, pp. 165–179.

[20] R. Fletcher [2001], On the Barzilai-Borwein method, Department of Mathematics,
University of Dundee NA/207, Dundee, Scotland.

[21] A. A. Goldstein [1964], Convex Programming in Hilbert Space, Bulletin of the Amer-
ican Mathematical Society 70, pp. 709–710.

[22] L. Grippo, F. Lampariello and S. Lucidi [1986], A nonmonotone line search technique
for Newton’s method, SIAM Journal on Numerical Analysis 23, pp. 707-716.

[23] S. P. Han [1988], A successive projection method, Mathematical Programming 40,
pp. 1–14.

[24] H. Hu and I. Olkin [1991], A numerical procedure for finding the positive definite
matrix closest to a patterned matrix, Statistics and Probability letters 12, pp. 511-
515.

[25] E. S. Levitin and B. T. Polyak [1966], Constrained Minimization Problems, USSR
Computational Mathematics and Mathematical Physics 6, pp. 1–50.

[26] M. Mendoza, M. Raydan and P. Tarazaga [1998], Computing the nearest diagonally
dominant matrix, Numerical Linear Algebra with Applications 5, pp. 461-474.

[27] M. Raydan [1993], On the Barzilai and Borwein choice of steplength for the gradient
method, IMA Journal of Numerical Analysis 13, pp. 321–326.

[28] M. Raydan [1997], The Barzilai and Borwein gradient method for the large scale
unconstrained minimization problem, SIAM Journal on Optimization 7, pp. 26–33.

[29] M. Raydan and P. Tarazaga [2002], Primal and polar approach for computing the
symmetric diagonally dominant projection, Numerical Linear Algebra with Applica-
tions 9, pp. 333-345.

[30] J. von Neumann [1950], Functional operators vol. II. The geometry of orthogonal
spaces, Annals of Mathematical Studies 22, Princeton University Press. This is a
reprint of mimeographed lecture notes first distributed in 1933.

[31] L. Schrage, A more portable Fortran random number generator, ACM Transactions
on Mathematical Software 5, pp. 132–138 (1979).

22

