
Global Nonlinear Programming with possible infeasibility and

finite termination∗

E. G. Birgin† J. M. Mart́ınez ‡ L. F. Prudente‡

June 25, 2012§

Abstract

In a recent paper, Birgin, Floudas and Mart́ınez introduced an augmented Lagrangian
method for global optimization. In their approach, augmented Lagrangian subproblems are
solved using the αBB method and convergence to global minimizers was obtained assuming
feasibility of the original problem. In the present research, the algorithm mentioned above
will be improved in several crucial aspects. On the one hand, feasibility of the problem will
not be required. Possible infeasibility will be detected in finite time by the new algorithms
and optimal infeasibility results will be proved. On the other hand, finite termination results
that guarantee optimality and/or feasibility up to any required precision will be provided. An
adaptive modification in which subproblem tolerances depend on current feasibility and com-
plementarity will also be given. The adaptive algorithm allows the augmented Lagrangian
subproblems to be solved without requiring unnecessary potentially high precisions in the
intermediate steps of the method, which improves the overall efficiency. Experiments show-
ing how the new algorithms and results are related to practical computations will be given.

Key words: deterministic global optimization, augmented Lagrangians, nonlinear program-
ming, algorithms, numerical experiments.

1 Introduction

Many practical models seek to solve global optimization problems involving continuous functions
and constraints. Different aspects of the global optimization field and its applications may be
found in several textbooks [16, 34, 37, 45, 64, 72, 74, 76] and review papers [35, 56, 57].

Algorithms for solving non-trivial optimization problems are always iterative. Sometimes,
for practical purposes, one only needs optimality properties at the limit points. In many other

∗This work was supported by PRONEX-CNPq/FAPERJ (E-26/111.449/2010-APQ1), FAPESP (2006/53768-
0, 2009/10241-0, and 2010/10133-0) and CNPq (Grant 306802/2010-4).

†Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo
SP, Brazil. e-mail: egbirgin@ime.usp.br

‡Department of Applied Mathematics, Institute of Mathematics, Statistics and Scientific Computing, Univer-
sity of Campinas, Campinas, SP, Brazil. e-mail: {martinez | lprudente}@ime.unicamp.br

§Typo corrected on July 25,2012.

1

cases, one wishes to find an iterate xk for which it can be proved that feasibility and optimality
hold up to some previously established precision. Moreover, in the case that no feasible point
exists, a certificate of infeasibility could also be required. In simple constrained cases, several
well-known algorithms accomplish that purpose efficiently. This is the case of the αBB algorithm
[1, 2, 3, 14], that has been used in [21] as subproblems solver in the context of an augmented
Lagrangian method.

The algorithm introduced in [21] for constrained global optimization was based on the Powell-
Hestenes-Rockafellar (PHR) augmented Lagrangian approach [44, 59, 61]. An implementation
in which subproblems were solved by means of the αBB method was described and tested in [21].
The convergence theory of [21] assumes that the nonlinear programming problem is feasible and
proves that limit points of sequences generated by the algorithm are ε-global minimizers, where ε
is a given positive tolerance. However, a test for verifying ε-optimality at each iterate xk was not
provided. As a consequence, the stopping criterion employed in the numerical implementation
was not directly related to ε-optimality and relied on heuristic considerations. This gap will be
filled in the present paper. On the one hand, we will not restrict the range of applications to
feasible problems. Infeasible cases may also be handled by the methods analyzed in our present
contribution, where we will prove that possible infeasibility can be detected in finite time by
means of a computable test. On the other hand, we will introduce a practical stopping criterion
guaranteeing that, at the approximate solution provided by the algorithm, feasibility holds up to
some prescribed tolerance and the objective function value is the optimal one up to tolerance ε.

We will present two versions of the main algorithm. The first coincides essentially with the
one introduced in [21] and solves each subproblem with a precision εk that tends to zero. In
the second version we employ an adaptive precision control that depends on the infeasibility of
iterates of internal iterations. In this way, we aim at rapid detection of infeasibility, without
solving expensive subproblems with unreliable precision. In the Local Optimization context this
problem was considered in [53].

Besides providing practical stopping criteria, the new theoretical results shed light on algo-
rithmic properties and suggest implementation improvements. It is well known that the presence
of extreme penalty parameters makes the solution of subproblems in Penalty and augmented
Lagrangian methods difficult. In fact, it may become very expensive to solve subproblems up to
the desired precision, due to large norms of gradients and Hessians, which cause increasing work
to solve subproblems. On the other hand, when the penalty parameter takes an extreme value,
the shifts (quotients between multipliers and penalty parameters) employed in subproblems
should obviously be close to zero. This justifies the practical decision of maintaining bounded
multipliers. Attempts to avoid this algorithmic safeguard are theoretically interesting [51]. In
the theory presented in this paper, the role of the norms of multipliers will appear very clearly.

Global optimization theory also clarifies practical algorithmic properties of “local” opti-
mization algorithms, which tend to converge quickly to stationary points. We recall that the
augmented Lagrangian methodology based on the PHR approach has been successfully used
for defining practical nonlinear programming algorithms [5, 6, 19, 29]. In the local optimiza-
tion field, which requires near-stationarity (instead of near global optimality) at subproblems,
convergence to KKT points was proved using the Constant Positive Linear Dependence con-
straint qualification [11]. Convergence to KKT points also occurs under more general constraint
qualifications recently introduced in [9, 10]. Convergence results involving sequential optimality

2

conditions that do not need constraint qualifications at all were presented in [8, 12].
The Algencan code, available in http://www.ime.usp.br/∼egbirgin/tango/ and based on the

theory presented in [5], has been improved several times in the last few years [7, 18, 20, 24, 26, 25,
28] and, in practice, has been shown to converge to global minimizers more frequently than other
Nonlinear Programming solvers. Derivative-free versions of Algencan were introduced in [30] and
[47]. There exist many global optimization techniques for nonlinear programming problems, e.g.,
[2, 3, 4, 14, 36, 38, 39, 40, 41, 42, 48, 50, 51, 58, 62, 63, 65, 66, 67, 68, 69, 70, 73, 75]. The main
appeal of the augmented Lagrangian approach in this context is that the structure of this method
makes it possible to take advantage of global optimization algorithms for simpler problems.
In [21] and the present paper we exploit the ability of αBB to solve linearly constrained global
optimization problems, which has been corroborated in many applied papers. In order to take
advantage of the αBB potentialities, augmented Lagrangian subproblems are “over-restricted”
by means of linear constraints that simplify subproblem resolutions and do not affect a successful
search of global minimizers. Because of the necessity of dealing with infeasible problems, the
definition of the additional constraints has been modified in the present contribution with respect
to the one given in [21].

This paper is organized as follows. A first algorithm and its convergence theory will be pre-
sented in Section 2. Section 3 will be devoted to an improved version of the method that avoids
the employment of an exogenous sequence of tolerances to declare convergence of the augmented
Lagrangian subproblems. In Section 4 we will describe the method that solves the subproblems.
Section 5 will present numerical experiments and conclusions will be given in Section 6.

Notation. If v ∈ IRn, v = (v1, . . . , vn), we denote v+ = (max{0, v1}, . . . ,max{0, vn}). If
K = (k1, k2, . . .) ⊆ IN (with kj < kj+1 for all j), we denote K ⊂

∞
IN . The symbol ‖ · ‖ will denote

the Euclidean norm, and |S| will denote the cardinality of set S.

2 Algorithm

The problem considered in this paper is:

Minimize f(x)
subject to h(x) = 0

g(x) ≤ 0
x ∈ Ω,

(1)

where h : IRn → IRm, g : IRn → IRp, f : IRn → IR are continuous and Ω ⊂ IRn is compact. In
general, Ω is defined by “easy” constraints such as linear constraints or box constraints. Since
all the iterates xk generated by our methods will belong to Ω, the constraints related to this set
may be called “non-relaxable” in the sense of [15].

The augmented Lagrangian function [44, 59, 61] will be defined by:

Lρ(x, λ, µ) = f(x) +
ρ

2

{ m
∑

i=1

[

hi(x) +
λi

ρ

]2

+

p
∑

i=1

[

max

(

0, gi(x) +
µi

ρ

)]2}

(2)

for all x ∈ Ω, ρ > 0, λ ∈ IRm, µ ∈ IRp
+.

3

At each (outer) iteration, the algorithm considered in this section minimizes the augmented
Lagrangian, with precision εk, on the set Ω ∩ Pk, where Pk ⊆ IRn is built in order to facilitate
the work of a subproblem solver like αBB. The assumptions required for the tolerances {εk}
and the auxiliary sets {Pk} are given below.

Assumption A1. The sequence of positive tolerances {εk} is bounded.

Assumption A2. The sets Pk are closed and the set of global minimizers of (1) is contained
in Pk for all k ∈ IN .

If the feasible set of (1) is contained in Pk for all k, Assumption A2 obviously holds. The
sequence {εk} may be defined in an external or an internal way, in different implementations.
In the external case, the sequence is given as a parameter of the algorithm. If one decides for
an internal definition, each tolerance εk depends on xk, and is defined as a result of the process
evolution. Except in the case that one of the sets Ω ∩ Pk is found to be empty, we will consider
that the algorithm defined here generates an infinite sequence {xk} and we will prove theoreti-
cal properties of this sequence. Later, we will see that the generated sequence may be stopped,
satisfying stopping criteria that guarantee feasibility and optimality, or, perhaps, infeasibility.
Observe that the existence of global minimizers is not guaranteed at all, since the feasible set
could be empty. In this case Assumption A2 is trivially satisfied. In [21] the existence of a global
minimizer was an assumption on the problem and the sets Pk were assumed to contain at least
one global minimizer.

Algorithm 2.1

Let λmin < λmax, µmax > 0, γ > 1, 0 < τ < 1. Let λ1
i ∈ [λmin, λmax], i = 1, . . . ,m, µ1

i ∈
[0, µmax], i = 1, . . . , p, and ρ1 > 0. Initialize k ← 1.

Step 1.1 If Ω ∩ Pk is found to be empty, stop the execution of the algorithm.

Step 1.2 Find xk ∈ Ω ∩ Pk such that:

Lρk(x
k, λk, µk) ≤ Lρk(x, λ

k, µk) + εk (3)

for all x ∈ Ω ∩ Pk.

Step 2. Define

V k
i = min

{

− gi(x
k),

µk
i

ρk

}

, i = 1, . . . , p.

If k = 1 or
max{‖h(xk)‖∞, ‖V k‖∞} ≤ τ max{‖h(xk−1)‖∞, ‖V k−1‖∞}, (4)

define ρk+1 = ρk. Otherwise, define ρk+1 = γρk.

Step 3. Compute λk+1
i ∈ [λmin, λmax], i = 1, . . . ,m and µk+1

i ∈ [0, µmax], i = 1, . . . , p. Set
k ← k + 1 and go to Step 1.

4

Algorithm 2.1 has been presented above without a stopping criterion, except in the case in
which emptiness of Ω ∩ Pk is detected. Therefore, in this ideal form, the algorithm generally
generates an infinite sequence. The solvability of the subproblems (3) is guaranteed, if Ω ∩ Pk

is a bounded polytope, employing global optimization algorithms as αBB.
Although infinite-sequence properties do not satisfy our requirements of getting feasibility

and optimality certificates in finite time, results concerning the behavior of the infinite sequence
potentially generated by the algorithm help to understand its practical properties.

Theorem 2.1. Assume that {xk} is an infinite sequence generated by Algorithm 2.1. Let K ⊂
∞
IN

and x∗ ∈ Ω be such that limk∈K xk = x∗. (Such subsequence exists since Ω is compact.) Then,
for all z ∈ Ω such that z is a limit point of {zk}k∈K , with zk ∈ Ω ∩ Pk for all k ∈ K, we have:

‖h(x∗)‖2 + ‖g(x∗)+‖ ≤ ‖h(z)‖
2 + ‖g(z)+‖

2. (5)

In particular, if the problem (1) is feasible, every limit point of an infinite sequence generated
by Algorithm 2.1 is feasible.

Proof. In the case that {ρk} is bounded, we have, by (4), that limk→∞ ‖h(x
k)‖+ ‖g(xk)+‖ = 0.

Taking limits for k ∈ K implies that ‖h(x∗)‖+ ‖g(x∗)+‖ = 0, which trivially implies (5).
Consider now the case in which ρk →∞. Let z ∈ Ω and K1⊂

∞
K be such that

lim
k∈K1

zk = z,

with zk ∈ Ω ∩ Pk for all k ∈ K1. By (3), we have:

Lρk(x
k, λk, µk) ≤ Lρk(z

k, λk, µk) + εk

for all k ∈ K1. This implies that, for all k ∈ K1,

ρk
2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≤
ρk
2

[∥

∥

∥

∥

h(zk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(zk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+εk+f(zk)−f(xk).

Therefore,

∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2

≤

[∥

∥

∥

∥

h(zk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(zk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+
2(εk + f(zk)− f(xk))

ρk
.

Since {εk}, {λ
k}, {µk} are bounded, ρk tends to infinity, and Ω is compact, the inequality (5)

follows, taking limits for k ∈ K1, by the continuity of f, h, and g. �

In the case that Ω ⊆ Pk for all k, Theorem 2.1 says that any limit point is a global minimizer
of the infeasibility measure ‖h(x)‖2 + ‖g(x)+‖

2 onto Ω. It is interesting to observe that the
tolerances εk do not necessarily tend to zero, in order to obtain the thesis of Theorem 2.1.
Moreover, although in the algorithm we assume that λk and µk are bounded, in the proof we
only need that the quotients λk/ρk and µk/ρk tend to zero as ρk tends to infinity.

5

In the following theorem we prove that infeasibility can be detected in finite time. Let us
define, for all k ∈ IN , ck > 0 by:

|f(z)− f(xk)| ≤ ck for all z ∈ Ω ∩ Pk. (6)

Note that ck may be computed using interval calculations as in the αBB algorithm. Clearly,
since f is continuous and Ω is bounded, the sequence {ck} may be assumed to be bounded. Ob-
serve that, as in the case of Theorem 2.1, for proving Theorem 2.2 we do not need that εk → 0.

Theorem 2.2. Assume that {xk} is a sequence generated by Algorithm 2.1 and, for all k ∈ IN ,
the set Ω∩Pk is non-empty. Then, the problem (1) is infeasible if and only if there exists k ∈ IN
such that

ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

−
ρk
2

[

∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2
]

+ εk < −ck. (7)

Proof. Suppose that the feasible region of (1) is non-empty. Then there exists a global mini-
mizer z such that z ∈ Ω ∩ Pk for all k ∈ IN . Therefore,

f(xk)+
ρk
2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f(z)+
ρk
2

[∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+εk.

Thus,

ρk
2

[∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2]

−
ρk
2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≥ f(xk)−f(z)−εk.

(8)
Since h(z) = 0 and g(z) ≤ 0, we have:

∥

∥

∥

∥

h(z) +
λk

ρk

∥

∥

∥

∥

2

=

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

and

∥

∥

∥

∥

(

g(z) +
µk

ρk

)

+

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2

.

Then, by (8),

ρk
2

[
∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2]

−
ρk
2

[
∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2]

≥ f(xk)− f(z)− εk.

Therefore, by (6),

ρk
2

[∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2]

−
ρk
2

[∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2]

+ εk ≥ −ck

for all k ∈ IN . This means that the infeasibility test (7) fails to be fulfilled for all k ∈ IN .
Reciprocally, suppose that problem (1) is infeasible. In this case ρk tends to infinity. This

implies that the sequence {xk} admits an infeasible limit point x∗ ∈ Ω. So, for some subsequence,
the quantity ‖h(xk) + λk/ρk‖

2 + ‖(g(xk) + µk/ρk)+‖
2 is bounded away from zero. Since

−

[
∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2]

−
2(εk + ck)

ρk

6

tends to zero, it turns out that, for k large enough, the test (7) is fulfilled. �

In the following theorem we prove another asymptotic convergence result, this time con-
nected with optimality, instead of feasibility. Strictly speaking, this result coincides with the
one presented in Theorem 2 of [21]. However, we decided to include a different proof here be-
cause some of the intermediate steps will be evoked in forthcoming results.

Theorem 2.3. Assume that {xk} is an infinite sequence generated by Algorithm 2.1, limk→∞ εk =
0, and problem (1) is feasible. Then, every limit point of {xk} is a global solution of (1).

Proof. Let K ⊂
∞
IN and x∗ ∈ Ω be such that limk∈K xk = x∗. Since the feasible set is non-empty

and compact, problem (1) admits a global minimizer z ∈ Ω. By Assumption A2, z ∈ Pk for all
k ∈ IN . We consider two cases: ρk →∞ and {ρk} bounded.

Case 1 (ρk →∞): By the definition of the algorithm:

f(xk)+
ρk
2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f(z)+
ρk
2

[∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+εk

(9)
for all k ∈ IN . Since h(z) = 0 and g(z) ≤ 0, we have:

∥

∥

∥

∥

h(z) +
λk

ρk

∥

∥

∥

∥

2

=

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

and

∥

∥

∥

∥

(

g(z) +
µk

ρk

)

+

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2

.

Therefore, by (9),

f(xk) ≤ f(xk) +
ρk
2

[
∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f(z) +
‖λk‖2

2ρk
+
‖µk‖2

2ρk
+ εk.

Taking limits for k ∈ K, using that limk∈K ‖λ
k‖2/ρk = limk∈K ‖µ

k‖2/ρk = 0, and limk∈K εk = 0,
by the continuity of f and the convergence of xk, we get:

f(x∗) ≤ f(z).

Since z is a global minimizer, it turns out that x∗ is a global minimizer, as we wanted to prove.

Case 2 ({ρk} bounded): In this case, we have that ρk = ρk0 for all k ≥ k0. Therefore, by the
definition of Algorithm 2.1, we have:

f(xk)+
ρk0
2

[
∥

∥

∥

∥

h(xk)+
λk

ρk0

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk0

)

+

∥

∥

∥

∥

2]

≤ f(z)+
ρk0
2

[
∥

∥

∥

∥

h(z)+
λk

ρk0

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk0

)

+

∥

∥

∥

∥

2]

+εk

for all k ≥ k0. Since g(z) ≤ 0 and µk/ρk0 ≥ 0,

∥

∥

∥

∥

(

g(z) +
µk

ρk0

)

+

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

µk

ρk0

∥

∥

∥

∥

2

.

7

Thus, since h(z) = 0,

f(xk)+
ρk0
2

[∥

∥

∥

∥

h(xk)+
λk

ρk0

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk0

)

+

∥

∥

∥

∥

2]

≤ f(z)+
ρk0
2

[∥

∥

∥

∥

λk

ρk0

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk0

∥

∥

∥

∥

2]

+ εk (10)

for all k ≥ k0. Let us now take ε > 0 arbitrarily small. Suppose, for a moment, that gi(x
∗) < 0.

Since limk→∞min{−gi(x
k), µk

i /ρk0} = 0, we have that

lim
k∈K

µk
i /ρk0 = 0. (11)

This implies that (gi(x
k) + µk

i /ρk0)+ = 0 for k ∈ K large enough. Therefore, for k ∈ K large
enough,

∑p
i=1(gi(x

k)+µk
i /ρk0)

2
+ =

∑

gi(x∗)=0(gi(x
k)+µk

i /ρk0)
2
+. Thus, by (10), for k ∈ K large

enough we have:

f(xk) +
ρk0
2

[m
∑

i=1

(

hi(x
k) +

λk
i

ρk0

)2

+
∑

gi(x∗)=0

(

gi(x
k) +

µk
i

ρk0

)2

+

]

≤ f(z) +
ρk0
2

[m
∑

i=1

(

λk
i

ρk0

)2

+
∑

gi(x∗)=0

(

µk
i

ρk0

)2

+
∑

gi(x∗)<0

(

µk
i

ρk0

)2]

+ εk.

By (11), we deduce that, for k ∈ K large enough,

f(xk) +
ρk0
2

[m
∑

i=1

(

hi(x
k) +

λk
i

ρk0

)2

+
∑

gi(x∗)=0

(

gi(x
k) +

µk
i

ρk0

)2

+

]

≤ f(z) +
ρk0
2

[m
∑

i=1

(

λk
i

ρk0

)2

+
∑

gi(x∗)=0

(

µk
i

ρk0

)2]

+ εk + ε. (12)

For k ∈ K large enough, by the boundedness of λk
i /ρk0 and the fact that h(xk) → 0, we have

that
ρk0
2

m
∑

i=1

[

hi(x
k)2 + 2hi(x

k)
λk
i

ρk0

]

≥ −ε.

Therefore, by (12),

f(xk)+
ρk0
2

[m
∑

i=1

(

λk
i

ρk0

)2

+
∑

gi(x∗)=0

(

gi(x
k)+

µk
i

ρk0

)2

+

]

≤ f(z)+
ρk0
2

[m
∑

i=1

(

λk
i

ρk0

)2

+
∑

gi(x∗)=0

(

µk
i

ρk0

)2]

+εk+2ε.

Thus, there exists k1 ≥ k0 such that for all k ∈ K such that k ≥ k1, we have that

f(xk) +
ρk0
2

[

∑

gi(x∗)=0

(

gi(x
k) +

µk
i

ρk0

)2

+

]

≤ f(z) +
ρk0
2

[

∑

gi(x∗)=0

(

µk
i

ρk0

)2]

+ εk + 2ε. (13)

Define
I = {i ∈ {1, . . . , p} | gi(x

∗) = 0}

8

and
K1 = {k ∈ K | k ≥ k1}.

For each i ∈ I, we define

K+(i) = {k ∈ K1 | gi(x
k) + µk

i /ρk0 ≥ 0}

and
K−(i) = {k ∈ K1 | gi(x

k) + µk
i /ρk0 < 0}.

Obviously, for all i ∈ I, K1 = K+(i) ∪ K−(i). Let us fix i ∈ I. For k large enough, since
gi(x

∗) = 0, by the continuity of gi and the boundedness of µk
i /ρk0 , we have that:

ρk0
2

(

gi(x
k)2 +

2gi(x
k)µk

i

ρk0

)

≥ −ε.

Therefore,
ρk0
2

[

gi(x
k)2 +

2gi(x
k)µk

i

ρk0
+

(

µk
i

ρk0

)2]

≥
ρk0
2

(

µk
i

ρk0

)2

− ε.

Thus, for k ∈ K+(i) large enough,

ρk0
2

(

gi(x
k) +

µk
i

ρk0

)2

+

≥
ρk0
2

(

µk
i

ρk0

)2

− ε. (14)

Now, if k ∈ K−(i), we have that −gi(x
k) > µk

i /ρk0 . So, since gi(x
k) tends to zero, for k ∈ K−(i)

large enough we have that (ρk0/2)(µ
k
i /ρk0)

2 ≤ ε. Therefore,

ρk0
2

(

gi(x
k) +

µk
i

ρk0

)2

+

= 0 ≥
ρk0
2

(

µk
i

ρk0

)2

− ε. (15)

Combining (14) and (15) and taking k large enough, we obtain:

f(xk) +
ρk0
2

[

∑

gi(x∗)=0

(

gi(x
k) +

µk
i

ρk0

)2

+

]

≥ f(xk) +
ρk0
2

[

∑

gi(x∗)=0

(

µk
i

ρk0

)2]

− pε. (16)

Then, by (13) and (16), for k ∈ K large enough we have that

f(xk) ≤ f(z) + εk + (2 + p)ε.

Since limk∈K εk = 0 and ε is arbitrarily small, it turns out that limk∈K f(xk) = f(z) and, so, x∗

is a global minimizer as we wanted to prove. �

The following theorem establishes a sufficient computable condition guaranteeing that f(xk)
is close to (and perhaps smaller than) the best possible value of f(z) in the feasible set. Again,
εk → 0 is not used in its proof.

9

Theorem 2.4. Assume that {xk} is an infinite sequence generated by Algorithm 2.1. Let ε ∈ IR
(possibly negative) and k ∈ IN such that

ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

−
ρk
2

[

∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2
]

≤ ε. (17)

Then
f(xk) ≤ f(z) + ε+ εk, (18)

for all global minimizer z.

Proof. Let z ∈ Ω be a global minimizer of (1). By Assumption A2, z ∈ Pk for all k ∈ IN . By
the definition of Algorithm 2.1, we have that

f(xk)+
ρk
2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f(z)+
ρk
2

[∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+εk

(19)
for all k ∈ IN . Moreover, since

∥

∥

∥

∥

h(z) +
λk

ρk

∥

∥

∥

∥

2

=

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

and

∥

∥

∥

∥

(

g(z) +
µk

ρk

)

+

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2

, (20)

we obtain:

f(xk) +
ρk
2

[
∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f(z) +
ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

+ εk. (21)

Assuming that (17) takes place, we have

f(xk) +
ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

− ε ≤ f(xk) +
ρk
2

[

∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2
]

. (22)

Hence, by (21) and (22), we have

f(xk) +
ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

− ε ≤ f(z) +
ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

+ εk. (23)

Simplifying the expression (23), we obtain:

f(xk) ≤ f(z) + ε+ εk,

as we wanted to prove. �

In the following theorem we prove that the inequality (17), employed in Theorem 2.1 as a
sufficient condition, eventually holds for some iterate k, if we assume that ε > 0 and {εk} tends
to zero.

10

Theorem 2.5. Assume that {xk} is an infinite sequence generated by Algorithm 2.1. Suppose
that (1) is feasible and limk→∞ εk = 0. Let ε be an arbitrary positive number. Then, there exists
k ∈ IN such that

ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

−
ρk
2

[

∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2
]

≤ ε. (24)

Proof. By the compactness of Ω, there exists K ⊂
∞
IN and x∗ ∈ Ω such that limk∈K xk = x∗ and,

by Theorem 2.1, x∗ is feasible. Suppose that ρk tends to infinity. Note that the left-hand side
of (24) is bounded by (‖λk‖2 + ‖µk‖2)/(2ρk) which tends to zero, by the boundedness of {λk}
and {µk}. Thus, we obtain (24) for k large enough.

Consider now the case in which {ρk} is bounded. For all i = 1, . . . ,m we have that
(ρk/2)[hi(x

k) + λk
i /ρk]

2 = (ρk/2)[hi(x
k)2 + 2hi(x

k)λk
i /ρk + (λk

i /ρk)
2]. Since {ρk} is bounded,

{λk} is bounded, and hi(x
k) → 0 there exists k0(i) ∈ K such that (ρk/2)[hi(x

k) + λk
i /ρk]

2 ≥
(ρk/2)(λ

k
i /ρk)

2 − ε/(2m) for all k ∈ K, k ≥ k0(i). Taking k0 = max{k0(i)} we obtain that, for
all k ∈ K, k ≥ k0, i = 1, . . . ,m,

ρk
2

(

λk
i

ρk

)2

−
ρk
2

(

hi(x
k) +

λk
i

ρk

)2

≤
ε

2m
. (25)

Assume that gi(x
∗) < 0. Then, as in Case 2 of the proof of Theorem 2.3, since

lim
k→∞

min{−gi(x
k), µk

i /ρk} = 0,

we have that limk∈K µk
i /ρk = 0. Thus, there exists k1(i) ≥ k0 such that (gi(x

k) + µk
i /ρk)+ = 0

for all k ∈ K, k ≥ k1(i). Therefore, since µk
i /ρk → 0, there exists k2(i) ≥ k1(i) such that

ρk
2

(

µk
i

ρk

)2

−
ρk
2

(

gi(x
k) +

µk
i

ρk

)2

+

≤
ε

2p
(26)

for all k ∈ K, k ≥ k2(i). Taking k2 = max{k2(i)}, we obtain that (26) holds for all k ∈ K, k ≥ k2
whenever gi(x

∗) < 0.
Now, as in the proof of Theorem 2.3, define

I = {i ∈ {1, . . . , p} | gi(x
∗) = 0}

and
K1 = {k ∈ K | k ≥ k2}.

For each i ∈ I, we define

K+(i) = {k ∈ K1 | gi(x
k) + µk

i /ρk ≥ 0}

and
K−(i) = {k ∈ K1 | gi(x

k) + µk
i /ρk < 0}.

11

Let us fix i ∈ I. For k ∈ K1 large enough, since gi(x
∗) = 0, by the continuity of gi and the

boundedness of µk
i /ρk, we have that:

ρk
2

(

gi(x
k)2 +

2gi(x
k)µk

i

ρk

)

≥ −
ε

2p
.

Therefore,
ρk
2

[

gi(x
k)2 +

2gi(x
k)µk

i

ρk
+

(

µk
i

ρk

)2]

≥
ρk
2

(

µk
i

ρk

)2

−
ε

2p
.

Thus, for k ∈ K+(i) large enough,

ρk
2

(

µk
i

ρk

)2

−
ρk
2

(

gi(x
k) +

µk
i

ρk

)2

+

≤
ε

2p
. (27)

Now, if k ∈ K−(i), we have that −gi(x
k) > µk

i /ρk. So, since gi(x
k) tends to zero, for

k ∈ K−(i) large enough we have that (ρk/2)(µ
k
i /ρk)

2 ≤ ε/(2p). Therefore,

ρk
2

(

µk
i

ρk

)2

−
ρk
2

(

gi(x
k) +

µk
i

ρk

)2

+

≤
ε

2p
. (28)

.
By (26), (27), and (28),

ρk
2

(

µk
i

ρk

)2

−
ρk
2

(

gi(x
k) +

µk
i

ρk

)2

+

≤
ε

2p
(29)

for all i = 1, . . . , p.
Taking the summation for i = 1, . . . ,m in (25) and for i = 1, . . . , p in (29) we obtain the

desired result. �

Due to the results proved above, we are able to define a variation of Algorithm 2.1, for which
we can guarantee finite termination with certificates of infeasibility or optimality up to given
precisions. For defining Algorithm 2.2, we assume that εfeas > 0 and εopt > 0 are user-given
tolerances for feasibility and optimality respectively. On the other hand, we will maintain As-
sumptions A1 and A2, which concern boundedness of {εk} and the inclusion property for the
sets Pk.

Algorithm 2.2

Let λmin < λmax, µmax > 0, γ > 1, 0 < τ < 1. Let λ1
i ∈ [λmin, λmax], i = 1, . . . ,m, µ1

i ∈
[0, µmax], i = 1, . . . , p, and ρ1 > 0. Assume that {ε̄k} is a bounded positive sequence and
initialize k ← 1.

Step 1 Solve the subproblem

Solve, using global optimization on the set Ω ∩ Pk, the subproblem

Minimize Lρk(x, λ
k, µk) subject to x ∈ Ω ∩ Pk. (30)

12

If, in the process of solving (30), the set Ω∩Pk is detected to be empty, stop the execution
of Algorithm 2.2 declaring Infeasibility. Otherwise, define xk ∈ Ω∩Pk as an approximate
solution of (30) that satisfies (3) for some εk ≤ ε̄k.

Step 2 Test Infeasibility

Compute ck > 0 such that |f(xk)− f(z)| ≤ ck for all z ∈ Ω ∩ Pk and define

γk =
ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

−
ρk
2

[

∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2
]

.

If
γk + εk < −ck,

stop the execution of the algorithm declaring Infeasibility.

Step 3 Test Feasibility and optimality

If
‖h(xk)‖+ ‖g(xk)+‖ ≤ εfeas and γk + εk ≤ εopt,

stop the execution of the algorithm declaring Solution found.

Step 4 Update penalty parameter

Define

V k
i = min

{

− gi(x
k),

µk
i

ρk

}

, i = 1, . . . , p.

If k = 1 or
max{‖h(xk)‖∞, ‖V k‖∞} ≤ τ max{‖h(xk−1)‖∞, ‖V k−1‖∞},

define ρk+1 = ρk. Otherwise, define ρk+1 = γρk.

Step 5. Update multipliers

Compute λk+1
i ∈ [λmin, λmax], i = 1, . . . ,m and µk+1

i ∈ [0, µmax], i = 1, . . . , p. Set k ← k+1
and go to Step 1.

Theorem 2.6 is our final result in this section. We prove that, in a finite number of iterations,
Algorithm 2.2 finishes with a certificate of infeasibility, or finds a feasible point with tolerance
εfeas such that its objective function value is optimal with tolerance εopt. We will assume that
limk→∞ εk = 0, a condition that can of course be guaranteed if the external tolerance sequence
ε̄k tends to zero.

Theorem 2.6. Assume that Algorithm 2.2 is executed with the condition that limk→∞ εk = 0.
Then, the execution finishes in a finite number of iterations with one of the following diagnostics:

1. Infeasibility, which means that, guaranteedly, no feasible point of (1) exists;

13

2. Solution found, in the case that the final point xk is guaranteed to satisfy

‖h(xk)‖+ ‖g(xk)+‖ ≤ εfeas

and
f(xk) ≤ f(z) + εopt

for all z ∈ Ω such that h(z) = 0 and g(z) ≤ 0.

Proof. The proof follows straightforwardly from Theorems 2.2, 2.4, and 2.5. �

3 Adaptive precision variation of the main algorithm

The algorithms defined in this section are variations of Algorithms 2.1 and 2.2, where

εk = O(‖h(xk)‖+ ‖g(xk)+‖+

p
∑

i=1

|min{−gi(x
k), µk

i /ρk}|).

From now on, we denote

Wk = ‖h(xk)‖+ ‖g(xk)+‖+

p
∑

i=1

|min{−gi(x
k), µk

i /ρk}| (31)

and

Wk,ℓ = ‖h(x
k,ℓ)‖+ ‖g(xk,ℓ)+‖+

p
∑

i=1

|min{−gi(x
k,ℓ), µk

i /ρk}|. (32)

As a consequence, if Wk tends to zero, the new algorithms will find solutions up to an arbitrarily
high precision. On the other hand, if the problem is infeasible, Wk will be bounded away from
zero, no high precision solutions will be demanded from the subproblem solver, and infeasibility
will be detected in finite time. Since the stopping tolerance εk at each subproblem depends on
xk, subproblems may exist at which infinitely many iterations could be necessary to obtain a
solution. In this case, the subproblem solver will never stop. Fortunately, we will prove that, at
such a subproblem, some inner iterate generated by the subproblem solver will necessarily be
a solution with the required precision. Adaptive precision solution of subproblems have been
already used by some authors in the context of local optimization and quadratic programming.
See, among others, [32, 33, 43, 53].

Let c > 0 be a given constant. Algorithms 2.1 and 2.2, with εk = cWk, will be called here
Algorithm 3.1 and Algorithm 3.2, respectively. In both cases we assume that the subproblem is
solved by means of an iterative global optimization method that generates a sequence {xk,ℓ}ℓ∈IN
such that

Lρk(x
k,ℓ, λk, µk) ≤ Lρk(z, λ

k, µk) + εk,ℓ, (33)

for all z ∈ Ω ∩ Pk, where limℓ→∞ εk,ℓ = 0. If, for some ℓ, we obtain that

Lρk(x
k,ℓ, λk, µk) ≤ Lρk(z, λ

k, µk) + cWk,ℓ, (34)

14

we define xk = xk,ℓ, Wk = Wk,ℓ, and εk = cWk, we stop the execution of the subproblem solver
and we return to the main algorithm.

However, the possibility remains that, for all ℓ ∈ IN , there exists z ∈ Ω ∩ Pk such that

Lρk(z, λ
k, µk) + cWk,ℓ ≤ Lρk(x

k,ℓ, λk, µk) ≤ Lρk(z, λ
k, µk) + εk,ℓ. (35)

This means that, although subproblems are solved up to arbitrarily small precisions, the precision
attained is always bigger than cWk. In principle, the subproblem solver will never stop in this
case. Clearly, (35) implies that, for all ℓ ∈ IN ,

cWk,ℓ ≤ εk,ℓ. (36)

Therefore,

lim
ℓ→∞

‖h(xk,ℓ)‖+ ‖g(xk,ℓ)+‖ = lim
ℓ→∞

p
∑

i=1

∣

∣

∣

∣

min

{

− gi(x
k,ℓ),

µk
i

ρk

}∣

∣

∣

∣

= 0. (37)

At this point, it is convenient to give a formal definition of Algorithm 3.1. We will assume,
from now on in this section, that Assumption A2 holds.

Algorithm 3.1

Let λmin < λmax, µmax > 0, γ > 1, 0 < τ < 1. Let λ1
i ∈ [λmin, λmax], i = 1, . . . ,m, µ1

i ∈
[0, µmax], i = 1, . . . , p, and ρ1 > 0. Initialize k ← 1.

Step 1 Consider the subproblem
Minimize Lρk(x, λ

k, µk) (38)

subject to x ∈ Ω ∩ Pk.

Try to solve the subproblem by means of an iterative algorithm (the subproblem solver)
that generates a sequence {xk,ℓ} with the following properties.

1. Possible emptiness of Ω ∩ Pk is detected by the subproblem solver in finite time.

2. The sequence generated by the subproblem solver satisfies

Lρk(x
k,ℓ, λk, µk) ≤ Lρk(z, λ

k, µk) + εk,ℓ, (39)

for all z ∈ Ω ∩ Pk, where the positive sequence εk,ℓ is such that

lim
ℓ→∞

εk,ℓ = 0. (40)

If the subproblem solver detects that Ω∩Pk is empty, stop the execution of Algorithm 3.1.

If, for some ℓ, (34) holds, define xk = xk,ℓ, Wk = Wk,ℓ, εk = cWk and go to Step 2.

15

Step 2. Define

V k
i = min

{

− gi(x
k),

µk
i

ρk

}

, i = 1, . . . , p.

If k = 1 or
max{‖h(xk)‖∞, ‖V k‖∞} ≤ τ max{‖h(xk−1)‖∞, ‖V k−1‖∞}, (41)

define ρk+1 = ρk. Otherwise, define ρk+1 = γρk.

Step 3. Compute λk+1
i ∈ [λmin, λmax], i = 1, . . . ,m and µk+1

i ∈ [0, µmax], i = 1, . . . , p. Set
k ← k + 1 and go to Step 1.

In the following theorem, we deal with the behavior of Algorithm 3.1 when Ω ∩ Pk is non-
empty for all k and all the subproblems are solved, satisfying (34) for some finite value of ℓ. We
show that, in this case, every limit point is feasible, or is a minimizer of infeasibility in the sense
of Theorem 2.1.

Theorem 3.1. Assume that {xk} is an infinite sequence generated by Algorithm 3.1. Let K ⊂
∞
IN

and x∗ ∈ Ω be such that limk∈K xk = x∗. Then, for all z ∈ Ω such that z is a limit point of
{zk}k∈K , with zk ∈ Ω ∩ Pk for all k ∈ K, we have:

‖h(x∗)‖2 + ‖g(x∗)+‖ ≤ ‖h(z)‖
2 + ‖g(z)+‖

2. (42)

In particular, if problem (1) is feasible, every limit point of {xk} is feasible too.

Proof. Define, for all k ∈ IN ,
εk = cWk.

Since xk ∈ Ω for all k, Ω is compact, {λk/ρk} and {µ
k/ρk} are bounded, and the constraint func-

tions are continuous, we have that the sequence {Wk} is bounded. Therefore, {εk} is bounded
and Assumption A1 holds. Thus, the sequence {xk} may be thought as being generated by
Algorithm 2.1. So, (42) follows from Theorem 2.1. �

Theorem 3.2. Assume that {xk} is generated by Algorithm 3.1 and, for some k ∈ IN , the
subproblem solver does not stop. Then, every limit point of the sequence {xk,ℓ}ℓ∈IN is feasible.

Proof. By (37) the sequences {h(xk,ℓ)} and {g(xk,ℓ)+} tend to zero as ℓ tends to infinity. This
implies the desired result. �

Theorem 3.3 corresponds to Theorem 2.2 of Section 2 and establishes a sufficient and neces-
sary computable condition for infeasibility.

Theorem 3.3. Assume that {xk} is an infinite sequence generated by Algorithm 3.1. Then, the
problem (1) is infeasible if and only if there exists k ∈ IN such that

ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

−
ρk
2

[

∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2
]

+ cWk < −ck. (43)

16

Proof. As in Theorem 3.1, defining εk = cWk, the sequence {xk} can be considered as being
generated by Algorithm 2.1. Therefore, the thesis follows from Theorem 2.2. �

In Theorem 3.4 we will prove that, when Algorithm 3.1 generates an infinite sequence {xk},
its limit points are global solutions of (1).

Theorem 3.4. Assume that {xk} is an infinite sequence generated by Algorithm 3.1 and the
problem (1) is feasible. Then, limk→∞Wk = 0 and every limit point of {xk} is a global solution
of the problem.

Proof. As in Theorem 2.3, LetK ⊂
∞
IN and x∗ ∈ Ω be such that limk∈K xk = x∗. By Theorem 3.1,

x∗ is feasible.
Since the feasible set is non-empty and compact, problem (1) admits a global minimizer

z ∈ Ω. By Assumption A2, z ∈ Pk for all k ∈ IN . Consider first the case in which ρk →∞. By
Theorem 3.3, we have that

∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2

+
2(cWk + ck)

ρk

for all k ∈ IN , where ck is defined in (6). Taking limits for k → ∞ we get that ‖h(x∗)‖ =
‖g(x∗)+‖ = 0 for all limit point x∗. This implies that

lim
k→∞

‖h(xk)‖ = lim
k→∞

‖g(xk)+‖ = 0. (44)

Now, since for all i = 1, . . . , p, µk
i /ρk tends to zero and gi(x

k)+ also tends to zero, we have
that:

lim
k→∞

min{−gi(x
k), µk

i /ρk} = 0. (45)

By (44) and (45), it turns out that

lim
k→∞

Wk = 0. (46)

As in (9), by the definition of Algorithm 3.1,

f(xk)+
ρk
2

[∥

∥

∥

∥

h(xk)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f(z)+
ρk
2

[∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+cWk

(47)
for all k ∈ IN .

Since h(z) = 0 and g(z) ≤ 0, we have:
∥

∥

∥

∥

h(z) +
λk

ρk

∥

∥

∥

∥

2

=

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

and

∥

∥

∥

∥

(

g(z) +
µk

ρk

)

+

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2

.

Therefore, by (47),

f(xk) ≤ f(xk) +
ρk
2

[∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f(z) +
‖λk‖2

2ρk
+
‖µk‖2

2ρk
+ cWk.

17

By (46), taking limits for k ∈ K, using that limk∈K ‖λ
k‖2/ρk = limk∈K ‖µ

k‖2/ρk = 0, by the
continuity of f and the convergence of xk, we get:

f(x∗) ≤ f(z).

Since z is a global minimizer, it turns out that x∗ is a global minimizer in the case that ρk →∞.
Consider now the case in which ρk is bounded. By (31) and (41), we have that limk→∞Wk = 0.

Therefore, defining εk = cWk we may think that the sequence is generated by Algorithm 2.1.
Then, the thesis follows from Theorem 2.3. �

In order to complete the asymptotic convergence properties of Algorithm 3.1, we only need
to consider the case in which, at some iteration k, the subproblem solver does not finish, thus
generating a sequence {xk,ℓ}. This is done in the following theorem.

Theorem 3.5. Assume that for some k ∈ IN the subproblem solver used at Step 1 of Algo-
rithm 3.1 does not finish (thus generating a sequence {xk,0, xk,1, xk,2, . . .}). Then, every limit
point of the infinite sequence {xk,ℓ} is a global solution of (1).

Proof. By (36) and (40), we have that limℓ→∞Wk,ℓ = 0. Then, by (32), if x∗ is a limit point of
{xk,ℓ} (say, limℓ∈K xk,ℓ = x∗) we obtain that h(x∗) = 0 and g(x∗) ≤ 0. Now, since Wk,ℓ → 0, we
have that

lim
ℓ→∞

min{−gi(x
k,ℓ), µk

i /ρk} = 0

for all i = 1, . . . , p. This implies that

µk
i = 0 or gi(x

∗) = 0 (48)

for all i = 1, . . . , p. The remaining steps of this proof evoke Case 2 of Theorem 2.3.
Let z ∈ Ω ∩ Pk be a global minimizer of (1). By Step 1 of of Algorithm 3.1 and (39), we

have:

f(xk,ℓ)+
ρk
2

[∥

∥

∥

∥

h(xk,ℓ)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk,ℓ)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f(z)+
ρk
2

[∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+εk,ℓ

for all ℓ ∈ IN . Since g(z) ≤ 0 and µk/ρk ≥ 0,

∥

∥

∥

∥

(

g(z) +
µk

ρk

)

+

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2

.

Thus, since h(z) = 0,

f(xk,ℓ)+
ρk
2

[∥

∥

∥

∥

h(xk,ℓ)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk,ℓ)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f(z)+
ρk
2

[∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2]

+ εk,ℓ (49)

for all ℓ ∈ IN .

18

By (48), if gi(x
∗) < 0 we have that µk

i = 0. This implies that (gi(x
k,ℓ)+µk

i /ρk)+ = 0 for ℓ ∈ K
large enough. Therefore, for ℓ ∈ K large enough,

∑p
i=1(gi(x

k,ℓ)+µk
i /ρk)

2
+ =

∑

gi(x∗)=0(gi(x
k,ℓ)+

µk
i /ρk)

2
+.

Thus, by (49), for ℓ ∈ K large enough we have:

f(xk,ℓ) +
ρk
2

[m
∑

i=1

(

hi(x
k,ℓ) +

λk
i

ρk

)2

+
∑

gi(x∗)=0

(

gi(x
k,ℓ) +

µk
i

ρk

)2

+

]

≤ f(z) +
ρk
2

[m
∑

i=1

(

λk
i

ρk

)2

+
∑

gi(x∗)=0

(

µk
i

ρk

)2]

+ εk,ℓ. (50)

Taking limits for ℓ ∈ K on both sides of (50) we obtain that f(x∗) ≤ f(z). Thus, the desired
result is proved. �

As in the case of Theorem 2.4, the following theorem establishes a computable sufficient
condition which guarantees that f(xk) is not much greater (and perhaps smaller) than the min-
imum of f(z) in the feasible region.

Theorem 3.6. Assume that {xk} is an infinite sequence generated by Algorithm 3.1 (thus, the
subproblem solver always finishes satisfying (34)). Let ε ∈ IR (perhaps negative) and k ∈ IN be
such that

ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

−
ρk
2

[

∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2
]

≤ ε.

Then
f(xk) ≤ f(z) + ε+ cWk,

for all global minimizer z.

Proof. As in Theorem 3.1, defining εk = cWk, we may think the sequence {xk} as being gener-
ated by Algorithm 2.1. Therefore, the desired results follow from Theorem 2.4. �

As in the case of Theorem 2.5, the following theorem shows that the sufficient condition
stated in Theorem 3.6 eventually takes place at some xk, when Algorithm 3.1 generates an infi-
nite sequence.

Theorem 3.7. Assume that {xk} is an infinite sequence generated by Algorithm 3.1. Suppose
that the problem (1) is feasible. Let ε be an arbitrary positive number. Then, there exists k ∈ IN
such that

ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

−
ρk
2

[

∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2
]

≤ ε. (51)

Proof. Define εk = cWk. By Theorem 3.4, we have that limk→∞Wk = 0. Therefore, the se-
quence {xk} may be thought of as being generated by Algorithm 2.1, with εk → 0. Therefore,

19

the thesis follows from Theorem 2.5. �

Theorem 3.8 deals with the case in which the sequence {xk} is finite because, at some iter-
ation, the stopping criterion for the subproblem never takes place. In this case, we will prove
that a sufficient condition similar to (51) is eventually fulfilled.

Theorem 3.8. Assume that for some k ∈ IN the subproblem solver used in Step 1 of Algo-
rithm 3.1 does not finish. Let {xk,0, xk,1, xk,2, . . .} be the sequence generated by the subproblem
solver. Let ε > 0 be arbitrarily small. Then, there exists ℓ ∈ IN such that

ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

−
ρk
2

[

∥

∥

∥

∥

h(xk,ℓ) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk,ℓ) +
µk

ρk

)

+

∥

∥

∥

∥

2
]

≤ ε. (52)

Proof. By the compactness of Ω, there exists K ⊂
∞
IN and x∗ ∈ Ω such that limℓ∈K xk,ℓ = x∗

and, by Theorem 3.2, x∗ is feasible. The proof follows as a small variation of the arguments
of Theorem 2.5 for the case in which {ρk} is bounded. In fact, For all i = 1, . . . ,m we have
that (ρk/2)[hi(x

k,ℓ) + λk
i /ρk]

2 = (ρk/2)[hi(x
k,ℓ)2 + 2hi(x

k,ℓ)λk
i /ρk + (λk

i /ρk)
2]. Since ρk and

λk are fixed, and hi(x
k,ℓ) → 0 there exists ℓ0(i) ∈ K such that (ρk/2)[hi(x

k,ℓ) + λk
i /ρk]

2 ≥
(ρk/2)(λ

k
i /ρk)

2 − ε/(2m) for all ℓ ∈ K, ℓ ≥ ℓ0(i). Taking ℓ0 = max{ℓ0(i)} we obtain that, for
all ℓ ∈ K, ℓ ≥ ℓ0, i = 1, . . . ,m,

ρk
2

(

λk
i

ρk

)2

−
ρk
2

(

hi(x
k,ℓ) +

λk
i

ρk

)2

≤
ε

2m
. (53)

Assume that gi(x
∗) < 0. Since Wk,ℓ → 0, we have that limℓ→∞min{−gi(x

k,ℓ), µk
i /ρk} = 0,

so µk
i = 0. Thus, there exists ℓ1(i) ≥ ℓ0 such that (gi(x

k,ℓ)+µk
i /ρk)+ = 0 for all ℓ ∈ K, ℓ ≥ ℓ1(i).

Therefore, since µk
i /ρk = 0, there exists ℓ2(i) ≥ ℓ1(i) such that

0 =
ρk
2

(

µk
i

ρk

)2

−
ρk
2

(

gi(x
k,ℓ) +

µk
i

ρk

)2

+

≤
ε

2p
(54)

for all ℓ ∈ K, ℓ ≥ ℓ2(i). Taking ℓ2 = max{ℓ2(i)}, we obtain that (54) holds for all ℓ ∈ K, ℓ ≥ ℓ2
whenever gi(x

∗) < 0.
Similar to the proof of Theorem 2.3, we define

I = {i ∈ {1, . . . , p} | gi(x
∗) = 0}

and
K1 = {ℓ ∈ K | ℓ ≥ ℓ2}.

For each i ∈ I, we define

K+(i) = {ℓ ∈ K1 | gi(x
k,ℓ) + µk

i /ρk ≥ 0}

and
K−(i) = {ℓ ∈ K1 | gi(x

k,ℓ) + µk
i /ρk < 0}.

20

Let us fix i ∈ I. For ℓ large enough, since gi(x
∗) = 0, by the continuity of gi, we have that:

ρk
2

(

gi(x
k,ℓ)2 +

2gi(x
k,ℓ)µk

i

ρk

)

≥ −
ε

2p
.

Therefore,
ρk
2

[

gi(x
k,ℓ)2 +

2gi(x
k,ℓ)µk

i

ρk
+

(

µk
i

ρk

)2]

≥
ρk
2

(

µk
i

ρk

)2

−
ε

2p
.

Thus, for ℓ ∈ K+(i) large enough,

ρk
2

(

µk
i

ρk

)2

−
ρk
2

(

gi(x
k,ℓ) +

µk
i

ρk

)2

+

≤
ε

2p
. (55)

Now, if ℓ ∈ K−(i), we have that −gi(x
k,ℓ) > µk

i /ρk. So, since gi(x
k,ℓ) tends to zero, we have

that (ρk/2)(µ
k
i /ρk)

2 = 0 < ε/(2p). Therefore,

0 =
ρk
2

(

µk
i

ρk

)2

−
ρk
2

(

gi(x
k,ℓ) +

µk
i

ρk

)2

+

≤
ε

2p
(56)

By (54), (55), and (56),

ρk
2

(

µk
i

ρk

)2

−
ρk
2

(

gi(x
k,ℓ) +

µk
i

ρk

)2

+

≤
ε

2p
(57)

for all i = 1, . . . , p.
Taking the summation for i = 1, . . . ,m in (53) and for i = 1, . . . , p in (57) we obtain the

desired result. �

Let us prove now that, again in the case in which the algorithm stays solving the subprob-
lem k, the condition (52) guarantees a small value of f(xk,ℓ).

Theorem 3.9. Assume that for some k ∈ IN the subproblem solver used at Step 1 of Al-
gorithm 3.1 does not finish. As in previous theorems, let {xk,0, xk,1, xk,2, . . .} be the sequence
generated by the subproblem solver. Let ε ∈ IR (note that ε may be negative) and ℓ ∈ IN such
that

ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

−
ρk
2

[

∥

∥

∥

∥

h(xk,ℓ) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk,ℓ) +
µk

ρk

)

+

∥

∥

∥

∥

2
]

≤ ε. (58)

Then, for all global minimizer z of problem (1), we have that

f(xk,ℓ) ≤ f(z) + ε+ εk,ℓ. (59)

Proof. Similarly to Theorem 2.4, we have that, for all global minimizer z and for all ℓ ∈ IN ,

f(xk,ℓ)+
ρk
2

[
∥

∥

∥

∥

h(xk,ℓ)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk,ℓ)+
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f(z)+
ρk
2

[
∥

∥

∥

∥

h(z)+
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(z)+
µk

ρk

)

+

∥

∥

∥

∥

2]

+εk,ℓ,

(60)

21

∥

∥

∥

∥

h(z) +
λk

ρk

∥

∥

∥

∥

2

=

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

, (61)

∥

∥

∥

∥

(

g(z) +
µk

ρk

)

+

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2

, (62)

By (58), (60), (61), and (62),

f(xk,ℓ) +
ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

− ε ≤ f(xk,ℓ) +
ρk
2

[∥

∥

∥

∥

h(xk,ℓ) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk,ℓ) +
µk

ρk

)

+

∥

∥

∥

∥

2]

≤ f(z) +
‖λk‖2

2ρk
+
‖µk‖2

2ρk
+ εk,ℓ. (63)

Simplifying the expression (63), we obtain:

f(xk,ℓ) ≤ f(z) + ε+ εk,ℓ,

as we wanted to prove. �

The theorems above allow us to define an adaptive algorithm with finite termination. The
algorithm will return with a message of guaranteed infeasibility, or with a “solution” xsol that
is feasible with a given tolerance εfeas > 0 and optimal in the sense that f(xsol) is smaller than
or equal to f(z) + εopt for all feasible z.

We emphasize that Assumption A2 is assumed to hold, but no external optimality toler-
ances {εk} exist at all.

Algorithm 3.2

Let c > 0, λmin < λmax, µmax > 0, γ > 1, 0 < τ < 1. Let λ1
i ∈ [λmin, λmax], i = 1, . . . ,m,

µ1
i ∈ [0, µmax], i = 1, . . . , p, and ρ1 > 0. Initialize k ← 1.

Step 1 Solve the subproblem

By means of global optimization on the set Ω∩Pk (typically, the αBB algorithm), address
the subproblem

Minimize Lρk(x, λ
k, µk) subject to x ∈ Ω ∩ Pk. (64)

If, in the process of solving (64), the set Ω∩Pk is detected to be empty, stop the execution
of Algorithm 3.2 declaring Infeasibility. Otherwise, we assume that the subproblem
solver generates a sequence {xk,0, xk,1, xk,2, . . .} such that, for all ℓ ∈ IN ,

Lρk(x
k,ℓ, λk, µk) ≤ Lρk(z, λ

k, µk) + εk,ℓ for all z ∈ Ω ∩ Pk, (65)

where limℓ→∞ εk,ℓ = 0.

22

At each iteration ℓ of the subproblem solver we compute Wk,ℓ as in (32) and we perform
the test (34). Note that, by (65), it is enough to test whether

εk,ℓ ≤ cWk,ℓ. (66)

If (34) guaranteedly holds, we define xk = xk,ℓ, Wk = Wk,ℓ, εk = εk,ℓ and we go to Step 2.

If (34) is not guaranteed to hold at iteration ℓ of the subproblem solver, define

γk,ℓ =
ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

−
ρk
2

[

∥

∥

∥

∥

h(xk,ℓ) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk,ℓ) +
µk

ρk

)

+

∥

∥

∥

∥

2
]

.

If
‖h(xk,ℓ)‖+ ‖g(xk,ℓ)+‖ ≤ εfeas and γk,ℓ + εk,ℓ ≤ εopt, (67)

define xsol = xk,ℓ and stop the execution of Algorithm 3.2 declaring Solution found.
Otherwise, the execution of the subproblem solver continues with iterate ℓ+ 1.

Step 2 Test Infeasibility

Compute ck > 0 such that |f(z)− f(xk)| ≤ ck for all z ∈ Ω ∩ Pk and define

γk =
ρk
2

[

∥

∥

∥

∥

λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

µk

ρk

∥

∥

∥

∥

2
]

−
ρk
2

[

∥

∥

∥

∥

h(xk) +
λk

ρk

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

g(xk) +
µk

ρk

)

+

∥

∥

∥

∥

2
]

.

If
γk + εk < −ck,

stop the execution of the algorithm declaring Infeasibility.

Step 3 Test Feasibility and optimality

If
‖h(xk)‖+ ‖g(xk)+‖ ≤ εfeas and γk + εk ≤ εopt,

stop the execution of the algorithm declaring Solution found.

Step 4 Update penalty parameter

Define

V k
i = min

{

− gi(x
k),

µk
i

ρk

}

, i = 1, . . . , p.

If k = 1 or
max{‖h(xk)‖∞, ‖V k‖∞} ≤ τ max{‖h(xk−1)‖∞, ‖V k−1‖∞},

define ρk+1 = ρk. Otherwise, define ρk+1 = γρk.

Step 5 Update multipliers

Compute λk+1
i ∈ [λmin, λmax], i = 1, . . . ,m and µk+1

i ∈ [0, µmax], i = 1, . . . , p. Set k ← k+1
and go to Step 1.

23

Theorem 3.10 is the final result of this section. As in the case of Theorem 2.6, we prove that
Algorithm 3.2 stops in finite time with a certificate of infeasibility, or guaranteeing optimality
up to arbitrarily small given precisions in terms of feasibility and optimality.

Theorem 3.10. The execution of Algorithm 3.2, for solving problem (1), finishes in finite time
with one of the following diagnostics:

1. Infeasibility, which means that, guaranteedly, no feasible point of (1) exists;

2. Solution found, in the case that the final point xsol is guaranteed to satisfy

‖h(xsol)‖+ ‖g(xsol)+‖ ≤ εfeas

and
f(xsol) ≤ f(z) + εopt

for all z ∈ Ω such that h(z) = 0 and g(z) ≤ 0.

Proof. The proof follows straightforwardly from the theorems proved in this section. �

4 Solving the subproblems

In this subsection we describe a method for solving the subproblems at Step 1 of Algorithms 2.2
and 3.2. For simplicity, we omit the dependency on k. Therefore, the problem to be solved here
can be stated as

Minimize Lρ(x, λ, µ) subject to x ∈ Ω ∩ P. (68)

We assume that Ω = Ω1∩Ω2, where Ω1 = {x ∈ IRn | l ≤ x ≤ u}, Ω2 = {x ∈ IRn | Ax = b, Cx ≤
d}, and −∞ < li ≤ ui < +∞, i = 1, . . . , n. From now on, we will interchange the notations Ω1

and [l, u] and this set will be called the original box, while we will refer to any [s, t] ⊆ [l, u] as
subbox. Moreover, we will refer to [s, t] ∩Ω2 as the feasible subregion determined by [s, t]. If the
context allows us to do that without any doubt, we will simple call it subregion. The set P is
not given in advance and it is constructed on the fly by Algorithm 4.1 with the only restriction
that Z ⊆ P , where Z is the set of global minimizers of (1). Its definition will be clarified later.

The method considered for solving (68) is a deterministic spatial Branch-and-Bound algo-
rithm (see, for example, [49, 71]). The method uses a set S of subboxes to be split that starts
with the original box. At each iteration of the method, a subbox [s, t] is chosen and removed
from S. The subbox [s, t] is split into a set T = {[s1, t1], . . . , [s|T |, t|T |]} of smaller subboxes.

For each subbox [si, ti] a lower bound Llb
[si,ti]

and an upper bound Lub
[si,ti]

of the global min-

imum of Lρ(x, λ, µ) restricted to the feasible subregion determined by [si, ti] are computed.
The upper bound is commonly computed through a local minimization of Lρ(x, λ, µ) subject
to x ∈ [si, ti] ∩ Ω2. The point xub that attains the smallest over all computed upper bounds is
known as an incumbent solution and its objective functional value Lρ(x

ub, λ, µ) is denoted by
Lub from now on. A subbox [si, ti] can be discarded if its lower bound Llb

[si,ti]
is greater than or

close enough to Lub. The subboxes in T that could not be discarded are added to S when a new

24

iteration begins. The method stops when S is empty or when the lower bounds of all subboxes
in S are greater than or close enough to Lub.

If we define the dimension of a given subbox as the radius of the hypersphere that circum-
scribes it, then the splitting of the subboxes into smaller subboxes must be made in such a way
that the dimension of the largest subbox in S tends to zero. A lower bound within a subbox [s, t]
is usually computed by minimizing over [s, t] ∩ Ω2 a convex underestimator of Lρ(x, λ, µ) valid
within the subbox [s, t]. If the α-convex underestimator [52, 54] is employed, as it is the case
of the present work, then the method can be considered an implementation of the well-known
αBB method [1, 2, 3, 14]. The α-convex underestimator of Lρ(x, λ, µ) coincides with Lρ(x, λ, µ)
at the boundary of the subbox [s, t] and its maximum separation (distance to Lρ(x, λ, µ)) is
proportional to the subbox dimension [52]. Therefore, the smaller the subbox, the tighter the
convex α-underestimator, assuring the finite termination of the method for any desired precision
ε > 0 on the computed global minimum. Interval analysis applied to the subbox [s, t] could also
be used to compute a lower bound of Lρ(x, λ, µ) within the subregion [s, t] ∩ Ω2, but, since Ω2

would be ignored, this approach would be very inefficient.
Since the smaller the subbox the tighter the α-convex underestimator is, additional tech-

niques can be considered before computing a lower bound within the feasible subregion deter-
mined by a given subbox [s, t] by minimizing the α-convex underestimator. Assume Ω3 is a set
given by linear constraints such that Z ∩ [s, t] ⊆ Ω3 (recall that Z is the set of global minimizers
of (1)). Ω3 may be constructed using linear relaxations over [s, t] of the nonlinear constraints
h(x) = 0 (seen as h(x) ≤ 0 and −h(x) ≤ 0) and g(x) ≤ 0 of (1). Other linear constraints
satisfied by every z ∈ Z can also be used in the construction of Ω3. For example, if, by having
at hand a few feasible points, stationary points or local minimizers of the original problem (1),
it is known that f(z) ≤ fub for z ∈ Z, then, constraint f(x) ≤ fub can also be considered in Ω3,
where f(x) is a linear relaxation of f(x) valid within the subbox. Using Ω3, a reduced subbox
[sr, tr] ⊆ [s, t] can be obtained by solving the 2n linear programming problems:

sri = argminxi subject to x ∈ [s, t] ∩ Ω2 ∩ Ω3, i = 1, . . . , n,
tri = argmaxxi subject to x ∈ [s, t] ∩ Ω2 ∩ Ω3, i = 1, . . . , n.

(69)

If, in this process, [sr, tr] is discovered to be empty, the subbox [s, t] can be discarded. Otherwise,
the work within this subbox proceeds. Before constructing the α-convex underestimator of the
objective function of (68) within the subbox [sr, tr] and minimizing it over [sr, tr] ∩ Ω2 ∩ Ω3,
something computationally less expensive may be tried. If, by interval analysis, it is shown
that nothing better (i.e. sufficiently smaller) than the incumbent solution can be found within
[sr, tr], the subbox [sr, tr] can also be discarded. If none of these trials allows us to discard the
subbox, the α-convex underestimator is minimized over [sr, tr] ∩ Ω2 ∩ Ω3 to obtain the lower
bound Llb

[sr,tr]. If this lower bound shows that nothing better than the incumbent solution can be

found within the subbox, then the subbox is discarded. The set P in (68), which exists only to
describe the subproblem being solved but does not take part in the calculations in practice, may
be considered as the union of all these discarded reduced subboxes of the form [sr, tr]1. If the

1By this, we mean that regions of the form [s, t] \ [sr, tr] are not part of the feasible set of (68). By the way in
which the suboxes are shrunk, it is clear that those regions contain infeasible points of the original problem (1) or
feasible suboptimal points. In other words, by considering the intersection of Ω with P as the feasible set of (68),

25

subbox is not discarded, a local minimization of Lρ(x, λ, µ) over [s
r, tr] ∩ Ω2 ∩ Ω3 is performed

to compute Lub
[sr ,tr], and the subbox is added to the set S of subboxes to be split.

The following algorithm describes the implementation of the αBB method considered in the
present work. It computes a global minimizer of (68) with a given precision 0 < ε < +∞. In
the algorithm, S is the set of subboxes waiting to be split. For the subboxes [s, t] in S, the lower
bound Llb

[s,t] was already computed. Therefore, S is a set of triplets of the form [s, t, Llb
[s,t]]. The

set S is implemented as a heap data structure using Llb
[s,t] as a key. Hence, the subbox [s, t] in S

with the smallest lower bound Llb
[s,t] can be chosen (with constant time complexity) to be split.

Moreover, as the selected subbox is the one with the smallest lower bound, in the case that Llb
[s,t]

is greater than or close enough to Lub, i.e. Llb
[s,t] ≥ Lub− ε, then all the remaining subboxes in S

can also be discarded and the method can be stopped without clearing S.

Algorithm 4.1

Step 1. Define ξub0 = +∞ and Llb
[l,u] = −∞, and initialize S ← {[l, u, Llb

[l,u]]} and ℓ← 0.

Step 2. Select a subbox to split and check stopping criterion

Step 2.1. If S = ∅, stop declaring subproblem solution xℓ found with tolerance εℓ when-
ever ξubℓ < +∞, and declaring subproblem is infeasible otherwise.

Step 2.2. Let [s, t, Llb
[s,t]] ∈ S be such that Llb

[s,t] ≤ Llb
[ŝ,t̂]

for every [ŝ, t̂, Llb
[ŝ,t̂]

] ∈ S.

Step 2.3. Set S ← S \ {[s, t, Llb
[s,t]]}.

Step 2.4 Define ξlbℓ = Llb
[s,t] and εℓ = ξubℓ − ξlbℓ .

Step 2.5 If εℓ ≤ ε, stop declaring subproblem solution xℓ found with tolerance εℓ.

Step 3. Improve lower and upper bounds

Step 3.1 Set T ← {[s1, t1], . . . , [s|T |, t|T |]} as a partition of [s, t] and I ← ∅.

Step 3.2. For each [si, ti] ∈ T , perform Steps 3.2.1–3.2.6.

Step 3.2.1. Let Ω3 be a polyhedron such that Z∩ [si, ti]∩Ω2 ⊆ Ω3, where Z is the set of global
minimizers of (1). Compute the reduced subbox [sri , t

r
i] ⊆ [si, ti] by solving the 2n linear

programming problems in (69). If [sri , t
r
i] = ∅ then discard the subbox [si, ti] and proceed

to execute Step 3 with the next subbox in T .

Step 3.2.2. For each constraint hj(x) = 0 in (1), compute by interval analysis [hmin
j , hmax

j] such

that hmin
j ≤ hj(x) ≤ hmax

j for all x ∈ [sri , t
r
i]. If 0 6∈ [hmin

j , hmax
j] then discard the subbox

[sri , t
r
i] and proceed to execute Step 3 with the next subbox in T .

the global minimization of the subproblem is restricted to a smaller feasible set that does not exclude the global
minimizers of the original problem (1).

26

Analogously, for each constraint gj(x) ≤ 0 in (1), compute by interval analysis [gmin
j , gmax

j]

such that gmin
j ≤ gj(x) ≤ gmax

j for all x ∈ [sri , t
r
i]. If [−∞, 0]∩ [gmin

j , gmax
j] = ∅ then discard

the subbox [sri , t
r
i] and proceed to execute Step 3 with the next subbox in T .

Let fub be the smallest known value associated to a feasible point of (1) (fub = +∞ is a
possible choice). Compute by interval analysis [fmin, fmax] such that fmin ≤ f(x) ≤ fmax

for all x ∈ [sri , t
r
i]. If fub < fmin then discard the subbox [sri , t

r
i] and proceed to execute

Step 3 with the next subbox in T .

Step 3.2.3. Using interval analysis, compute [Lmin, Lmax] such that Lmin ≤ Lρ(x, λ, µ) ≤ Lmax

for all x ∈ [sri , t
r
i]. If Lmin ≥ ξubℓ then discard the subbox [sri , t

r
i] and proceed to execute

Step 3 with the next subbox in T .

Step 3.2.4. Minimizing the α-convex underestimator, compute Llb
[sr

i
,tr
i
] such that Llb

[sr
i
,tr
i
] ≤

Lρ(x, λ, µ) for all x ∈ [sri , t
r
i] ∩ Ω2 ∩ Ω3. If Llb

[sr
i
,tr
i
] ≥ ξubℓ then discard the subbox [sri , t

r
i]

and proceed to execute Step 3 with the next subbox in T .

Step 3.2.5. Set S ← S ∪ {[sri , t
r
i , L

lb
[sr

i
,tr
i
]]} and I ← I ∪ {i}.

Step 3.2.6. Compute yi ∈ [sri , t
r
i] ∩ Ω2 ∩ Ω3. (yi would be the result of a local minimization of

Lρ(x, λ, µ) over [s
r
i , t

r
i] ∩ Ω2 ∩ Ω3, but any feasible point is also acceptable.)

Step 3.3. If I 6= ∅, let ŷ = argmin{yi|i∈I}{Lρ(yi, λ, µ)} be the best among the yi’s computed at

Step 3.2.6. If I = ∅ or Lρ(ŷ, λ, µ) ≥ ξubℓ then define ξubℓ+1 = ξubℓ and xℓ+1 = xℓ. Otherwise,

define ξubℓ+1 = Lρ(ŷ, λ, µ) and xℓ+1 = ŷ.

Step 4. Set ℓ← ℓ+ 1 and go to Step 2.

Remarks. (a) Steps 3.2.1–3.2.3 are optional and may be skipped, setting Ω3 = IRn and
[sri , t

r
i] = [si, ti]. However, their existence improves the efficiency of Algorithm 4.1. On the one

hand, Steps 3.2.1 and 3.2.2 bring to the subproblem information about the structure (objective
function and feasible region) of the original problem (1). On the other hand, Step 3.2.3 uses
interval analysis aiming to avoid the more time-consuming task of constructing and minimizing
the α-convex underestimator. (b) If tolerance ε > 0 is a given fixed parameter then inequali-
ties Lmin ≥ ξubℓ and Llb

[sr
i
,tr
i
] ≥ ξubℓ , used at Steps 3.2.3 and 3.2.4 to discard a subbox, may be

replaced by the looser inequalities Lmin ≥ ξubℓ − ε and Llb
[sr

i
,tr
i
] ≥ ξubℓ − ε, respectively. At first

glance, using looser inequalities to discard subboxes may appear to have the effect of reducing
the overall algorithmic effort. However, these changes have little or no effect on the performance
of Algorithm 4.1, since the subboxes not being discarded by the tighter inequalities are the ones
that remain in S when the method stops. We opted for the tighter inequalities without the
tolerance ε because, when Algorithm 4.1 is used to solve the subproblems of Algorithm 3.2, ε is
not a fixed given tolerance. On the other hand, in this situation ε is such that (66) or (67) hold
(recall that, for simplicity, we are omitting the dependency on k in the present section). (c) To
consider Ω3 at Steps 3.2.4 and 3.2.6 is optional and there is a trade-off between using it or not.
On the one hand, using Ω3, tighter lower bounds may be found at Step 3.2.4. On the other hand,

27

solving subproblems with more constraints may be more time consuming. Preliminary numeri-
cal experiments showed that, at least for the problems that will be considered in the numerical
experiments, to ignore Ω3 at those two steps is preferable. (d) At Step 1, the upper and lower
bounds ξub0 and Llb

[l,u] for the optimal value within the original box are being set as +∞ and −∞,

respectively. Hence, even for a convex subproblem of type (68), the stopping criteria at Step 2
will not be satisfied at iteration ℓ = 0 and the original box will be split in at least two subboxes
at Step 3.1. In practice, this inconvenience may be overcome in two equivalent ways: (i) at
Step 3.1, we set T ← {[s, t]} if [s, t] = [l, u]; or (ii) at Step 1, ξub0 and Llb

[l,u] may be computed

by performing Steps 3.2.1–3.2.6 for the original box [l, u]. (e) At Step 3.2.1, when reducing
a subbox by solving the 2n linear programming subproblems in (69), additional information
related to the objective function of the subproblem (68) may be considered. Since an upper
bound Lub for the optimal value of (68) is known, and observing that f(x) ≤ f(x) ≤ Lρ(x, λ, µ)

for all x ∈ [si, ti], the constraint f(x) ≤ Lub may be added to the definition of Ω3 in order
to discard regions of [si, ti] that do not contain a global solution of (68) (recall that f(x) de-
notes a linear underestimator of f(x) within the subbox [si, ti]). In the case that the constraint
f(x) ≤ fub is also being considered in Ω3 as suggested in the paragraph previous to (69), then

both constraints would be considered together as f(x) ≤ min{fub, Lub}. Observe that, by doing
that, although it has no practical implications, the definition of set P can not be expressed
anymore in terms of Ω3 and the linear programming subproblems in (69), as we may now be
excluding a global solution z of the original problem (1) from the union of the reduced subboxes.

Algorithm 4.1 is an implementation of the αBB method different from the one considered
in [21]. The main difference is that, in [21], S is a list of “unexplored subboxes” within which
nothing was done yet. In particular, no lower bounds are known for each subbox in S. On
the other hand, for each subbox in the set S of Algorithm 4.1, the subbox reduction, the lower
bound computation, and the local minimization were already done. Moreover, implementing S
as a priority list and using the lower bound of each subbox as a key, the smallest lower bound ξlbℓ
is given at Step 2.2 in constant time complexity. This new implementation is motivated by the
necessity of having available, at each iteration ℓ of Algorithm 4.1, an approximate solution xℓ

and a tolerance εℓ such that (65) holds, as required by Algorithm 3.2. It is easy to see that
Lρ(x

ℓ, λ, µ) = Lρ(z, λ, µ)+ [Lρ(x
ℓ, λ, µ)−Lρ(z, λ, µ)] ≤ Lρ(z, λ, µ)+ [ξubℓ − ξlbℓ] = Lρ(z, λ, µ)+ εℓ

as desired, where z is a global solution to (68). Another difference between Algorithm 4.1 and
the one introduced in [21] is that Algorithm 4.1 makes explicit the way in which infeasibility
of (68) may be detected.

5 Numerical experiments

We implemented Algorithms 2.2 and 3.2 (and Algorithm 4.1) as modifications of the method
introduced in [21] (freely available at http://www.ime.usp.br/∼egbirgin/). For interval analysis
calculations we use the Intlib library [46]. For solving linear programming problems we use sub-
routine simplx from the Numerical Recipes in Fortran [60]. To solve the linearly constrained
optimization problems, we use Genlin [13], an active-set method for linearly constrained opti-
mization based on a relaxed form of Spectral Projected Gradient iterations intercalated with

28

internal iterations restricted to faces of the polytope. Genlin generalizes the box-constraint op-
timization method Gencan [23]. It should be noted that simplx and Genlin are dense solvers.
Therefore, for problems with more that 50 variables or constraints, we used Minos [55] to solve
linear programming problems and linearly constrained problems. Codes are written in Fortran 77
(double precision). All the experiments were run on a 3.2 GHz Intel(R) Pentium(R) with 4 pro-
cessors, 1Gb of RAM and Linux Operating System. Compiler option “-O” was adopted.

Given a problem of the form (1), we consider that Ω = Ω1 ∩ Ω2, where Ω1 = {x ∈ IRn | l ≤
x ≤ u}, Ω2 = {x ∈ IRn | Ax = b, Cx ≤ d}, and l ≤ x ≤ u, Ax = b, and Cx ≤ d represent all the
bound constraints, linear equality constraints, and linear inequality constraints of problem (1),
respectively. This means that only the nonlinear constraints will be penalized. In both algo-
rithms, as suggested in [5] for the underlying local augmented Lagrangian method for Nonlinear
Programming problems, we set γ = 10, τ = 0.5, λmin = −1020, µmax = λmax = 1020, λ1 = 0,
µ1 = 0, and

ρ1 = max

{

10−6,min

{

10,
2|f(x0)|

‖h(x0)‖2 + ‖g(x0)+‖2

}}

,

where x0 is an arbitrary initial point. In Algorithm 3.2, we arbitrarily set c = 1.

5.1 Preliminaries

We start the numerical experiments by checking the practical behavior of Algorithm 2.2 in very
simple problems. The constant ck at Step 2 of Algorithm 2.2 is computed as follows. By interval
arithmetic, it is computed (only once) the interval [fmin, fmax] such that fmin ≤ f(x) ≤ fmax

for all x ∈ Ω1. Then ck is given by

ck = max{f(xk)− fmin, fmax − f(xk)}. (70)

We considered εfeas = εopt = 10−4 and ε̄k = max{10−k, εopt/2}.
In a first set of experiments, we considered the three simple problems given by:

Problem A: Min x subject to x2 + 1 ≤ 0, −10 ≤ x ≤ 10,

Problem B: Min x subject to x2 = 0, −10 ≤ x ≤ 10,

Problem C: Min x subject to x2 ≤ 1, −10 ≤ x ≤ 10.

Problem A is infeasible, while Problems B and C are feasible problems, Problem C admits
Lagrange multipliers and Problem B does not. In all cases we arbitrarily considered x0 = 1.5.
Table 1 shows the behavior of Algorithm 2.2 in Problems A, B, and C in detail. In the table, k
represents the iteration of the algorithm, ρk and λk are the values of the penalty parameter and
the Lagrange multiplier, respectively, that define the k-th augmented Lagrangian subproblem,
xk ∈ IR is the εk-global minimizer of the k-th subproblem, f(xk) is the value of the objective
function of the original problem at xk, ‖h(xk)‖+ ‖g(xk)+‖ is the (Euclidean norm) infeasibility
measurement at xk, ck is the value of the constant computed at Step 2 to perform the infeasibility
test while γk is the quantity defined at Step 2. Finally, εk ≤ ε̄k is the actual tolerance returned
by (the inner solver) Algorithm 4.1 such that xk is an εk-global minimizer of the augmented
Lagrangian subproblem of iteration k.

29

Problem A

k ρk λk xk and f(xk) ‖h(x∗)‖+ ‖g(x∗)+‖ ck γk εk
0 1.5000D+00 3.3D+00
1 2.8D+00 0.0D+00 -1.7104D−01 1.0D+00 1.0D+01 -1.5D+00 0.0D+00
2 2.8D+00 2.9D+00 -8.6434D−02 1.0D+00 1.0D+01 -4.4D+00 0.0D+00
3 2.8D+01 5.8D+00 -1.4623D−02 1.0D+00 1.0D+01 -2.0D+01 0.0D+00

Problem B

k ρk λk xk and f(xk) ‖h(x∗)‖+ ‖g(x∗)+‖ ck γk εk
0 1.5000D+00 2.3D+00
1 5.9D+00 0.0D+00 -4.3861D−01 1.9D−01 1.0D+01 -1.1D−01 1.7D−10
2 5.9D+00 1.1D+00 -2.9927D−01 9.0D−02 1.0D+01 -1.3D−01 6.3D−11
3 5.9D+00 1.7D+00 -2.4628D−01 6.1D−02 1.0D+01 -1.1D−01 0.0D+00
4 5.9D+01 2.0D+00 -1.4925D−01 2.2D−02 1.0D+01 -6.0D−02 0.0D+00
5 5.9D+01 3.4D+00 -1.1925D−01 1.4D−02 1.0D+01 -5.4D−02 0.0D+00
6 5.9D+02 4.2D+00 -7.0250D−02 4.9D−03 1.0D+01 -2.8D−02 0.0D+00
7 5.9D+02 7.1D+00 -5.5791D−02 3.1D−03 1.0D+01 -2.5D−02 0.0D+00
8 5.9D+03 9.0D+00 -3.2691D−02 1.1D−03 1.0D+01 -1.3D−02 8.3D−16
9 5.9D+03 1.5D+01 -2.5933D−02 6.7D−04 1.0D+01 -1.2D−02 6.9D−18
10 5.9D+04 1.9D+01 -1.5181D−02 2.3D−04 1.0D+01 -6.0D−03 4.6D−16
11 5.9D+04 3.3D+01 -1.2040D−02 1.4D−04 1.0D+01 -5.4D−03 2.3D−17
12 5.9D+05 4.2D+01 -7.0468D−03 5.0D−05 1.0D+01 -2.8D−03 2.2D−16

Problem C

k ρk λk xk and f(xk) ‖h(x∗)‖+ ‖g(x∗)+‖ ck γk εk
0 1.5000D+00 1.3D+00
1 1.0D+01 0.0D+00 -1.0241D+00 4.9D−02 1.1D+01 -1.2D−02 3.4D−12
2 1.0D+01 4.9D−01 -1.0006D+00 1.1D−03 1.1D+01 -5.7D−04 0.0D+00
3 1.0D+01 5.0D−01 -1.0000D+00 2.7D−05 1.1D+01 -1.4D−05 0.0D+00

Table 1: Detailed report of the quantities that characterize the behavior of Algorithm 2.2 on
Problems A, B, and C.

The highlight of Table 1 is that Algorithm 2.2 detects very quickly that Problem A is
infeasible and makes the method stop. Therefore, the contribution of Algorithm 2.2 with respect
to the method proposed in [21] is that, for Problem A, it rapidly detects that the problem
is infeasible and stops with a certificate of infeasibility. In contrast, the method proposed
in [21] applied to Problem A stops after nineteen iterations heuristically declaring “Constraints
violation has not decreased substantially over 9 outer iterations. Problem possibly infeasible.”.
In Problems B and C Algorithm 2.2 and the method introduced in [21] perform similarly in
practice. Both methods exhibit, in Problem B, the typical behavior in the case in which Lagrange
multipliers do not exist, taking many more iterations to solve it than in the case of Problem C.
The difference between the methods lies in the fact that Algorithm 2.2 provides the gap (sum of
γk plus εk displayed in the last two columns of Table 1) and guarantees with finite termination
that the required gap εopt = 10−4 is achieved.

Figures in the table (last iteration of each one of the three problems) show that negative
gaps are reported by Algorithm 2.2 for all three problems. This is only possible because the
delivered approximations to global solutions have an infeasibility tolerance of εfeas = 10−4. In
fact, direct calculation shows that, for all k, we have

γk + εk ≥ ǫk −
ρk
2

[

‖h(xk)‖2 + ‖g(xk)+‖
2

]

−max{‖λk‖, ‖µk‖}

[

‖h(xk)‖+ ‖g(xk)+‖

]

.

30

Therefore, at the final iterate, we have

γk + εk ≥ εk −
ρk
2
ε2feas −max{‖λk‖, ‖µk‖}εfeas,

showing what is the best that can be expected for the global optimality gap γk+εk with respect
to the allowed infeasibility tolerance εfeas.

The reader may be surprised by the small values of εk reported in the last column of Table 1
that say that subproblems are being solved to global optimality with high accuracy. Consider
Problem B. The first subproblem is solved at Step 1 requiring precision ε̄1 = 0.1, using λ0 = 0
and ρ1 ≈ 5.9259. Algorithm 4.1 returns x1 ≈ −4.3861 × 10−1 guaranteeing that it satisfies (3)
with ε1 ≈ 1.6771 × 10−10 ≪ ε̄1. It may be useful to mention that the subproblem solved by
Algorithm 4.1 was

Min x+
ρ1
2
x4 subject to − 10 ≤ x ≤ 10,

whose solution is, in fact, approx. x1. The convexity of this subproblem explains the tight
gap ε1 ≪ ε̄k obtained by Algorithm 4.1.

To verify the influence of the choice of ck at Step 2 of Algorithm 2.2, we checked the behavior
of the method on Problem A when considering the naive choice ck = fmax− fmin = 20 for all k.
As expected, larger values of ck (larger than the choice suggested in (70)), make the infeasibility
test at Step 2 harder to be satisfied and, in this simple example, the method takes one more
iteration to stop giving a certificate of infeasibility. As an alternative to strengthen the method,
values for fmin and fmax may be found by computing a global solution to the two auxiliary
problems

Min / Max f(x) subject to x ∈ Ω,

which, by the definition of Ω at the beginning of the present section, are linearly constrained
problems. This task is not harder than twice the effort of Step 2 of Algorithm 2.2. This
alternative way of computing ck returns the same answer as the one given by interval analysis
on Problem A, but might provide better bounds in harder problems.

5.2 Analyzing improvements in the subproblems’ global minimization solver

In the following experiments we considered the set of problems analysed in [21] whose precisely
considered formulations can be found in [22]. The problems’ AMPL formulations can also be
found at http://www.ime.usp.br/∼egbirgin/. To be used in connection with the methods being
introduced in the present work (in particular, to be used at Step 3.2.2 of Algorithm 4.1), we
started by performing local minimizations, using Algencan [5], starting from ten random initial
guesses (uniform distribution) within the box constraints Ω1. By using the default parameters
of Algencan, all found local minimizers are feasible with infeasibility sup-norm less than or equal
to 10−8. Table 2 shows the results. In the table, the first column identifies the problem, while n
and q refer to the number of variables and constraints (equalities plus inequalities), respectively.
Notation q(r) means that r out of the q constraints are linear. Column fub identifies the
best value found over the ten local minimizations that, in fact, may be associated with a local
minimizer, with a stationary point, or even, albeit with low probability, with a local maximizer.
Column #Found says how many times (over the ten runs) the reported value was found, and

31

it might give a rough idea of the difficulty in finding a global solution to each problem. In the
remaining trials (i.e. ten minus #Found), another feasible stationary point with higher objective
value was found or the method was unable to find a feasible point. All these runs required less
than a few hundredths of a second and, as revealed later, a global solution was found for most of
the considered problems2. It is worth noting that this fact does not at all reduce the merit of the
global optimization methods being evaluated, since their hardest task is to provide certificates
of global optimality or infeasibility up to any desired precision.

Problem n q fub #Found
1 5 3 2.931083072094414d−02 6

2(a) 11 8(6) -4.000000000219420d+02 4
2(b) 11 8(6) -6.000000000000023d+02 9
2(c) 11 8(6) -7.500000000094735d+02 9
2(d) 12 9(7) -4.000000000018445d+02 7
3(a) 6 5 -3.880823580776311d−01 1
3(b) 2 1 -3.888114342917279d−01 9
4 2 1 -6.666666666666667d+00 7
5 3 3 2.011593340608648d+02 3
6 2 1 3.762919323265911d+02 10
7 2 4(2) -2.828427124746190d+00 10
8 2 2(1) -1.170000000000000d+02 2
9 6 6(6) -1.340190355505064d+01 1
10 2 2 7.417819581954519d−01 1
11 2 1 -5.000000010138400d−01 10
12 2 1 -1.673889318439464d+01 10
13 3 2(1) 1.893465728931372d+02 10
14 4 3(3) -4.514201651361934d+00 10
15 3 3(1) 0.000000000000000d+00 7
16 5 3(1) 7.049249272475995d−01 10

prodpl0 68 37(33) 6.091923647619048d+01 10
prodpl1 68 37(33) 5.303701505558153d+01 10

Table 2: Best “local minimum” found by performing ten local minimizations starting from
randomly generated points using Algencan.

Using the local minimization information depicted in Table 2, we run Algorithm 2.2 with the
same tolerances considered in [21]. It means that we considered εfeas = εopt = 10−4 for Problems
1–16 and εfeas = εopt = 10−1 for the larger problems prodpl0 and prodpl1. Table 3 shows the
results. In the table, the first three columns identify the problem and the number of variables and
constraints. “Time” is the CPU time in seconds, “It” is the number of augmented Lagrangian
iterations, “#Nodes” is the total number of Branch-and-Bound nodes used by Algorithm 4.1 to
solve all the subproblems of a given problem. #Nodes gives a measurement of the effort needed
to solve the whole set of subproblems of a given problem, i.e. the overall effort needed to solve
the original problem. Since #Nodes is a much more precise measurement than the very short
CPU times, it will be used, from now on, to evaluate the performance of the methods. Still in
the table, f(x∗) is the value of the objective function at the final iterate x∗, ‖h(x∗)‖+ ‖g(x∗)+‖
is the (Euclidean norm) infeasibility measurement at x∗, and ε ≤ εopt is the reported gap for

2A global solution was found to all problems except Problem 8. However, the known global minimum
−1.187048597749956×102 was found in 37 out of 100 runs in an additional experiment. This value was considered
in the forthcoming experiments for Problem 8, instead of the one reported in Table 2.

32

Problem n q Time It #Nodes f(x∗) ‖h(x∗)‖+ ‖g(x∗)+‖ ε

1 5 3 3.27 10 29134 2.9312786586066682D−02 5.5D−06 5.2D−05
2(a) 11 8(6) 0.02 8 17 -4.0000000024768008D+02 1.8D−06 -1.1D−07
2(b) 11 8(6) 0.08 13 66 -6.0000005928794553D+02 1.6D−05 -5.9D−05
2(c) 11 8(6) 0.04 8 17 -7.5000000001451747D+02 4.9D−08 -9.5D−09
2(d) 12 9(7) 0.00 2 2 -4.0000000000184355D+02 2.6D−09 -5.5D−09
3(a) 6 5 2.48 6 6250 -3.8880635743184450D−01 5.6D−06 5.5D−05
3(b) 2 1 0.45 4 3804 -3.8881143432360377D−01 4.4D−10 9.5D−05
4 2 1 0.00 4 36 -6.6666666666666670D+00 1.8D−15 5.4D−05
5 3 3 0.00 5 115 2.0115933406086481D+02 7.0D−05 1.0D−10
6 2 1 0.01 5 97 3.7629193233270610D+02 0.0D+00 5.0D−05
7 2 4(2) 0.00 4 190 -2.8284271288287419D+00 1.2D−08 1.1D−05
8 2 2(1) 0.08 5 2126 -1.1870486335082188D+02 1.0D−06 4.2D−05
9 6 6(6) 0.00 1 2 -1.3401903555050817D+01 0.0D+00 9.6D−06
10 2 2 0.00 4 82 7.4178195828323901D−01 5.2D−10 9.6D−05
11 2 1 0.00 4 46 -4.9999999999981415D−01 0.0D+00 1.0D−07
12 2 1 0.00 8 144 -1.6738975393040647D+01 2.0D−05 -3.6D−05
13 3 2(1) 0.00 8 118 1.8934657289312642D+02 9.5D−10 -1.0D−11
14 4 3(3) 0.00 1 1 -4.5142016513619279D+00 0.0D+00 0.0D+00
15 3 3(1) 0.01 4 89 0.0000000000000000D+00 1.6D−06 3.1D−05
16 5 3(1) 0.01 6 94 7.0492011812333732D−01 3.5D−05 3.4D−05

prodpl0 68 37(33) 1.41 2 7 5.9183361696283363D+01 9.2D−02 -9.8D−01
prodpl1 68 37(33) 1.73 2 11 5.2852602634604963D+01 2.7D−02 -1.4D−01

Table 3: Performance of Algorithm 2.2 in the set of problem considered in [21] and with the
same tolerances considered in [21].

the ε-global optimality of x∗. The main contribution of Algorithm 2.2 with respect to the result
given in [21] is to provide the gap ε ≤ εopt such that f(x∗) ≤ f(z) + ε for any feasible point z.
Note that, since an εfeas level of infeasibility is being accepted, the method is capable of providing
negative values of ε for some instances. As expected, required optimality gaps were guaranteed
in all the cases using a finite number of iterations.

The main practical differences between Algorithm 2.2 and the method introduced in [21]
(when applied to feasible problems) are that Algorithm 2.2 provides the actual gap ε ≤ εopt
such that f(x∗) ≤ f(z) + ε for all feasible point z, and that they use different implementations
of the αBB method to solve the subproblems – Algorithm 2.2 uses the implementation of the
αBBmethod given by Algorithm 4.1 while Algorithm 2.1 in [21] (pp.141–142) uses Algorithm 4.1
in [21] (pp.147–148). Aiming to evaluate the influence of the implementation of the αBB method
being considered in the present work, figures in Table 3 may be compared with the ones reported
in the left-half of Table 2 in [21] (p.157) (for Problems 1–16) and in the right-half of Table 3
in [21] (p.158) (for problems prodpl0 and prodpl1). Analyzing the number of Branch-and-Bound
nodes, it is easy to see that the computational effort of the implementation of the αBB method
being considered in the present work is, on average, approximately one fourth the effort of the
αBB method presented in [21]. This improvement is manly due to the node selection rule
considered at Step 2.2. of Algorithm 4.1 (node with the lowest lower bound) and to the usage
of the local minimization information of the original problem to shrink the search space of the
subproblems (Step 3.2.2 of Algorithm 4.1).

33

5.3 Comparison against the pure penalty approach

Comparing the present augmented Lagrangian algorithms with the penalty one in which all the
safeguarded multipliers are null is pertinent. There is a conflict between both approaches. On the
one hand, the pure penalty approach should be less efficient than the augmented Lagrangian one
in view of the advantages of using shifts to enhance the chance of finding global minimizers with
moderate penalty parameters. On the other hand, the stopping criteria used for the subproblems
in the case of non-zero multipliers seem to be stricter than the ones with null multipliers. The
following comparison should indicate which of both properties is preponderant.

The results of Algorithm 2.2 with its default parameters, as described at the beginning of
the numerical results section, were already presented in Table 3 (recall that, by default, we
have the Lagrange multipliers safeguarding parameters λmin = −1020 and λmax = µmax = 1020).
Therefore, we ran Algorithm 2.2 (with the same tolerance than in the previous subsection)
setting the Lagrange multipliers safeguards λmin = λmax = µmax = 0. This null-safeguards
choice corresponds to the pure penalty approach. Table 4 shows the results of the pure penalty
approach that should be compared to the ones presented in Table 3. Considering the number of
Branch-and-Bound nodes as a measurement of the algorithms’ effort, figures in Tables 3 and 4
show that there is large difference between the performances of the methods (more than one
order of magnitude) in Problems 1, 3(a), and 6, Algorithm 2.2 being much more efficient than its
pure penalty version in Problems 1 and 6, while the opposite situation occurs in Problem 3(a).
Discarding those three extreme cases, the pure penalty version generated, on average, more than
twice the number of nodes generated by Algorithm 2.2. A very similar comparison might be
seen by analyzing Algorithm 3.2 and its pure penalty counterpart, meaning that the use of the
augmented Lagrangian shifts improves the overall efficiency of Algorithms 2.2 and 3.2.

5.4 Influence of the endogenous sequence {εk}

With the purpose of evaluating the influence of the endogenous sequence {εk} considered by
Algorithm 3.2 to stop the subproblems’ solver, we run Algorithms 3.2 with the same tolerances
considered in the previous subsections, i.e. εfeas = εopt = 10−4 for Problems 1–16 and εfeas =
εopt = 10−1 for Problems prodpl0 and prodpl1. Table 5 shows the results. Comparing the
number of Branch-and-Bound nodes in Tables 3 and 5 it is easy to see that the number of nodes
generated by Algorithm 3.2 is, in all the considered problems, not greater than the number of
nodes generated by Algorithm 2.2, while, on average, is almost 20% smaller.

We end this section solving Problems 1–16, prodpl0, and prodpl1 with tolerances εfeas =
εopt = 10−8 to show that stricter tolerances can also be achieved by the current implementation
of Algorithms 2.2 and 3.2. Table 6 shows the results. Figures in the table show that: (a) as
expected, both algorithms achieved the desired feasibility and optimality tolerances in a finite
number of iterations; (b) optimality gaps smaller than or equal to the required optimality gap
are delivered by the methods.

5.5 Infeasible problems

In this subsection we consider the problem of packing a given set of N circles with radii ri, i =
1 . . . , N , within an ellipse with semi-axes ea ≥ eb > 0, maximizing the sum of the squared

34

Problem n q Time It #Nodes f(x∗) ‖h(x∗)‖+ ‖g(x∗)+‖ ε

1 5 3 36.25 11 362689 2.9303145928874334D−02 2.1D−05 3.8D−05
2(a) 11 8(6) 0.24 19 69 -4.0000006521969249D+02 1.6D−05 -9.8D−05
2(b) 11 8(6) 0.36 19 112 -6.0000015999997777D+02 4.0D−05 -2.4D−04
2(c) 11 8(6) 0.19 17 52 -7.5000009468864823D+02 6.3D−05 -1.4D−04
2(d) 12 9(7) 0.06 11 12 -4.0000004071539126D+02 1.4D−05 -4.4D−05
3(a) 6 5 0.13 9 142 -3.8885187095855456D−01 3.2D−05 -6.1D−05
3(b) 2 1 1.60 5 14412 -3.8881714539887074D−01 7.6D−05 4.1D−05
4 2 1 0.00 6 68 -6.6666694444444445D+00 1.7D−05 -4.2D−06
5 3 3 0.00 15 439 2.0115932071993149D+02 1.8D−05 -2.0D−05
6 2 1 0.21 13 8133 3.7628915987777157D+02 4.4D−05 -4.1D−03
7 2 4(2) 0.08 7 3485 -2.8284447197606397D+00 5.0D−05 2.3D−05
8 2 2(1) 1.29 8 31718 -1.1870497874193241D+02 3.4D−05 -1.3D−04
9 6 6(6) 0.00 1 2 -1.3401903555050817D+01 0.0D+00 9.6D−06
10 2 2 0.00 6 167 7.4177445214024429D−01 2.7D−05 -8.2D−06
11 2 1 0.00 6 51 -5.0000625000880239D−01 2.5D−05 -9.4D−06
12 2 1 0.03 11 1577 -1.6739114200598433D+01 5.4D−05 -2.8D−04
13 3 2(1) 0.03 15 214 1.8934657239299491D+02 4.4D−05 2.1D−06
14 4 3(3) 0.00 1 1 -4.5142016513619279D+00 0.0D+00 0.0D+00
15 3 3(1) 0.01 4 89 0.0000000000000000D+00 1.5D−06 3.1D−05
16 5 3(1) 0.03 11 154 7.0491963098724875D−01 3.8D−05 -7.9D−06

prodpl0 68 37(33) 2.54 4 17 6.0439425358578404D+01 2.1D−02 -4.8D−01
prodpl1 68 37(33) 1.44 2 9 5.2584404334698036D+01 6.7D−02 -5.0D−01

Table 4: Performance of the “pure penalty version” of Algorithm 2.2 in the set of problems
considered in [21] and with the same tolerances considered in [21].

Problem n q Time It #Nodes f(x∗) ‖h(x∗)‖+ ‖g(x∗)+‖ ε

1 5 3 2.51 10 23025 2.9312786586066682D−02 5.5D−06 1.0D−04
2(a) 11 8(6) 0.02 8 17 -4.0000000024768008D+02 1.8D−06 -1.1D−07
2(b) 11 8(6) 0.08 13 66 -6.0000005928794553D+02 1.6D−05 -5.9D−05
2(c) 11 8(6) 0.04 8 17 -7.5000000001451747D+02 4.9D−08 -9.5D−09
2(d) 12 9(7) 0.00 2 2 -4.0000000000184355D+02 2.6D−09 -5.5D−09
3(a) 6 5 1.62 6 4525 -3.8880635674415054D−01 5.6D−06 1.0D−04
3(b) 2 1 0.26 2 2149 -3.8881366113419052D−01 2.9D−05 9.9D−05
4 2 1 0.00 2 18 -6.6666666666666670D+00 1.8D−15 5.4D−05
5 3 3 0.00 5 112 2.0115933406086481D+02 7.0D−05 1.0D−10
6 2 1 0.01 5 97 3.7629193233270610D+02 0.0D+00 9.4D−05
7 2 4(2) 0.00 3 142 -2.8284277850935133D+00 1.9D−06 1.0D−05
8 2 2(1) 0.08 5 2067 -1.1870486335101779D+02 1.0D−06 9.9D−05
9 6 6(6) 0.00 1 2 -1.3401903555050817D+01 0.0D+00 9.6D−06
10 2 2 0.00 2 36 7.4178849964562033D−01 0.0D+00 7.1D−05
11 2 1 0.00 2 20 -4.9999804943347009D−01 0.0D+00 2.1D−06
12 2 1 0.00 8 125 -1.6738975393040647D+01 2.0D−05 -2.3D−05
13 3 2(1) 0.02 8 116 1.8934657289312642D+02 9.5D−10 -1.0D−11
14 4 3(3) 0.00 1 1 -4.5142016513619279D+00 0.0D+00 0.0D+00
15 3 3(1) 0.00 1 28 0.0000000000000000D+00 1.5D−06 3.1D−05
16 5 3(1) 0.01 6 70 7.0492010918641423D−01 3.6D−05 6.6D−05

prodpl0 68 37(33) 1.41 2 7 5.9183361696283363D+01 9.2D−02 -9.8D−01
prodpl1 68 37(33) 1.75 2 11 5.2852602634604963D+01 2.7D−02 -1.4D−01

Table 5: Performance of Algorithm 3.2 in the set of problems considered in [21] and with the
same tolerances considered in [21].

distances between the circles’ centers. By packing, we mean that the circles must be placed
within the ellipse without overlapping. Considering continuous variables u, v, s ∈ IRN , this

35

Algorithm 2.2
Problem n q Time It #Nodes f(x∗) ‖h(x∗)‖+ ‖g(x∗)+‖ ε

1 5 3 15.74 12 117762 2.9310830860950987D−02 4.3D−10 5.1D−09
2(a) 11 8(6) 0.16 11 32 -4.0000000002195316D+02 5.5D−09 -2.2D−08
2(b) 11 8(6) 0.21 19 114 -6.0000000000000455D+02 8.8D−13 -3.5D−12
2(c) 11 8(6) 0.04 8 17 -7.5000000012666578D+02 9.4D−09 -9.8D−09
2(d) 12 9(7) 0.00 2 2 -4.0000000000184355D+02 2.6D−09 -5.5D−09
3(a) 6 5 14.73 9 29850 -3.8881143431953308D−01 6.1D−11 4.9D−09
3(b) 2 1 1.55 8 10091 -3.8881143430404086D−01 1.6D−10 9.7D−09
4 2 1 0.00 5 48 -6.6666666666666670D+00 1.8D−15 5.9D−16
5 3 3 0.00 8 226 2.0115933406086481D+02 2.5D−10 -1.6D−14
6 2 1 0.03 8 398 3.7629193233029866D+02 0.0D+00 8.3D−09
7 2 4(2) 0.01 5 247 -2.8284271247520278D+00 1.7D−11 -5.8D−12
8 2 2(1) 0.20 8 4472 -1.1870485977521858D+02 6.5D−11 9.8D−09
9 6 6(6) 0.00 1 3 -1.3401903555050817D+01 0.0D+00 3.4D−13
10 2 2 0.00 7 172 7.4178195825585458D−01 0.0D+00 8.8D−12
11 2 1 0.00 7 91 -4.9999999999515704D−01 0.0D+00 4.8D−12
12 2 1 0.01 12 258 -1.6738893206126292D+01 5.4D−09 -2.2D−08
13 3 2(1) 0.12 8 120 1.8934657289313745D+02 1.8D−11 7.8D−13
14 4 3(3) 0.00 1 1 -4.5142016513619279D+00 0.0D+00 0.0D+00
15 3 3(1) 0.30 8 315 0.0000000000000000D+00 2.8D−11 1.9D−09
16 5 3(1) 0.07 10 290 7.0492492643582416D−01 5.8D−09 1.8D−09

prodpl0 68 37(33) 16.41 13 94 6.0919236339470416D+01 5.8D−09 -1.4D−07
prodpl1 68 37(33) 7.96 7 54 5.3037015013663307D+01 7.7D−09 -3.3D−08

Algorithm 3.2
Problem n q Time It #Nodes f(x∗) ‖h(x∗)‖+ ‖g(x∗)+‖ ε

1 5 3 11.77 12 91191 2.9310830860950987D−02 4.3D−10 1.0D−08
2(a) 11 8(6) 0.16 11 32 -4.0000000002195316D+02 5.5D−09 -2.2D−08
2(b) 11 8(6) 0.21 19 114 -6.0000000000000455D+02 8.8D−13 -3.5D−12
2(c) 11 8(6) 0.04 8 17 -7.5000000012666578D+02 9.4D−09 -9.8D−09
2(d) 12 9(7) 0.00 2 2 -4.0000000000184355D+02 2.6D−09 -5.5D−09
3(a) 6 5 9.69 8 20222 -3.8881143348144187D−01 8.9D−10 1.0D−08
3(b) 2 1 0.83 4 5467 -3.8881143431270038D−01 2.8D−10 9.7D−09
4 2 1 0.00 2 19 -6.6666666666666670D+00 1.8D−15 5.9D−16
5 3 3 0.01 8 223 2.0115933406086481D+02 2.5D−10 -1.6D−14
6 2 1 0.02 6 234 3.7629193229876364D+02 4.4D−10 6.0D−09
7 2 4(2) 0.01 5 257 -2.8284271247520278D+00 1.7D−11 -5.8D−12
8 2 2(1) 0.18 7 3815 -1.1870485977654887D+02 4.5D−10 9.8D−09
9 6 6(6) 0.00 1 3 -1.3401903555050817D+01 0.0D+00 3.4D−13
10 2 2 0.00 4 100 7.4178195825094195D−01 1.1D−13 3.9D−12
11 2 1 0.00 3 35 -5.0000000060447813D−01 2.4D−09 -6.0D−10
12 2 1 0.01 13 262 -1.6738893192901013D+01 2.1D−09 -8.5D−09
13 3 2(1) 0.12 8 118 1.8934657289313745D+02 1.8D−11 7.8D−13
14 4 3(3) 0.00 1 1 -4.5142016513619279D+00 0.0D+00 0.0D+00
15 3 3(1) 0.25 6 310 0.0000000000000000D+00 1.4D−09 1.9D−09
16 5 3(1) 0.05 10 230 7.0492492643582416D−01 5.8D−09 8.5D−09

prodpl0 68 37(33) 15.94 13 94 6.0919236353090284D+01 5.4D−09 -1.2D−07
prodpl1 68 37(33) 7.80 7 54 5.3037015019092010D+01 7.3D−09 -2.8D−08

Table 6: Performance of Algorithms 2.2 and 3.2 with εfeas = εopt = 10−8.

problem can be modeled [17, 27] as a continuous and differentiable nonlinear programming

36

problem as follows:

Maximize
∑

i<j

{

[

(1 + (si − 1)(e2b/e
2
a))ui − (1 + (sj − 1)(e2b/e

2
a))uj

]2
+ [sivi − sjvj]

2
}

subject to (ui/ea)
2 + (vi/eb)

2 = 1, i = 1, . . . , N,
(si − 1)2

[

(e2b/e
2
a)

2u2i + v2i
]

≥ r2i , i = 1, . . . , N,
[

(1 + (si − 1)(e2b/e
2
a))ui − (1 + (sj − 1)(e2b/e

2
a))uj

]2
+ [sivi − sjvj]

2 ≥ (ri + rj)
2, ∀ i < j,

0 ≤ si ≤ 1, i = 1, . . . , N.

The Cartesian coordinates of the circles’ centers can be recovered using

xi =
[

1 + (si − 1)(e2b/e
2
a)
]

ui, yi = sivi, i = 1, . . . , N.

In order to apply a spatial Branch-and-Bound-based global optimization technique, redundant
valid bounds −ea ≤ ui ≤ ea and −eb ≤ vi ≤ eb, for i = 1, . . . , N , may be added. We considered
a set of sixteen instances with (ea, eb) ∈ {(4, 2), (3, 2), (2, 2), (2, 1)} and N ∈ {2, 3, 4, 5}. In all
cases, we arbitrarily considered identical unitary-radius circles.

In order to tackle a problem with the methods being introduced, some information is manda-
tory while some other that may be useful to improve the efficiency of the method is not. Manda-
tory information includes and is limited to: (a) Fortran subroutines to compute the objective
function, the constraints, and their first and second derivatives at a given point; and (b) Fortran
subroutines to compute all quantities listed in item (a), with the exception of the gradient of the
objective function, using interval analysis at a given box or subbox. The user must also indicate
whenever a variable only appears linearly in the objective function and in linear constraints
(those variables do not need to be spatially branched by the method). The optional informa-
tion includes: (a) the best known value of the objective function at a feasible point; and (b)
for a given subbox, a subroutine capable of computing linear underestimators, valid within the
subbox, for the objective function, the inequality constraints, and/or the inequality constraints
coming from interpreting each equality constraint hj(x) = 0 as a double inequality constraint
of the form hj(x) ≤ 0 and −hj(x) ≤ 0. It is important to notice that none of the optional in-
formation is being provided for the problem being analysed in the present subsection, basically,
because coding those additional data is an extremely tedious task. Providing it automatically
would be a great advantage of an improved implementation of the methods. Requirements re-
garding derivatives and interval arithmetic computations might also be automatically provided
by the methods if we were using, for example, a different programming language with access to
resources such as operators overloading and/or automatic differentiation tools.

Table 7 shows the performance of Algorithms 2.2 and 3.2 on the sixteen instances of the
packing problem, while Figure 1 illustrate the “solutions”. In the table, ea, eb, and N represent
the elipses’ axes and the number of considered identical unitary-radius circles; n and q represent
the number of variables and the number of constraints, respectively. Note that n = 3N , q =
2N + N(N − 1)/2, and that all constraints (as well as the objective function) are nonlinear.
The remaining columns show the algorithms’ performance and were already described before,
the exception being the last column, that identifies whether the problem was detected to be
infeasible or not.

Figures in Table 7 (as well as some of the graphics in Figure 1) show that eight out of
the sixteen considered instances were found to be infeasible. Among the infeasible instances,

37

Problem Algorithm 2.2
(ea, eb) N n q Time It #Nodes f(x∗) ‖h(x∗)‖+ ‖g(x∗)+‖ ε SC
(4,2) 2 6 5 23.57 8 195260 3.6000632560807304D+01 1.9D−05 -5.8D−04 Solution found
(4,2) 3 9 9 42.01 11 25169 5.8521317671731637D+01 5.7D−05 1.4D−07 Solution found
(4,2) 4 12 14 661.38 13 218407 9.0072124538555983D+01 1.2D−05 -2.1D−06 Solution found
(4,2) 5 15 20 4923.75 13 1682495 1.1780270817412281D+02 1.4D−05 1.3D−08 Solution found
(3,2) 2 6 5 43.67 5 351735 1.6000808473480859D+01 6.3D−05 -7.6D−04 Solution found
(3,2) 3 9 9 49.91 11 40061 2.6239622360900952D+01 3.4D−05 -3.4D−04 Solution found
(3,2) 4 12 14 213.62 11 67749 4.0410065156787176D+01 4.1D−05 1.3D−07 Solution found
(3,2) 5 15 20 175.09 6 56634 6.9186201732988039D+01 5.9D−01 -1.1D+03 Infeasible
(2,2) 2 6 5 274.45 5 2368047 4.0000000632358033D+00 1.8D−07 5.0D−05 Solution found
(2,2) 3 9 9 127.25 6 242570 1.1935922304117483D+01 3.5D−01 -3.9D+02 Infeasible
(2,2) 4 12 14 1278.15 6 1782970 3.1185540474086196D+01 1.1D+00 -4.2D+02 Infeasible
(2,2) 5 15 20 11388.47 4 9962300 6.7360974622083830D+01 1.9D+00 -8.2D+02 Infeasible
(2,1) 2 6 5 0.00 1 1 8.8910020801615914D+00 1.9D+00 -9.3D+00 Infeasible
(2,1) 3 9 9 0.00 1 1 2.3633719665128936D+01 4.7D+00 -8.4D+01 Infeasible
(2,1) 4 12 14 0.00 1 1 2.7252194724984069D+01 7.3D+00 -2.2D+02 Infeasible
(2,1) 5 15 20 0.00 1 1 3.8314608806172572D+01 9.7D+00 -3.7D+02 Infeasible

Problem Algorithm 3.2
(ea, eb) N n q Time It #Nodes f(x∗) ‖h(x∗)‖+ ‖g(x∗)+‖ ε SC
(4,2) 2 6 5 15.50 8 122228 3.6000632560807304D+01 1.9D−05 1.0D−04 Solution found
(4,2) 3 9 9 42.05 11 25169 5.8521317671731637D+01 5.7D−05 1.4D−07 Solution found
(4,2) 4 12 14 655.75 13 218391 9.0072124538555983D+01 1.2D−05 -2.1D−06 Solution found
(4,2) 5 15 20 4902.68 13 1682479 1.1780270817412281D+02 1.4D−05 1.3D−08 Solution found
(3,2) 2 6 5 39.00 5 313683 1.6000808541953081D+01 6.3D−05 9.6D−05 Solution found
(3,2) 3 9 9 49.89 11 40001 2.6239622360900952D+01 3.4D−05 -3.4D−04 Solution found
(3,2) 4 12 14 212.47 11 67749 4.0410065156787176D+01 4.1D−05 1.3D−07 Solution found
(3,2) 5 15 20 176.82 6 56634 6.9186201732988039D+01 5.9D−01 -1.1D+03 Infeasible
(2,2) 2 6 5 151.24 4 1263448 3.9999950333831871D+00 9.1D−06 1.0D−04 Solution found
(2,2) 3 9 9 126.62 6 242542 1.1935922304117483D+01 3.5D−01 -3.9D+02 Infeasible
(2,2) 4 12 14 1274.16 6 1782626 3.1185540474086196D+01 1.1D+00 -4.2D+02 Infeasible
(2,2) 5 15 20 11124.96 4 9962300 6.7360974622083830D+01 1.9D+00 -8.2D+02 Infeasible
(2,1) 2 6 5 0.00 1 1 8.8910020801615914D+00 1.9D+00 1.0D+20 Infeasible
(2,1) 3 9 9 0.00 1 1 2.3633719665128936D+01 4.7D+00 1.0D+20 Infeasible
(2,1) 4 12 14 0.00 1 1 2.7252194724984069D+01 7.3D+00 1.0D+20 Infeasible
(2,1) 5 15 20 0.00 1 1 3.8314608806172572D+01 9.7D+00 1.0D+20 Infeasible

Table 7: Performance of Algorithms 2.2 and 3.2 with εfeas = εopt = 10−4 for the sixteen instances
of the packing problem.

a different behaviour of the algorithms can be distinguished between instances with (ea, eb) =
(2, 1) and N = 2, 3, 4, 5 (last four lines in the table) and the other four infeasible instances
((ea, eb) = (3, 2) with N = 5 and (ea, eb) = (2, 2) with N = 3, 4, 5).

In the four instances with (ea, eb) = (2, 1), infeasibility of the first augmented Lagrangian
subproblem was detected by the αBB method at its first iteration, i.e. considering the original
box constraints of the subproblem without further divisions. Due to the lack of the optional
information regarding linear underestimators of the objective function and the constraints, and
the fact that all constraints are nonlinear, at Step 3.2.1 of Algorithm 4.1, we have Ω2 = Ω3 = IRn.
Hence, infeasibility can not be detected at this step of the αBB method. A known value of
the objective function at a feasible points is also not being provided (this could never be the
case since instances are infeasible). Therefore, only the possibility remains that infeasibility is
being detected by the interval analysis applied to the constraints at Step 3.2.2, that finds a

38

N
Ellipses’ axes

(ea, eb) = (4, 2) (ea, eb) = (3, 2) (ea, eb) = (2, 2)

2

3

4

5

Figure 1: Graphical representation of twelve instances of the problem of packing circles within
an ellipse.

constraint that can not be satisfied within the original box, i.e. that proves that the feasible set
is empty. This is a very simple situation that would have been detected in a stage previous to
the application of any global optimization algorithm. At least, these four examples show that
the current implementation of the proposed methods performs as well as possible in these simple
cases. Since no single minimization is done in those four instances, this is why there is nothing
to be drawn to illustrate them in Figure 1.

39

In the other four instances detected to be infeasible, infeasibility was detected at Step 2 of
Algorithms 2.2 and 3.2. In those four cases, the performances of both algorithms are mostly
indistiguishable. Regarding the final infeasible point delivered by the methods, the nice sym-
metric pictures in Figure 1 show that these solutions are global minimizers of an infeasibility
measure, as proved in Theorem 2.1. On the other hand, note that, as claimed, instances have
been proven to be infeasible in a finite number of iterations. A short comment regarding the
computation of ck at Step 2 of Algorithms 2.2 and 3.2 is in order. ck is computed with the sole
purpose of detecting infeasibility, and the smaller its value the greater the chance of detecting
infeasibility at the initial iterations of the methods is. As pointed out in Subsection 5.1, an
interval [fmin, fmax] such that fmin ≤ f(x) ≤ fmax is computed by interval analysis and ck is
computed as defined in (70). The four instances in which infeasibility is being detected at Step 2
of Algorithms 2.2 and 3.2 are the ones with (ea, eb) = (3, 2) and N = 5; and (ea, eb) = (2, 2)
and N = 3, 4, 5. For those instances, the interval [fmin, fmax] computed by interval analysis for
the original box Ω1 is given by [−520, 520], [−96, 96], [−192, 192], and [−320, 320], respectively.
However, since the objective function is the sum of squares, it is clear that fmin ≥ 0 (it is
equally clear that this inequality is sharp). Moreover, maximizing the objective function over
Ω1 as suggested at the end of Subsection 5.1, we arrived at fmax equal to 312, 64, 128, and 192,
respectively. Using these tighter intervals, the value of ck computed as in (70) is strictly smaller
than the one considered in the numerical experiments depicted in Table 7. A new numerical
experiment was done considering those four infeasible instances and using the tighter intervals
for computing ck. Results were identical for three out of the four instances. For the instance
given by (ea, eb) = (2, 2) and N = 4 both algorithms stopped one iteration in advance (using
5 augmented Lagrangian iterations instead of 6). By saving the last augmented Lagrangian
iteration, one less subproblem was solved and the total number of Branch-and-Bound nodes was
reduced to 1, 485, 403 (and 1043.18 seconds of CPU time) for Algorithm 2.2 and to 1, 485, 059
(and 1051.43 seconds of CPU time) for Algorithm 3.2.

In the remaining eight feasible instances (that are not the main focus of the present sub-
section), both algorithms also presented a very similar behaviour, Algorithm 3.2 being a little
bit more efficient than Algorithm 2.2. Algorithm 3.2 uses 37%, 11%, and 47% less Branch-and-
Bound nodes than Algorithm 2.2 in three out of the eight instances, and they both use almost
the same number of nodes in the remaining five instances. Last but not least, the performance
of the methods presented all along the numerical results section should be taken as an illustra-
tion of the capabilities and drawbacks of the introduced methods, taking into account that they
are highly dependent on the arbitrary problems’ formulations being used and on the optional
(additional) information accompanying each of them.

6 Conclusions and future research

The codes used to illustrate our theory and to solve the problems in the numerical sections of
this paper are available in http://www.ime.usp.br/∼egbirgin/. They probably represent a useful
practical tool for solving global nonlinear programming problems employing the augmented La-
grangian technique. This software relies on the rigorous theory presented in Sections 2 and 3 of
the present paper, by means of which we are able to compute solutions with guaranteed certifi-

40

cates of precision or, perhaps, infeasibility. As far as we know, this is the first paper in which
this type of results are presented in the augmented Lagrangian context. Moreover, the results
presented here complement those of [21] in the sense of broadening the scope of applicability of
αBB in the direction of the general nonlinear programming field. As is usual in the nonlinear
optimization world, we do not claim the universal effectiveness of our approach. The augmented
Lagrangian approach enjoys some interesting features that are useful for problems with struc-
tures exhaustively studied in many other papers (see, for example, [25]). In particular, even
local implementations of the augmented Lagrangian methods seem to provide global minimizers
of constrained optimization problems more often than other optimization solvers [5]. This is due
to the modular structure of the method, which allows one to employ opportunistic strategies
for solving suproblems which are not necessarily linked to theory but are extremely useful in
practice. In this sense, the results presented here, that are directly applicable to the field of
global optimization, also help to enlighten the behavior of practical local PHR-like augmented
Lagrangian algorithms.

In the recent book [31] and many papers on Mechanical Engineering applications (see [31]
and the reference therein), Z. Dostál has shown the effectivity of the PHR augmented Lagrangian
approach for solving convex quadratic programming problems. In the preface of the book, he
emphasizes that the reliability and efficiency of augmented Lagrangian techniques is linked to
problem conditioning characteristics that are present in its main branch of applications. A
challenging problem is to combine Dostál convex techniques with the global techniques pre-
sented in the present paper for the effective solution of possibly large-scale nonconvex quadratic
programming problems.

References

[1] C. S. Adjiman, I. P. Androulakis, C. D. Maranas, and C. A. Floudas, A global optimization
method αBB for process design, Computers and Chemical Engineering 20, pp. S419–424,
1996.

[2] C. S. Adjiman, S. Dallwig, C. A. Floudas and A. Neumaier, A global optimization method,
αBB, for general twice-differentiable constrained NLPs – I. Theoretical Advances, Com-
puters & Chemical Engineering 22, pp. 1137–1158, 1998.

[3] C. S. Adjiman, I. P. Androulakis, and C. A. Floudas, A global optimization method, αBB,
for general twice-differentiable constrained NLPs – II. Implementation and computational
results, Computers & Chemical Engineering 22, pp. 1159–1179, 1998.

[4] F. A. Al-Khayyal and H. D. Sherali, On finitely terminating Branch-and-Bound algorithms
for some global optimization problems, SIAM Journal on Optimization 10, pp. 1049–1057,
2000.

[5] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt, On augmented Lagrangian
methods with general lower-level constraints, SIAM Journal on Optimization 18, pp. 1286–
1309, 2007.

41

[6] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt, Augmented Lagrangian
methods under the Constant Positive Linear Dependence constraint qualification, Mathe-
matical Programming 111, pp. 5–32, 2008.

[7] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt. Second-order negative-
curvature methods for box-constrained and general constrained optimization, Computa-
tional Optimization and Applications 45, pp. 209-236, 2010.

[8] R. Andreani, G. Haeser, and J. M. Mart́ınez, On sequential optimality conditions for smooth
constrained optimization, Optimization 60, pp. 627–641, 2011.

[9] R. Andreani, G. Haeser, M. L. Schuverdt, and P. J. S. Silva, A relaxed constant posi-
tive linear dependence constraint qualification and applications, to appear in Mathematical
Programming.

[10] R. Andreani, G. Haeser, M. L. Schuverdt, and P. J. S. Silva, Two new weak constraint
qualifications and applications, to appear in SIAM Journal on Optimization.

[11] R. Andreani, J. M. Mart́ınez, and M. L. Schuverdt, On the relation between the Constant
Positive Linear Dependence condition and quasinormality constraint qualification, Journal
of Optimization Theory and Applications 125, pp. 473–485, 2005.

[12] R. Andreani, J. M. Mart́ınez, and B. F. Svaiter. A new sequential optimality condition for
constrained optimization and algorithmic consequences, SIAM Journal on Optimization 20,
pp. 3533–3554, 2010.

[13] M. Andretta, E. G. Birgin, and J. M. Mart́ınez, Partial Spectral Projected Gradient method
with Active-Set Strategy for Linearly Constrained Optimization, Numerical Algorithms 53,
pp. 23–52, 2010.

[14] I. P. Androulakis, C. D. Maranas, and C. A. Floudas, αBB: A global optimization method
for general constrained nonconvex problems, Journal of Global Optimization 7, pp. 337–363,
1995.

[15] C. Audet and J. E. Dennis Jr., A progressive barrier for derivative-free nonlinear program-
ming, SIAM Journal on Optimization 20, pp. 445–472, 2009.

[16] J. F. Bard, Practical bilevel optimization. Algorithms and applications, Kluwer Book Series:
Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht,
The Netherlands, 1998.

[17] E. G. Birgin, L. H. Bustamante, H. F. Callisaya, and J. M. Mart́ınez, Packing Circles within
Ellipses, submitted.

[18] E. G. Birgin, E. V. Castelani, A. L. Martinez, and J. M. Mart́ınez, Outer trust-region
method for constrained optimization, Journal of Optimization Theory and Applications
150, pp. 142–155, 2011.

42

[19] E. G. Birgin, R. Castillo, and J. M. Mart́ınez, Numerical comparison of augmented La-
grangian algorithms for nonconvex problems, Computational Optimization and Applications
31, pp. 31–56, 2005.

[20] E. G. Birgin, D. Fernández, and J. M. Mart́ınez, On the boundedness of penalty parameters
in an augmented Lagrangian method with constrained subproblems, Optimization Methods
and Software (DOI: 10.1080/10556788.2011.556634).

[21] E. G. Birgin, C. A. Floudas, and J. M. Mart́ınez, Global minimization using an augmented
Lagrangian method with variable lower-level constraints, Mathematical Programming 125,
pp. 139–162, 2010.

[22] E. G. Birgin, C. A. Floudas, and J. M. Mart́ınez, Global minimization using an augmented
Lagrangian method with variable lower-level constraints, Technical Report MCDO121206
(see http://www.ime.usp.br/∼egbirgin/), Department of Applied Mathematics, Unicamp,
Brazil, 2006.

[23] E. G. Birgin and J. M. Mart́ınez, Large-scale active-set box-constrained optimization
method with spectral projected gradients, Computational Optimization and Applications
23, pp. 101–125, 2002.

[24] E. G. Birgin and J. M. Mart́ınez, Improving ultimate convergence of an augmented La-
grangian method, Optimization Methods and Software 23, pp. 177–195, 2008.

[25] E. G. Birgin and J. M. Mart́ınez, Practical augmented Lagrangian methods, in Encyclopedia
of Optimization, C. A. Floudas and P. M. Pardalos, editors. Second Edition. Springer, pp.
3013–3023, 2009.

[26] E. G. Birgin and J. M. Mart́ınez, Augmented Lagrangian method with nonmonotone penalty
parameters for constrained optimization, Computational Optimization and Applications 51,
pp. 941–965, 2012.

[27] H. F. Callisaya, Empacotamento em quadráticas, PhD Thesis, Institute of Mathematics,
Statistics and Scientific Computing, University of Campinas, 2012.

[28] E. V. Castelani, A. L. Martinez, J. M. Mart́ınez, and B. F. Svaiter, Addressing the greedi-
ness phenomenon in nonlinear programming by means of proximal augmented Lagrangians,
Computational Optimization and Applications 46, pp. 229–245, 2010.

[29] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust Region Methods, MPS/SIAM Series
on Optimization, SIAM, Philadelphia, 2000.

[30] M. A. Diniz-Ehrhardt, J. M. Mart́ınez, and L. G. Pedroso, Derivative-free methods for non-
linear programming with general lower-level constraints, Computational & Applied Mathe-
matics 30, pp. 19–52, 2011.

[31] Z. Dostál, Optimal Quadratic Programming Algorithms, Springer, New York, 2009.

43

[32] Z. Dostál, A. Friedlander, and S. A. Santos, Augmented Lagrangians with adaptive precision
control for quadratic programming with simple bounds and equality constraints, SIAM
Journal on Optimization 13, pp. 1120–1140, 2003.

[33] J. Eckstein, A practical general approximation criterion for methods of multipliers based
on Bregman distances, Mathematical Programming 96, pp. 61–86, 2003.

[34] C. A. Floudas, Deterministic global optimization: theory, methods and application, Kluwer
Academic Publishers, DorDrecht, Boston, London, 1999.

[35] C. A. Floudas, I. G. Akrotirianakis, S. Caratzoulas, C. A. Meyer, and J. Kallrath, Global
optimization in the 21st century: Advances and challenges, Computers and Chemical En-
gineering 29, pp. 1185–1202, 2005.

[36] C. A. Floudas and V. Visweeswaran, A global optimization algorithm (GOP) for certain
classes of nonconvex NLPs – I. Theory, Computers & Chemical Engineering 14, pp. 1397–
1417, 1990.

[37] D.Y. Gao, Duality Principles in Nonconvex Systems: Theory, Methods, and Applications,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.

[38] D. Y. Gao, Canonical dual transformation method and generalized triality theory in nons-
mooth global optimization, Journal of Global Optimization 17, pp. 127–160, 2000.

[39] D. Y. Gao, Perfect duality theory and complete solutions to a class of global optimization
problems, generalized triality theory in nonsmooth global optimization, Optimization 52,
pp. 467–493, 2003.

[40] D. Y. Gao, Canonical duality theory and solutions to constrained nonconvex quadratic
programming, Journal of Global Optimization 29, pp. 337–399, 2004.

[41] D. Y. Gao, Complete solutions and extremality criteria to polynomial optimization prob-
lems, Journal of Global Optimization 35, pp. 131–143, 2006.

[42] D. Y. Gao, Solutions and optimality to box constrained nonconvex minimization problems,
Journal of Industry and Management Optimization 3, pp. 1–12, 2007.

[43] W. W. Hager, Analysis and implementation of a dual algorithm for constrained optimiza-
tion, Journal of Optimization Theory and Applications 79, pp. 427–462, 1993.

[44] M. R. Hestenes, Multiplier and gradient methods, Journal of Optimization Theory and
Applications 4, pp. 303–320, 1969.

[45] R. Horst, P. M. Pardalos, and M. V. Thoai, Introduction to Global Optimization, Kluwer
Book Series: Nonconvex Optimization and its Applications, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2000.

[46] R.B. Kearfott, M. Dawande, K. Du, and C. Hu, Algorithm 737: INTLIB: A portable
Fortran 77 interval standard-function library, ACM Transactions on Mathematical Software
20, pp. 447–459, 1994.

44

[47] R. M. Lewis and V. Torczon, A direct search approach to nonlinear programming prob-
lems using an augmented Lagrangian method with explicit treatment of linear constraints,
Technical Report WM-CS-2010-01, College of William & Mary, Department of Computer
Sciences, 2010.

[48] L. Liberti, Reduction constraints for the global optimization of NLPs, International Trans-
actions in Operational Research 11, pp. 33–41, 2004.

[49] L. Liberti, Writing global optimization software, in L. Liberti and N. Maculan (eds.), Global
Optimization: from Theory to Implementation, pp. 211–262, Springer, Berlin, 2006.

[50] L. Liberti and C. C. Pantelides, An exact reformulation algorithm for large nonconvex NLPs
involving bilinear terms, Journal of Global Optimization 36, pp. 161–189, 2006.

[51] H. Z. Luo, X. L. Sun, and D. Li, On the convergence of augmented Lagrangian methods for
constrained global optimization, SIAM Journal on Optimization 18, pp. 1209–1230, 2007.

[52] C. D. Maranas and C. A. Floudas, Global minimum potential energy conformations for
small molecules, Journal of Global Optimization 4, pp. 135–170, 1994.

[53] J. M. Mart́ınez and L. F. Prudente, Handling infeasibility in a large-scale nonlinear opti-
mization algorithm, Numerical Algorithms 60, pp. 263–277, 2012.

[54] C. A. Meyer and C. A. Floudas, Convex underestimation of twice continuously differentiable
functions by piecewise quadratic perturbation: spline αBB underestimators, Journal of
Global Optimization 32, pp. 221–258, 2005.

[55] B. A. Murtagh and M. A. Saunders, MINOS 5.4 User’s Guide. System Optimization Lab-
oratory, Department of Operations Research, Standford University, CA.

[56] A. Neumaier, Complete search in continuous global optimization and constraints satisfac-
tion, Acta Numerica 13, pp. 271–369, 2004.

[57] A. Neumaier, O. Shcherbina, W. Huyer and T. Vinkó, A comparison of complete global
optimization solvers, Mathematical Programming 103, pp. 335–356, 2005.

[58] G. Pacelli and M. C. Recchioni, An interior point algorithm for global optimal solutions
and KKT points, Optimization Methods & Software 15, pp. 225–256, 2001.

[59] M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Opti-
mization, R. Fletcher (ed.), Academic Press, New York, NY, pp. 283–298, 1969.

[60] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in
Fortran: The Art of Scientific Computing, Cambridge University Press, New York, 1992.

[61] R. T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex pro-
gramming, SIAM Journal on Control and Optimization 12, pp. 268–285, 1974.

[62] H. S. Ryoo and N. V. Sahinidis, A branch-and-reduce approach to global optimization
Journal of Global Optimization 8, pp. 107–138, 1996.

45

[63] N. V. Sahinidis and M. Tawarmalani, BARON 9.0.4: Global Optimization of Mixed-Integer
Nonlinear Programs, User’s manual, 2010.

[64] H. D. Sherali and W. P. Adams, A reformulation-linearization technique for solving discrete
and continuous nonconvex problems, Kluwer Book Series: Nonconvex Optimization and its
Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.

[65] H. D. Sherali, A. Alameddine, and T. S. Glickman, Biconvex models and algorithms for
risk management problems, American Journal of Mathematical and Management Science
14, pp. 197–228, 1995.

[66] H. D. Sherali and J. Desai, A global optimization RLT-based approach for solving the hard
clustering problem, Journal of Global Optimization 32, pp. 281–306, 2005.

[67] H. D. Sherali and J. Desai, A global optimization RLT-based approach for solving the fuzzy
clustering problem, Journal of Global Optimization 33, pp. 597–615, 2005.

[68] H. D. Sherali and C. H. Tuncbilek, A global optimization algorithm for polynomial pro-
gramming problems using a reformulation-linearization technique, Journal of Global Opti-
mization 2, pp. 101-112, 1992.

[69] H. D. Sherali and C. H. Tuncbilek, New reformulation-linearization/convexification relax-
ations for univariate and multivariate polynomial programming problems, Operations Re-
search Letters 21, pp. 1–10, 1997.

[70] H. D. Sherali and H. Wang, Global optimization of nonconvex factorable programming
problems, Mathematical Programming 89, pp. 459–478, 2001.

[71] E. M. B. Smith and C. C. Pantelides, A symbolic reformulation/spatial branch-and-bound
algorithm for the global optimisation of nonconvex MINLPs, Computers & Chemical Engi-
neering 23, pp. 457–478, 1999.

[72] M. Tawarmalani and N. V. Sahinidis, Convexification and Global Optimization in Contin-
uous and Mixed-Integer Nonlinear Programming, Kluwer Book Series: Nonconvex Opti-
mization and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands,
2002.

[73] M. Tawarmalani and N. V. Sahinidis, A polyhedral branch-and-cut approach to global
optimization, Mathematical Programming 103, pp. 225–249, 2005.

[74] H. Tuy, Convex Analysis and Global Optimization, Kluwer Book Series: Nonconvex Opti-
mization and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands,
1998.

[75] V. Visweeswaran and C. A. Floudas, A global optimization algorithm (GOP) for certain
classes of nonconvex NLPs – II. Application of theory and test problems, Computers &
Chemical Engineering 14, pp. 1419–1434, 1990.

46

[76] Z. B. Zabinsky, Stochastic Adaptive Search for Global Optimization, Kluwer Book Series:
Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht,
The Netherlands, 2003.

47

