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Abstract

Fortran 77 software implementing the SPG method is introduced.
SPG is a nonmonotone projected gradient algorithm for solving large-
scale convex-constrained optimization problems. It combines the clas-
sical projected gradient method with the spectral gradient choice of
steplength and a nonmonotone line search strategy. The user provides
objective function and gradient values, and projections onto the fea-
sible set. Implementation details are presented and the usage of the
software is described. Some recent numerical tests are reported on very
large location problems. The main conclusion is that SPG compares
favorably with existing software.

Categories and Subject Descriptors:
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General Terms: Algorithms
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spectral gradient method.

1 Introduction

In this paper we describe Fortran 77 software that implements the nonmono-
tone spectral projected gradient (SPG) algorithm. The SPG method applies
to problems of the form

min f(x) subject to x ∈ Ω,

where Ω is a closed convex set in IRn. It is assumed that f is defined and has
continuous partial derivatives on an open set that contains Ω. Users of the
software must supply subroutines to compute the function f(x), the gradient
∇f(x) and projections of an arbitrary point x onto Ω. Information about the
Hessian matrix is not required and the storage requirements are minimal.
Therefore, the algorithm is appropriate for large-scale convex-constrained
optimization problems with affordable projections onto the feasible set. No-
tice that the algorithm is also suitable for unconstrained optimization prob-
lems simply by setting Ω = IRn.

The algorithm is fully described in [6] and combines the projected gradi-
ent method [2] with two new features in optimization. First, it extends the
typical globalization strategies associated with these methods to the non-
monotone line search scheme developed by Grippo, Lampariello and Lucidi
[12]. Second, it uses the spectral steplength, introduced by Barzilai and
Borwein [1] and analyzed by Raydan [21]. This choice of steplength requires
little computational work and greatly speeds up the convergence of gradient
methods for unconstrained problems [22].

It is worth noting that two different versions of the projected gradient
method were considered in [6]. The new features were applied to the classical
curvilinear path (piecewise linear if Ω is a polyhedral set) to introduce Al-
gorithm SPG1. They were also applied to the feasible continuous projected
path to produce Algorithm SPG2. Based on numerical experimentation
reported in [6], we concluded that there are no meaningful differences be-
tween the performances of SPG1 and SPG2. Therefore, since SPG1 tends
to require more projections onto Ω per iteration, we only consider the SPG2
version of the method in the software presented and described in this paper.
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2 Algorithm

Given x̂ ∈ IRn we define PΩ(x̂) to be the projection with respect to a given
norm ‖·‖ onto Ω, i.e., PΩ(x̂) = arg minx∈Ω ‖x−x̂‖. We denote g(x) = ∇f(x).
The algorithm starts with x0 ∈ IRn and uses an integer m ≥ 1; a small pa-
rameter αmin > 0; a large parameter αmax > αmin; a sufficient decrease
parameter γ ∈ (0, 1); and safeguarding parameters 0 < σ1 < σ2 < 1. Ini-
tially, α0 ∈ [αmin, αmax] is arbitrary.

Algorithm SPG

Set k ← 0. If x0 /∈ Ω, replace x0 by P (x0).

While (the stopping criterion is not satisfied) do

Compute dk = P (xk − αkg(xk))− xk, λk using the line search
algorithm described below and xk+1 = xk + λkdk.

Compute sk = xk+1− xk, yk = g(xk+1)− g(xk) and βk = 〈sk, yk〉.

If (βk ≤ 0) set αk+1 ← αmax

else compute αk+1 = min{αmax,max{αmin, 〈sk, sk〉/βk}}.

Set k ← k + 1.

end while

Set x∗ ← xk.

This algorithm is based on the spectral projected gradient direction
P (xk − αkg(xk)) − xk, where αk is the safeguarded “inverse Rayleigh quo-

tient”
〈sk−1,sk−1〉
〈sk−1,yk−1〉

. (Observe that
〈sk−1,yk−1〉
〈sk−1,sk−1〉

is a Rayleigh quotient corre-

sponding to the average Hessian matrix
∫ 1
0 ∇

2f(xk−1 + tsk−1)dt.)
The line search is based on a safeguarded quadratic interpolation. The

safeguarding procedure acts when the minimum of the one-dimensional qua-
dratic lies outside [σ1, σ2λ], and not when it lies outside [σ1λ, σ2λ] as usually
implemented. This means that, when interpolation tends to reject 90% (for
σ1 = 0.1) of the original search interval ([0, 1]), we judge that its prediction
is not reliable and we prefer the more conservative bisection. This procedure
turned out to be more efficient than the classical one. The complete line
search procedure is described below.

Line search

Compute fmax = max{f(xk−j) | 0 ≤ j ≤ min{k,m − 1}}, x+ ← xk + dk,

δ ← 〈g(xk), dk〉 and set λ← 1.
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While (f(x+) > fmax + γλδ) do

Compute λtemp ← −
1
2
λ2δ/(f(x+)− f(xk)− λδ).

If (λtemp ≥ σ1 and λtemp ≤ σ2λ) set λ← λtemp

else set λ← λ/2.

Compute x+ ← xk + λdk.

end while

Set λk ← λ.

In the case of rejection of the first trial point, the next ones are computed
along the same direction. As a consequence, the projection operation is
performed only once per iteration.

We use the convergence criteria given by

‖P (xk − g(xk))− xk‖∞ ≤ ǫ1 (1)

or
‖P (xk − g(xk))− xk‖2 ≤ ǫ2. (2)

In addition, the algorithm is also stopped when the number of iterations is
larger than maxit or the number of functional evaluations exceeds maxfun.

In the experiments presented in Section 5, we chose γ = 10−4, σ1 = 0.1,
σ2 = 0.9, m = 10, αmin = 10−3, αmax = 103, α0 = 1, ǫ1 = 0, ǫ2 = 10−6,
maxit = 1000, maxfun = 2000. The stopping criterion (1) was inhibited in
order to encourage a fair comparison with an alternative algorithm.

The choice of αmin, αmax, α0, ǫ1 and ǫ2 is sensitive because these are
dimensional parameters. Roughly speaking, the adopted choice is adequate
if the problem is scaled in such a way that the Hessian eigenvalues are O(1).

3 Usage of the package

The call statement for SPG is:

call spg(nI,xIO,mI,eps1I,eps2I,maxitI, maxfunI,outputI,

+fO,ginfnO,gtwonO,iterO,nfunO,ngradO,flagO),

where the superscripts I and O mean input and output, respectively.
The user must supply the external subroutines EvalF, EvalG and Proj to

evaluate the objective function and its gradient and to project an arbitrary
point onto the feasible region. Subroutine Proj depends on the description
of the feasible region. For the case of boxes it could be
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subroutine Proj(n, x, l, u)

integer n

double precision x(n), l(n), u(n)

do i = 1, n

x(i) = max(l(i),min(x(i),u(i))

end do

end

Each gradient evaluation is necessarily preceeded by a functional eval-
uation at the same point. For this reason, the user can take advantage of
possible common expressions or tests in his/her gradient subroutine imple-
mentation.

4 Test problems

In [6] we showed the performance of SPG on a set of large-scale box-
constrained problems from the CUTE collection [7] and compared it against
LANCELOT [9]. The main conclusion of those tests is that SPG is com-
petitive for box-constrained problems. However, the SPG theory allows one
to deal with convex constraints, so it is natural to test the method in more
general situations. The only restriction is that the projection onto the fea-
sible region must be easy (affordable) to compute. In our software, we leave
this task to the user-given subroutine Proj. Since most general nonlinear
programming algorithms do not take explicit advantage of the possible sim-
plicity of projections, our feeling is that SPG could outperform general NLP
solvers in that case.

Here we will consider a family of location problems. Given a set of npol

disjoint polygons in IR2 we wish to find the point y that minimizes the sum
of the distances to those polygons. Therefore, the problem is

min
zi,y

npol∑

i=1

‖zi − y‖2

subject to zi ∈ Pi, i = 1, . . . , npol.

Let us write x = (z1
1 , z1

2 , . . . , znpol
1 , znpol

2 , y1, y2). We observe that the problem
has 2 × (npol + 1) variables. The number of (linear inequality) constraints

is
∑npol

i=1 νi, where νi is the number of vertices of the polygon Pi. Each
constraint defines a half-plane in IR2.
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We generated 45 problems of this class, varying npol and choosing ran-
domly the localization of the polygons and the number of vertices of each
one. The details of the generation, including the way in which we guaran-
tee empty intersections, are rather tedious but, of course, are available for
interested readers. In Table 1 we display the main characteristics of each
problem (number of polygons, number of constraints and dimension of the
problem). Figure 1 shows the solution of a small five-polygons problem.

Figure 1: Five-polygons problem.

For projecting x onto the feasible set observe that we only need to project
each zi separately onto the corresponding polygon Pi. In the projection
subroutine we consider the half-planes that define the polygon. If zi belongs
to all these half-planes, then zi is the projection onto Pi. Otherwise, we

6



consider the set of half-planes to which zi does not belong. We project zi

onto these half-planes and we discard the projected points that do not belong
to Pi. Let Ai be the (finite) set of nondiscarded half-plane projections and
let Vi be the set of vertices of Pi. Then, the projection of zi onto Pi is the
point of Ai ∪ Vi that is closest to zi. Both the subroutine for generating the
problems and the projection subroutine are included in the test driver for
SPG method.

The test problems were solved both with SPG and with FSQP, the gen-
eral nonlinear programming solver described in [28]. See also [8, 14, 19, 27].
This is a sequential quadratic programming algorithm that uses feasible it-
erates and has good global and local convergence properties. For running
FSQP we used the default parameters indicated in the code documenta-
tion [27].

For both methods, we used the origin as initial approximation. Both
algorithms found the solutions of the problems and stopped with the diag-
nostic of convergence. The quality of the solutions was always the same.

Tables 2 and 3 display the performance of SPG and FSQP, respectively.
The columns mean: Problem, problem number; n, dimension of the problem;
iter, iterations needed to reach the solution; fe, function evaluations; Time,
CPU time (seconds); f, function value at the solution.

All the experiments were run on a Sun SparcStation 20 with the following
main characteristics: 128Mbytes of RAM, 70MHz, 204.7 mips, 44.4 Mflops.
Codes are in Fortran77 and the compiler option adopted was “-O”.

We ran only 15 problems using FSQP because, for larger problems, the
computation time for this algorithm becomes unaffordable. One should be
careful when looking at the time for this algorithm because the implementa-
tion FSQP of the feasible sequential quadratic programming algorithm does
not take advantage of sparsity of the matrix of constraints or the Hessian
of the objective function. An implementation using sparse factorizations
would be much more efficient in terms of computer time. However, we de-
cided to maintain the comparison against FSQP because the results in terms
of number of iterations and function evaluations would not change (at least,
certainly, could not be better) in a sparse implementation of the method.

Clearly, independently of the linear-algebra savings of sequential quadratic
programming (SQP) implementations, any SQP iteration is (much) more ex-
pensive than a single iteration of the algorithm described in this paper. So,
it is remarkable that the number of iterations used by our algorithm is from
8 to 20 times smaller than the number of iterations used by FSQP. Approxi-
mately the same relation exists between the number of function and gradient
evaluations used by both methods. Therefore, the advantage of solving the
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Problem # polygons # constraints n

1 86 343 174

2 86 700 174

3 85 1018 172

4 174 701 350

5 181 1450 364

6 176 2104 354

7 257 1033 516

8 256 2103 514

9 262 3216 526

10 359 1437 720

11 349 2854 700

12 349 4328 700

13 435 1743 872

14 432 3522 866

15 430 5257 862

16 935 3729 1872

17 928 7399 1858

18 940 11200 1882

19 1841 7362 3684

20 1825 14574 3652

21 1841 22049 3684

22 2766 11102 5534

23 2795 22511 5592

24 2831 34445 5664

25 3779 15104 7560

26 3815 30699 7632

27 3852 46704 7706

28 4735 18937 9472

29 4767 38247 9536

30 4836 58622 9674

31 9680 38790 19362

32 9644 77413 19290

33 9639 116195 19280

34 19117 76550 38236

35 19093 153156 38188

36 19114 230190 38230

37 28770 115301 57542

38 28799 230878 57600

39 28767 346048 57536

40 38409 153784 76820

41 38568 309252 77138

42 38506 463718 77014

43 48004 192152 96010

44 48209 386121 96420

45 48126 578648 96254

Table 1: Problems set.
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Problem iter fe Time f

1 14 15 0.01 1.853D+02

2 14 15 0.01 1.959D+02

3 14 15 0.02 1.914D+02

4 24 27 0.03 1.945D+02

5 23 26 0.05 2.021D+02

6 20 21 0.05 1.948D+02

7 19 20 0.04 1.952D+02

8 24 25 0.07 1.989D+02

9 34 36 0.13 1.948D+02

10 19 20 0.05 1.969D+02

11 29 30 0.11 1.969D+02

12 23 24 0.11 1.943D+02

13 14 15 0.05 1.968D+02

14 25 26 0.11 1.983D+02

15 26 29 0.16 1.974D+02

16 20 21 0.14 1.286D+03

17 30 33 0.30 1.324D+03

18 28 30 0.36 1.304D+03

19 65 78 0.86 1.311D+03

20 51 63 0.98 1.315D+03

21 42 47 1.06 1.293D+03

22 33 35 0.67 1.308D+03

23 55 67 1.62 1.266D+03

24 80 117 3.20 1.312D+03

25 69 103 1.93 1.311D+03

26 50 60 2.05 1.301D+03

27 37 42 2.03 1.321D+03

28 144 219 4.99 1.305D+03

29 50 60 2.57 1.306D+03

30 44 47 3.20 1.309D+03

31 18 20 1.44 1.968D+03

32 24 30 2.89 1.966D+03

33 20 21 3.24 1.959D+03

34 14 15 2.35 1.968D+03

35 15 17 3.67 1.964D+03

36 19 21 6.00 1.973D+03

37 14 15 3.58 1.973D+03

38 18 20 6.49 1.974D+03

39 13 14 6.25 1.974D+03

40 14 15 4.82 1.975D+03

41 25 28 12.19 1.980D+03

42 24 26 15.01 1.980D+03

43 18 20 7.49 1.973D+03

44 13 14 7.99 1.978D+03

45 17 19 12.97 1.980D+03

Table 2: SPG performance.
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Problem iter fe Time f

1 114 114 142.30 1.853D+02

2 147 147 464.93 1.959D+02

3 151 151 844.37 1.914D+02

4 220 220 3720.98 1.945D+02

5 304 304 12817.44 2.021D+02

6 278 278 15758.56 1.948D+02

7 282 282 18787.54 1.952D+02

8 390 390 49819.97 1.989D+02

9 412 412 81976.09 1.948D+02

10 325 325 89058.47 1.969D+02

11 395 395 126319.88 1.969D+02

12 371 371 171442.94 1.943D+02

13 438 438 149931.47 1.968D+02

14 507 507 316525.41 1.983D+02

15 524 524 465043.66 1.974D+02

Table 3: FSQP performance.

problems using SPG in place of a general nonlinear programming algorithm
is quite impressive.

5 Conclusions

We have presented a computational algorithm for minimizing functions of
many variables restricted to a convex set. The algorithm tends to work well
when projections onto the feasible set are easy to compute. The user is
required to provide a subroutine to compute these projections. A previous
paper [6] shows that the new algorithm is effective for solving many large-
scale box-constrained problems. Besides the tests of [6], SPG has been shown
to be efficient in several applied box-constrained problems. See [3, 4, 5, 18].
Here we show that, perhaps, this effectiveness is even more evident when
the constraints are given in some other form, provided that projections are
not complicated. The key point is that most general nonlinear programming
algorithms do not take advantage of the easy-projection property at all.

An interesting family of problems to which SPG can be applied is the
norm-constrained regularization problem [13, 16, 17, 26], defined by

min f(x) subject to xT Ax ≤ r (3)

where A is symmetric positive definite. This problem can be reduced to
ball-constrained minimization by a change of variables and, in this case,
projections can be trivially computed. A particular case of (3) is the clas-
sical trust-region problem where f is quadratic. Recently (see [15, 20])
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procedures for escaping from nonglobal stationary points of this problem
have been found and, so, it becomes increasingly important to obtain fast
algorithms for finding critical points, especially in the large-scale case. See
[23, 24, 25].
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