
A note on an L-approach for solving the manufacturer’s

pallet loading problem

Ernesto G. Birgin ∗ Reinaldo Morabito † Fabio H. Nishihara ‡

November 19th, 2004.

Abstract

An L-approach for packing (l, w)-rectangles into an (L, W )-rectangle was intro-
duced in an earlier work by Lins, Lins and Morabito. They conjecture that the L-
approach is exact and point out its runtime requirements as the main drawback. In
this note it is shown that, by simply using a different data structure, the runtime is
considerably reduced in spite of larger (but affordable) memory requirements. This
reduction is important for practical purposes since it makes the algorithm much more
acceptable for supporting actual decisions in pallet loading. Intensive numerical ex-
periments showing the efficiency and effectiveness of the algorithm are presented.

Key words: Cutting and packing, pallet and container loading, recursive algorithm,
implementation.

Introduction

An interesting case of cutting and packing problems is loading products (packaged in
boxes) on a rectangular pallet in such a way as to optimize pallet utilization. This problem
is known as the manufacturer’s pallet loading problem if all boxes are identical. This is
the situation of a manufacturer that produces goods packaged in identical boxes of size
(l, w, h), which are then arranged in horizontal layers on pallets of size (L,W,H) (where H

is the maximum height of the loading). It is assumed that the boxes are available in large
quantities and are orthogonally loaded on each pallet (that is, with their sides parallel to
the pallet sides).

∗Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua
do Matão 1010, Cidade Universitária, 05508-090 São Paulo, SP - Brazil (egbirgin@ime.usp.br). Sponsored
by FAPESP (Grants 01/04597-4, 02/00094-0 and 03/09196-6), CNPq (Grant 302266/2002-0) and Pronex.

†Department of Production Engineering, Federal University of São Carlos, Via Washington Luiz km.
235, 13565-905, São Carlos, SP - Brazil (morabito@power.ufscar.br). Sponsored by FAPESP (Grant
01/2972-2) and CNPq (Grant 522973/95-7)

‡Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo,
Rua do Matão 1010, Cidade Universitária, 05508-090 São Paulo, SP - Brazil (fhn@ime.usp.br). Sponsored
by FAPESP (Grant 03/00460-0)

1



If an orientation is fixed, the problem consists of packing the maximum number of
(l, w)-rectangles and (w, l)-rectangles orthogonally into a larger rectangle without over-
lapping, yielding a layer of height h. Although there are polynomial-time algorithms for
the guillotine version of this problem (Tarnowski et al1), the non-guillotine problem is
widely claimed, but yet not proven, to be NP-complete (Dowsland2, Nelissen3). Actually,
the decision version of the problem is not known to be in NP at all (Nelissen4, Letchford
and Amaral5).

A number of authors have dealt with the manufacturer’s pallet loading problem as
discussed in Lins et al6, Pureza and Morabito7 and Alvarez-Valdes et al8,9 (see also the
references therein). In particular, in Lins et al6, an L-approach based on a recursively
defined function for packing (l, w)-rectangles into a larger rectangular (or L-shaped) piece
was presented. Such approach is able to optimally solve all testing problems (more than
20,000 representatives of infinite equivalence classes of the literature), including the 16 hard
instances unresolved by other heuristics. Such testing problems cover all instances with
solutions of up to 100 (l, w)-rectangles and pallet dimension (L,W ) of up to (1000, 1000)
from problem sets Cover I and II in Morabito and Morales10. These problems are realistic
in pallet loading contexts as depicted in Morabito et al11.

Based on those results, Lins et al6 conjectured that the L-approach always finds opti-
mal packings of (l, w)-rectangles into an (L,W )-rectangle. Nevertheless, the main draw-
back of the approach is its requirement in terms of computer runtime. For example, there
are instances for which the approach takes hundreds of minutes (on a 700Mhz Pentium III
processor) to solve them. In this note, we show that by simply using a different data struc-
ture in a C language implementation of the algorithm, the runtimes can be considerably
reduced (from hundreds of minutes to a few minutes in hard instances), despite larger
(but affordable) memory requirements. This reduction is important for practical purposes
since it makes the algorithm much more acceptable for supporting actual decisions in
pallet loading.

This note is organized as follows: in the next section we discuss some details of the
algorithm implementation. Then we present the numerical experiments. Finally, the last
section contains some concluding remarks.

Implementation of the algorithm

The L-approach is based on the computation of a recursive formula of dynamic program-
ming that deals with a huge number of subproblems. Given that the same subproblem
may appear several times along the recursion, and to be able to build up the solution at
the end, it is fundamental to keep the information of the subproblems previously solved
in memory. This information basically relates to the way each subproblem was solved
and the number of packed rectangles in its solution. Therefore, an important aspect of
the L-approach implementation is how to store and retrieve information of each solved
subproblem. Note that there is a trade-off between the amount of memory required and
rapid information access.

Each subproblem is related to an L-shaped piece in which the (l, w)-rectangles must be

2



packed. A standardly positioned L-shaped piece6, represented by (X,Y, x, y) where x ≤ X

and y ≤ Y , is defined as the topological closure of the rectangle whose diagonal goes from
(0, 0) to (X,Y ) minus the rectangle whose diagonal goes from (x, y) to (X,Y ), as shown in
Figure 1. Assume that L, W , l, w are non-negative integers such that L ≥ W and l ≥ w,
and consider the increasing and finite sequence Z = z0, z1, . . . , zp of all the non-negative
integer combinations zi of l and w, such that zi ≤ L. All subproblems generated by the
algorithm correspond to standardly positioned (X,Y, x, y) such that X,Y, x, y ∈ Z. Hence,
given a subproblem (X,Y, x, y), there are unique indices I,J ,i and j satisfying X = zI ,
Y = zJ , x = zi and y = zj . In other words, for each subproblem (X,Y, x, y) there is a
unique 4-uple (I, J, i, j).

Figure 1 about here.

In Lins et al6 a data structure named phorma (Lins et al12) was used to accom-
plish an efficient indexation of (I, J, i, j). Phorma (acronym for perfectly hashable order
restricted multidimensional array) is a data structure for perfect hashing of multidimen-
sional arrays which have order restrictions on their entries. This is the case in the L-
approach, where we would like to enumerate the quatruples of non-negative numbers
(X,Y, x, y) ≤ (L,W,L,W ) that satisfy

BL = (X ≥ x) ∧ (Y ≥ y) ∧ (X ≥ Y ) ∧ ((X 6= Y ) ∨ (x ≥ y))∧

((X 6= x) ∨ (Y = y)) ∧ ((Y 6= y) ∨ (X = x)).

The solution adopted in phorma is based on the theory of combinatorial families de-
veloped in Nijenhuis and Wilf13. The central idea is to associate a digraph to a collection
of combinatorial objects in such a way that each object in the family is in 1−1 correspon-
dence with a path in the digraph. Under mild assumptions, the digraph is logarithmically
smaller than the number of objects to be enumerated. Moreover, its construction requires
the enumeration and lexicographical ordering of a reduced set of objects related to (but
much smaller than) the original set of objects to be enumerated. Finally, the perfect hash
function can be computed at the expense of computing a path in the digraph. Moreover,
many savings can be done in the construction and storage of the related data structures,
doing most of the tasks at compilation time. See Lins et al12 for details (including several
examples for typical values of some phorma parameters).

Phorma has a good compromise between memory requirements and access time. How-
ever, for the problem sizes treated in Lins et al6, it is possible to apply a simpler data
structure that requires much more memory but substantially reduces the main drawback
of the L-approach implementation presented in Lins et al6: its computer runtime.

Let α(·) : Z → {0, 1, . . . , p}, α(zi) = i, and α−1(·) : {0, 1, . . . , p} → Z, α−1(i) = zi,
for i = 0, 1, . . . , p, be a bijective function and its inverse to perform the indexation of
the subproblems. Consider two auxiliary vectors u and v with sizes L + 1 and p + 1,
respectively, such that

u[k] =

{

i, if there exists i such that k = zi ∈ Z,

undefined, otherwise,

3



for k = 0, 1, . . . , L, and v[k] = zk, k = 0, 1, . . . , p. Then, α(zi) = u[i] e α−1(i) = v[i]. That
is, both functions can be evaluated in constant time. Figure 2 shows vectors u and v for
a problem instance with L = 10, W = 4, l = 5 e w = 2.

Figure 2 about here.

It should be noted that, for a subproblem (X,Y, x, y), the indices

(I, J, i, j) = (α(X), α(Y ), α(x), α(y))

such that X = zI , Y = zJ , x = zi and y = zj are computed in constant time. In this way,
the information of each subproblem can be saved at position (I, J, i, j) of a 4-dimensional
array (with each dimension of size p+1). Observe that the data access is direct (constant
computational cost) at the expense of many allocated but non-utilized array positions.
The memory requirement is O(p4).

Numerical experiments

We implemented the L-approach using function α and its inverse for the indexation of
the subproblems. The algorithm was coded in C language and the experiments run on an
1533 MHz AMD Athlon (TM) MP 1800+ processor, 512 Mb of RAM memory and Linux
operating system. An approximate comparison (http://www.spec.org) indicates that this
computer is less than twice as fast as the one used in Lins et al6 (700 MHz Pentium III
processor). The compiler was gcc version 2.95.4 with -O4 flag to optimize the code.

Table 1 shows the results obtained for the 16 problems analyzed in Lins et al6; these
problems are hard to solve for block heuristics as shown in Morabito and Morales10. In the
table the columns show the problem Pn(L,W, l, w) (which means that n (l, w)-rectangles
were packed into a pallet of dimensions (L,W )), the total amount of memory used by
the 4-dimensional array (in MegaBytes) and the percentage actually used (to store the
information of the subproblems), and the CPU runtime in seconds. Note that, on average,
1.52% of the elements of the 4-dimensional array is actually used by the algorithm.

The amounts of memory displayed in Table 1 are the ones used for the array utilized
to save the subproblem information. The total amount of physical memory used by the
task (including the size of the task’s code, data and stack) is at most twice of the reported
amounts. So, any computer with 512Mb of RAM memory is capable of solving these
problems.

Table 1 about here.

In addition to the 16 instances presented in Table 1, we also solved more than 20,000
problems selected from sets Cover I and II in Morabito and Morales10. These instances
correspond to all problems satisfying L,W ≤ 1000. Table 2 shows the average, the stan-
dard deviation, the minimum and the maximum runtimes (in seconds) for each set of
selected problems.

4



Table 2 about here.

Note that the average runtimes are affordable (with relatively high standard devia-
tions). As pointed out in Lins et al6, the L-approach solved all problems to optimality.
This fact reinforces the conjecture of the algorithm exactness. The problems in Cover I
(with up to 50 boxes) are on average much easier to solve, whereas the ones in Cover II (51
to 100 boxes) are on average as difficult as the 16 problems. Since most problems in Covers
I and II are quickly solved by the block heuristic in Morabito and Morales10, the runtimes
of Table 2 can be substantially reduced combining this heuristic to the L-approach.

Concluding remarks

In this note we show that the L-approach introduced in Lins et al6 can be effective for solv-
ing pallet loading problems of realistic sizes. By simply using a different data structure,
the runtimes are considerably reduced in spite of larger (but affordable) memory require-
ments. This way, the computer requirements of the algorithm become more acceptable
and the L-approach is a real option for pallet loading in logistics environments.

The present implementation (including the source code in C language) is available for
benchmark purposes14.

Acknowledgement: The authors thank the anonymous referee for his/her useful com-
ments.

References

[1] A. Tarnowski, J. Terno and G. Scheithauer, A polynomial-time algorithm for the
guillotine pallet loading problem, INFOR 32, pp. 275–287, 1994.

[2] K. A. Dowsland, An exact algorithm for the pallet loading problem, European Journal
of Operational Research 84, pp. 78–84, 1987.

[3] J. Nelissen, How to use the structural constraints to compute an upper bound for the
pallet loading problem, European Journal of Operational Research 84, pp. 662–680,
1995.

[4] J. Nelissen, Solving the pallet loading problem more efficiently, working paper,
Graduiertenkolleg Informatik und Technik, Aachen, 1994.

[5] A. Letchford and A. Amaral, Analysis of upper bounds for the pallet loading problem,
European Journal of Operational Research 132, pp. 582–593, 2001.

[6] L. Lins, S. Lins and R. Morabito, An L-approach for packing (l, w)-rectangles into
rectangular and L-shaped pieces, Journal of the Operational Research Society 54, pp.
777–789, 2003.

5



[7] V. Pureza and R. Morabito, Some experiments with a simple tabu search algorithm
for the manufacturer’s pallet loading problem, Computers & Operations Research, to
appear.

[8] R. Alvarez-Valdes, F. Parreño and J. M. Tamarit, A branch-and-cut algorithm for
the pallet loading problem, Computers & Operations Research, to appear.

[9] R. Alvarez-Valdes, F. Parreño and J. M. Tamarit, A tabu search algorithm for the
pallet loading problem, OR Spectrum 27, pp. 43–61, 2005.

[10] R. Morabito and S. Morales, A simple and effective recursive procedure for the man-
ufacturer’s pallet loading problem, Journal of the Operational Research Society 49,
pp. 819–828, 1998.

[11] R. Morabito, S. Morales and J. Widmer, Loading optimization of palletized products
on trucks, Transportation Research (Part E) 36, pp. 285–296, 2000.

[12] L. Lins, S. Lins and S. Melo, Phorma: perfectly hashable order restricted multidi-
mensional arrays, Discrete Applied Mathematics 141, pp.209–223, 2004.

[13] A. Nijenhuis and H. S. Wilf, Combinatorial algorithms for computers and calculators,
Academic Press (second edition), 1978.

[14] www.ime.usp.br/˜egbirgin.

6



(0,0)

(x,y)

(X,Y)

Figure 1: Standardly positioned L-shaped piece represented by (X,Y, x, y).

7



u
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9 10

v
0 2 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8

Figure 2: Vectors u and v for a problem instance with L = 10, W = 4, l = 5 e w = 2.

8



4-dimensional array memory
Problem requirement (in Megabytes) Runtime

Allocated Actually used (in seconds)

P53(43, 26, 7, 3) 2.98 0.981 % 2.48
P57(49, 28, 8, 3) 4.89 1.375 % 7.62
P ′

69(57, 34, 7, 4) 8.25 1.242 % 13.25
P ′′

69
(63, 44, 8, 5) 8.94 1.215 % 15.18

P71(61, 35, 10, 3) 11.29 1.821 % 37.52
P75(67, 37, 11, 3) 16.19 1.858 % 68.80
P ′

77(61, 38, 10, 3) 11.29 2.392 % 56.35
P ′′

77(61, 38, 6, 5) 10.46 1.237 % 19.45
P81(67, 40, 11, 3) 16.19 2.434 % 103.03
P ′

82(74, 49, 11, 4) 18.54 2.750 % 134.88
P ′′

82(93, 46, 13, 4) 47.72 1.298 % 168.38
P ′

96(106, 59, 13, 5) 67.89 1.463 % 327.88
P ′′

96(141, 71, 13, 8) 143.05 0.396 % 141.23
P97(74, 46, 7, 5) 22.53 1.197 % 57.73
P99(86, 52, 9, 5) 36.35 1.852 % 191.28
P100(108, 65, 10, 7) 64.68 0.732 % 111.87

Average 30.70 1.52 % 91.06

Table 1: Results obtained for the 16 hard problems.

9



Runtimes (in seconds)
Data set # selected problems Average Standard deviation Min Max

Problems in Lins et al6 16 91.06 87.39 2.48 327.88
Cover I 3,179 1.10 3.19 0.00 50.20
Cover II 16,938 113.10 217.55 0.00 3096.45

Table 2: Runtime statistics for the more than 20,000 problems selected from data sets
Covers I and II.

10


