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Abstract

A new method is introduced for packing objects in convex regions of the Euclidian n-
dimensional space. By means of this approach the packing problem becomes a global finite-
dimensional continuous optimization problem. The strategy is based on the new concept of
sentinels sets. Sentinels sets are finite subsets of the objects to be packed such that when
two objects are superposed at least one sentinel of one object is in the interior of the other.
Minimal sets of sentinels are found in simple 2−dimensional cases. Numerical experiments
and pictures showing the potentiality of the new technique are presented.
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1 Introduction

The problem of packing a given set of pieces into defined regions maximizing the total number of
pieces or the used area occurs in a large range of practical situations, including manufacturer’s
pallet loading, packing of ship containers and establishing of layout in clothing industry. Many
papers have been published dealing with packing problems. A useful classification has been
given by Dyckhoff [14]. One of the most popular and useful problem in this area is to find
the maximum number of rectangles that can be orthogonally packed into a larger rectangle.
Polynomial algorithms for the guillotine version of the problem exist [32] whereas the NP-
completeness of the non-guillotine problem has been conjectured [15, 28]. In [24] a very efficient
heuristic to solve this problem was introduced. The authors conjectured that their method
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always finds an optimal solution and solved hard instances that remained unsolved by other
heuristics.

Several mixed 0-1 integer linear and nonlinear programming models have been proposed for
2D and 3D packing problems in which identical or non-identical boxes must be packed into a
bigger box. In general, the packed boxes can be rotated, but always with its sides parallel to
the sides of the bigger box. Sometimes constraints are imposed related to the number of each
type of box being packed. In general, the proposed models are difficult. When an exact method
is used, large-scale problems become impossible to solve. Fortunately, heuristic methods find
optimal or good quality solutions in many cases. See, for example, [3, 4, 12, 13, 20, 33].

In [4] a nonlinear formulation for the constrained two-dimensional non-guillotine cutting
problem is presented and the model is used for the elaboration of a populational heuristic. The
proposed model has two main difficulties: (i) the presence of integer variables; and (ii) the non-
differentiability of the nonlinear constraints used to avoid overlapping. The first difficulty may
be circumvented by replacing constraints of type x ∈ {0, 1} by x(1− x) = 0. However, this kind
of constraints leads to hard-to-solve nonlinear problems with many local-nonglobal solutions.
Several strategies for fixing integer variables and solving the problem as a sequence of continuous
nonlinear problems have also been proposed. The second inconvenient of the formulation can be
overcome by approximating the nonsmooth constraints by smooth ones. These two ideas lead
to nonlinear formulations that are suitable for classical nonlinear optimization solvers.

Several works related to packing irregular polygons have been also published. Most of them
are based on placement policies previously defined (for example, bottom-left) and aim to find
optimal solutions related to the pre-established policy. In [5] an easy way to compute a placement
policy known as “non-fit polygon” has been proposed. This idea is used in [17], among other
strategies, to develop a bottom-left placement algorithm for polygon packing. See also [1, 16,
22, 23].

The Method of Sentinels introduced in this paper is a procedure for packing objects inside a
convex region without overlapping. The main idea is to define a set of points called sentinels for
each small object in such a way that two objects are superposed if and only if at least a sentinel
of one of the objects is in the interior of the other object. Based on the sentinels sets, a smooth
nonlinear decision model to determine if a fixed set of objects can be packed inside the convex
region without overlapping is defined. The variables of the model are the ones that define a
displacement in the Euclidian space. In 2D problems, the displacement is defined by a vector of
translation and an angle of rotation. So, the method is not restricted to orthogonal (parallel to
the axes) patterns. The new concept of sentinels introduces some difficult theoretical problems
related to identification and minimality. Here we present minimal sets of sentinels for the case of
identical rectangles and regular polygons. More general objects, convex or non-convex, obtained
by combination of identical rectangles are also considered. The non-linear decision model is
solved using the well-established bound-constrained solver GENCAN [6].

This paper is organized as follows. In Section 2 the Method of Sentinels for packing objects on
arbitrary regions is introduced. In Section 3 we define an optimal set of sentinels for rectangular
objects and regular polygons. In Section 4 we present numerical experiments using the Method
of Sentinels for packing rectangular objects on arbitrary convex regions. In Section 5 we state
conclusions and lines for future research. In the Appendix we collect the technical proofs and
theorems stated in Section 3.
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2 Using Sentinels for Packing

We begin with an informal and general description of the Method of Sentinels. Let A1 and A2

be nonempty, open, bounded and convex sets of IRn. Sets with these characteristics will be
called objects from now onwards. Define B1 = Ā1 the closure of A1 and B2 = Ā2 the closure of
A2. Let D1,D2 : IRn → IRn be two displacement operators. So, D1 and D2 transform objects in
objects preserving distances, angles and orientation. If D1(A1) ∩ D2(A2) 6= ∅ then we say that
D1(B1) and D2(B2) (or D1(A1) and D2(A2)) are superposed.

Let S1 and S2 be finite subsets of B1 and B2 respectively. We say that S1 and S2 are sentinels
sets relatively to B1 and B2 if the following property holds:

For all displacements D1,D2, if D1(B1) and D2(B2) are superposed, then

D1(S1) ∩ D2(A2) 6= ∅ or D2(S2) ∩ D1(A1) 6= ∅. (1)

Roughly speaking, if, after the displacements, the objects B1 and B2 are superposed, then at
least one sentinel of B1 becomes interior to B2 or one sentinel of B2 becomes interior to B1.

Now, assume that B1, . . . , Bm ⊂ IRn, Ω ⊂ IRn and we want to pack the objects B1, . . . , Bm

into the region Ω. This means that we want to find displacements D1, . . . ,Dm such that

Dj(Bj) ⊂ Ω ∀ j = 1, . . . ,m (2)

and
Di(Bi) and Dj(Bj) are not superposed ∀ i, j = 1, . . . ,m, i 6= j. (3)

Assume that S1 ⊂ B1, . . . , Sm ⊂ Bm are such that Si and Sj are sentinels sets relatively to
Bi and Bj . For all i, j = 1, . . . ,m, i 6= j, define

κ(Di,Dj) = #{[Di(Si) ∩ Dj(Aj)] ∪ [Dj(Sj) ∩ Di(Ai)]}. (4)

Then, condition (3) can be formulated as follows:

κ(Di,Dj) = 0 ∀ i, j = 1, . . . ,m, i 6= j. (5)

So, the packing problem defined by (2)-(3) is related to the optimization problem

Minimize
∑

i6=j

κ(Di,Dj) s. t. Dk(Bk) ⊂ Ω ∀ k = 1, . . . ,m. (6)

If a global solution of (6) is found such that the objective function value vanishes, then the
packing problem (2)-(3) is solved. The objective function of (6) represents the total number of
sentinels of one object that, after the displacements, fall in the interior of some other object.

The optimization problem (6) defines the Method of Sentinels. However, this minimization
problem needs to be reformulated in order to transform it into a solvable nonlinear programming
problem. Let us consider the case in which Ω is a closed and convex set defined by a set of
inequalities. So,

Ω = {x ∈ IRn | gi(x) ≤ 0, i = 1, . . . , p}. (7)
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Moreover, assume that each object Bk is a bounded polytope, so it is the convex hull of its
vertices V1(Bk), . . . , Vν(k)(Bk). Then, the constraints of (6) take the form

gi(Dk[Vℓ(Bk)]) ≤ 0 ∀ ℓ = 1, . . . , ν(k), k = 1, . . . ,m, i = 1, . . . , p. (8)

The displacements Dk can always be described by a finite set of parameters. For example,
displacements in IR2 are given by three parameters, the first two representing a translation and
the third the angle of rotation. Displacements in IR3 are given by three translation parameters
and two angles of rotation, and so on. Therefore, the constraints (8) have the usual form adopted
in nonlinear programming problems.

Let us analyze now the objective function of (6). This function depends on the continuous
variables that define the displacements but it takes only discrete integer nonnegative values.
For nonlinear programming reformulations we need to replace it by a continuous function of the
displacement variables. As before, we restrict ourselves to the case in which the sets Bk are
bounded polytopes. In this case, Bk is described by a set of linear inequalities:

〈ck,j, x〉 ≤ bk,j, j = 1, . . . , µ(k). (9)

If s is a sentinel of Bi and Di(s) is in Dk(Ak) with k 6= i, then D−1
k Di(s) belongs to Ak and, so,

it satisfies:
〈ck,j ,D

−1
k Di(s)〉 < bk,j, j = 1, . . . , µ(k). (10)

Thus, the displaced sentinel s belongs to the displaced Ak if, and only if,

µ(k)∏

j=1

max{0, bk,j − 〈ck,j ,D
−1
k Di(s)〉} > 0. (11)

Therefore, a degree of the superposition of Bi and Bk under the displacements Di and Dk

is given by
Φ(Di,Dk) = (12)

∑

s∈Si

µ(k)∏

j=1

[max{0, bk,j − 〈ck,j,D
−1
k Di(s)〉}]

2 +
∑

s∈Sk

µ(i)∏

j=1

[max{0, bi,j − 〈ci,j ,D
−1
i Dk(s)〉}]

2

The function Φ(Di,Dk) is nonnegative and continuously differentiable with respect to the param-
eters that define the displacements Di and Dk and it vanishes if, and only if, Di(Bi) and Dk(Bk)
are not superposed. Therefore, it can replace the function κ in the optimization problem (6).

Summing up, in the case in which Ω is a convex set defined by inequalities and the ob-
jects are bounded polytopes, the packing problem can be formulated as the following nonlinear
programming problem:

Minimize
∑

i6=j

Φ(Di,Dj) (13)

subject to (8). Moreover, since we are only interested in global solutions of (13) where the
objective function must vanish, the problem can be reformulated as the feasibility problem
given below: ∑

i6=j

Φ(Di,Dj) = 0, (14)
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gi(Dk[Vℓ(Bk)]) ≤ 0 ∀ ℓ = 1, . . . , ν(k), k = 1, . . . ,m, i = 1, . . . , p. (15)

Finally, (14)-(15) is equivalent to the following unconstrained continuously differentiable
global optimization problem:

Minimize
∑

i6=j

Φ(Di,Dj) +
p∑

i=1

m∑

k=1

ν(k)∑

ℓ=1

[max{0, gi(Dk[Vℓ(Bk)])}]
2. (16)

3 Sentinels for Planar Polygons

Let us restrict ourselves to 2D packing problems of polygons. We present examples of polygons
for which any set of sentinels is infinite and characterize a class of polygons that have finite
sets of sentinels. We explain how to build sentinel sets for polygons in this last class and also
provide optimal sentinel sets for rectangles and regular polygons. The proofs of all lemmas and
theorems presented in this section can be found in the Appendix.

In this section we work with polygons, by which we mean a sequence of points p0, p1, . . . , pn−1

connected by segments pipi+1 that do not cross. The only contact the segments have is at the
vertices pi. We also assume that no three consecutive points pi are aligned and use the indices
modulo the number of points in P . According to this definition, polygons are not open sets.
However, in order to simplify the language, we will say that S1, . . . , Sn is a set of sentinels for
a family of polygons P1, . . . , Pn even when, to be one hundred percent rigorous, we should say
that S1, . . . , Sn is a set of sentinels for the interior of P1, . . . , Pn.

We are now ready to state a negative result: triangles do not have finite sentinel sets. In
fact, any two polygons with an internal angle smaller than π/2 that could be superposed like
in Figure 1, with contact only at the acute tips, cause problems. In this case, one can place
any finite number of sentinels near the touching tips and it will always be possible to move the
polygons slightly and have them to intersect in such way that one polygon does not touch the
sentinels of the other.

Figure 1: Polygons with internal angles smaller than π/2 may not have finite sets of sentinels.

On the other hand, this is as bad as things may get, as stated in the next theorem:

Theorem 1 If P1, . . . , Pn is a family of n planar polygons such that all internal angles of all
Pi’s are bigger than or equal to π/2 then there exist a family of finite sets of sentinels S1, . . . , Sn

for P1, . . . , Pn.

The sentinel sets used to prove this theorem are built in two steps. First we use the next
two lemmas to reduce the problem to the convex case:
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Lemma 1 Every polygon with internal angles bigger than or equal to π/2 can be decomposed as
the union of convex polygons with internal angles bigger than or equal to π/2.

Lemma 2 Let A1, . . . , An be a family of open sets such that each Ai is decomposed as Ai =
∪ni

j=1Aij , for some open sets Aij . Consider the set of n-uples K = {(k1, . . . , kn) with 1 ≤ ki ≤
ni for i = 1, . . . , n}. If S1k1

, S2k2
, . . . , Snkn

are sentinels sets for A1k1
, A2k2

, . . . Ankn
for all

(k1, . . . , kn) ∈ K then the sets Si = ∪ni

j=1Sij are sentinels sets for A1, . . . , An.

In words, Lemma 2 states that we can obtain sentinels sets for the whole set by combining
the sentinels sets for their parts. As a consequence of the last two lemmas, we mostly care about
convex polygons and the next lemma is of interest:

Lemma 3 If P1, . . . , Pn, n ≥ 2, is a family of strictly convex polygons and S1, . . . , Sn is a family
of finite sets of sentinels for the Pi’s then each Si contains all the vertices of Pi.

Thus, vertices are natural candidates to sentinels. Moreover, in the case when some Pi are
repeated we must have internal sentinels. Otherwise we could just put one copy right above the
other. This observation proves the following lemma.

Lemma 4 Let A1, . . . , An be a family of open sets and S1, . . . , Sn be a family of finite sets of
sentinels for the Ai’s. If Ai = Aj for i 6= j then (Si ∩ Ai) ∪ (Sj ∩ Aj) 6= ∅.

We are now ready to explain the construction used to prove Theorem 1. First we decompose
each polygon as the union of convex parts with internal angles bigger than or equal to π/2. We
take the vertices of such parts as sentinels. Next, for each convex part C = c0c1 . . . ck, ck = c0,
we take an arbitrary internal sentinel in the set

I =
k⋂

i=1

Ci,

where Ci is the convex polygon with vertices cj with j 6= i. Each Ci is the convex set obtained
from C by the removal of the ear ci−1cici+1 and their intersection is illustrated in Figure 2.

Figure 2: The set I for the rectangle (just one point) and the hexagon (hatched).

Since each C has at least four vertices, Helly’s theorem implies that I is not empty, because
the intersection of any three Ci’s, for i ∈ {i1, i2, i3}, contains at least a vertex cj for some
j 6 ∈ {i1, i2, i3}. Therefore, we can always pick an internal sentinel for C as described above.
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Figure 3: A family of polygons and their sentinels. The rectangle has smallest side of length
slightly bigger than 1 and the other polygons have sides of length 1. The sentinels in the borders
are 1 apart, except for the ones in the smallest side of the rectangle, which are roughly 1/2 apart.

Finally we take a small δ and populate the sides of the parts with sentinels which are at
most δ apart, as in Figure 3. In the case when no polygon has parallel sides which are close to
each other we can take δ as the length of the smallest side among all the polygons. In cases
similar to the rectangle, when there are two consecutive internal angles of π/2, we must take
δ slightly smaller than the side connecting the corresponding vertices. To be precise, we can
take any δ smaller than the length of any segment xy connecting nonconsecutive sides of one
of the polygons Pi and such that the relative interior of xy is contained in the interior of Pi, as
formalized in the definition of splitting segment, which is illustrated in Figure 4

Figure 4: The segment xy splits P but ab does not, because its endpoints are in consecutive
sides. The segment cd does not split P because a part of it lies outside the interior of P .

Definition 1 We say that a segment xy with endpoints in nonconsecutive sides of a polygon P
splits P if the relative interior of xy is contained in the interior of P , i.e, if xy is contained in
P and splits it in two polygons which are not triangles.

The construction in the last paragraphs shows that Theorem 1 is a corollary of the following
general theorem.

Theorem 2 If P1, . . ., Pn is a family of polygons with internal angles bigger than or equal to
π/2 and Si = Bi ∪ Ii, for i = 1, . . . , n, is a collection of sets and δ is a number such that

1. Any segment that splits any Pi has length bigger than δ.

2. The points of Bi are in the border of Pi and the vertices of Pi belong to Bi.

3. For any p in the border of Pi there exist x, y ∈ Bi such that ‖x − y‖ ≤ δ and p is in the
segment xy.
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4. Ii is contained in interior of Pi and any p in the interior of Pi is visible from some x ∈ Ii,
that is, for any p in the interior of Pi there exists x ∈ Ii such that the segment xp is
contained in the interior of Pi.

5. If the polygon Pi has vertices pi0, pi1, . . . , pik = pi0 then the intersection of Ii with the
interior of the triangles pijpi(j+1)pi(j+2) is empty (indexes taken modulo k.)

then S1, . . . , Sn is a family of sentinels sets for the Pi’s.

The reader can verify that the points indicated in Figure 3 satisfy all the conditions for
Theorem 2, corroborating our claim that they are sentinels sets for these sets. Notice also
that there is no condition regarding convexity in Theorem 2. In fact, our construction uses the
reduction to convex sets only to guarantee the existence of the internal sentinels that “see” all
the polygon and lie outside of its ears pjpj+1pj+2.

Lemmas 3 and 4 show that the sets of sentinels we propose are optimal for families of regular
polygons with sides of the same length and with more than four vertices. However, the case
for rectangles is different. Since rectangles are so important in practice we devote the last part
of this section to them. We will present optimal sets of sentinels for families R1, . . . , Rn of
identical rectangles. Our analysis is based on what we call “dual approach” and may also be
used to analyze more general situations. In the next paragraphs we give an heuristic overview
of this approach. At the end of the section we explain how to use the dual approach to build
optimal sentinel sets for the rectangles and provide rigorous proofs in this case.

The dual approach relates sentinels to a covering problem, which is, in some sense, dual to
the main subject of this work: packing problems. To establish this connection, notice that any
displacement of a set C ∈ IR2 can be written in matrix-vector form as

Cθd = d − HθC, (17)

where d is a vector in IR2 and Hθ is the counterclockwise rotation by the angle θ:

Hθ =

(
cos θ − sin θ
sin θ cos θ

)

. (18)

Let us suppose that we are deciding if Û and V̂ are sentinel sets for a pair of open sets U, V ∈ IR2

(notice that our candidates to sentinel wear hats). In this case we would need to convince
ourselves that

U ∩ Vθd 6= ∅ ⇒ (U ∩ V̂θd) ∪ (Û ∩ Vθd) 6= ∅, (19)

that is, if U intercepts the displaced V then either U intercepts the displaced V̂ or Û intercepts
the displaced V . The condition U ∩ Vθd 6= ∅ is equivalent to the existence of u ∈ U and v ∈ V
such that

u = d − Hθv.

On the other hand, U ∩ V̂θd 6= ∅ is equivalent to the existence of u′ ∈ U and v̂ ∈ V̂ such that

u′ = d − Hθv̂,
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and Û ∩ Vθd corresponds to the existence of v′ ∈ V and û ∈ Û such that

û = d − Hθv
′.

Thus, if we put θ in a second plane and focus on d, the expression (19) is equivalent to

Dθ(U, V ) ⊂ Dθ(U, V̂ ) ∪ Dθ(Û , V ), (20)

for Dθ(., .) defined similarly in the three cases:

Dθ(U, V ) = {d ∈ IR2 | d = u + Hθv, for u ∈ U and v ∈ V }, (21)

Dθ(U, V̂ ) = {d ∈ IR2 | d = u′ + Hθv̂, for u′ ∈ U and v̂ ∈ V̂ }, (22)

Dθ(Û , V ) = {d ∈ IR2 | d = û + Hθv
′, for û ∈ Û and v′ ∈ V }. (23)

Under the assumptions made upon U ,V and the candidate sentinel sets Û and V̂ , the reverse of
(20), that is Dθ(U, V ) ⊃ Dθ(U, V̂ )∪Dθ(Û , V ) always holds. Therefore, the distinction of sentinel
sets and arbitrary sets can be made by checking if

Dθ(U, V ) = Dθ(U, V̂ ) ∪ Dθ(Û , V ) (24)

for all θ. This situation is depicted in Figure 5

U V

Û = vertices of U + center of U

V̂ = vertices of V + center of V Dθ(Û , V ) Dθ(U, V̂ ) Dθ(U, V )

Figure 5: Example of sets U, V, Û , V̂ and their duals Dθ(Û , V ),Dθ(U, V̂ ) and Dθ(U, V ).

The dual set Dθ(Û , V ) is obtained attaching a displaced copy of V to each element of Û ,
Dθ(U, V̂ ) is obtained attaching copies of U to the displaced elements of V̂ and Dθ(U, V ) is
obtained attaching a displaced copy of V to each element of U . Notice that by definition
Dθ(U, V ) is the union of an infinite family of sets but, since Û and V̂ are sentinels for U and V ,
it is also the union of the finite families that form Dθ(U, V̂ ) and Dθ(U, V̂ ). Therefore, Û and V̂
are sentinels for U and V if and only if, for each θ, the finite families that define Dθ(U, V̂ ) and
Dθ(Û , V ) cover the whole dual Dθ(U, V ).

The dual formulation leads to a simple heuristics to check if Û and V̂ are sentinels for U
and V : discretize the interval [0, 2π) in small intervals with width δθ and check the condition
(20) for every θ = kδθ. This can be done visually, using a CAD program, or automatically, by
software. In fact, it could even be turned into a rigorous automated procedure, to prove things,
if exact arithmetic were used and some properties of the dual sets were explored. However, a
more detailed discussion of this topic would take us to far from our main route.
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Using the sentinel approach, with visual inspection for several values of θ in the software
AutoCAD, we found the following optimal sentinel sets when all the Pi’s equal the rectangle Rλ

with vertices (±λ,±1) and λ ≥ 1.

Figure 6: The minimal sentinel set Sλ for the rectangle Rλ.

For technical reasons, we must look at two ranges for λ: λ < 4 and λ ≥ 4, and the horizontal
distance δλ among the points is at most

δλ = λ/2 if 1 ≤ λ < 4, (25)

δλ =
2λ

⌊λ⌋ + 1
if λ ≥ 4. (26)

Formally we define two sentinel sets, the one above, Sλ, and its reflection Tλ on the x axis.
These sets are defined in terms of the auxiliary sets Mλ and Bλ as follows

Bλ = {(−λ,−1), (−λ, 0), (−λ, 1), (λ,−1), (λ, 0), (λ, 1)}, (27)

Mλ = {(kδλ − λ, 0), for 2 ≤ k ≤ nλ + 1}, (28)

nλ = 1 for λ < 4 and nλ = ⌊λ⌋ − 2 otherwise, (29)

Sλ = Bλ ∪ Mλ ∪ {(−λ + δλ,−1), (λ − δλ, 1)}, (30)

Tλ = Bλ ∪ Mλ ∪ {(−λ + δλ, 1), (λ − δλ,−1)}. (31)

To round up our discussion of sentinels for the rectangle, we present the following technical
results that at the end imply that our sentinels are indeed minimal. In the following lemmas
and theorem we will be concerned with families in which all Pi’s are equal to the rectangle Rλ

and with sentinel sets that are equal too. In this case we say that S is a sentinel set for Rλ if
S, S, . . . , S are sentinels for Rλ, . . . , Rλ, for any given number of copies of Rλ and S. The first
lemma specific for rectangles is this:

Lemma 5 Every sentinel set of Rλ contains a point in the relative interior of each side of Rλ.

Using the last lemma, Lemma 3 and Lemma 4 we deduce that every sentinel set of Rλ has
at least 9 elements. However, for λ ≥ 4 we have a sharper lower bound:

Lemma 6 Every sentinel set of Rλ has at least 6 + ⌊λ⌋ elements.

Theorem 3 The sets Sλ and Tλ are sentinel sets for Rλ.

According to (29), if λ < 4 then the number of elements of Sλ and Tλ is 8 + nλ = 9, which,
as pointed out above, is the minimum number of sentinels for a rectangle. Otherwise, if λ ≥ 4,
then Sλ and Tλ have 8 + nλ = 6 + ⌊λ⌋ elements, or the lower bound in Lemma 6. Therefore,
our examples Sλ and Tλ of sentinel sets for the rectangle are optimal and our lower bounds on
the number of elements in sentinel sets for rectangles are sharp.
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4 Numerical Experiments

4.1 Basic Optimization Procedure

We solved problems of packing rectangles within arbitrary regions using the mathematical model
(16). The unknowns of (16) are the translation vectors and the rotation angles for each rectangle.
We imposed upper and lower bounds to the translation vectors. In general, these bounds are
suggested by the problem which, frequently, imposes that the objects must be contained in a
two-dimensional box. Therefore, (16) becomes a box-constrained smooth minimization problem.
We use as sentinels the points of Sλ

+ described in Section 3.
The box-constrained optimization problem was solved using GENCAN, an active set method

that uses spectral projected gradients for leaving faces introduced in [6]. In general, the problem
(16) has many local-nonglobal minimizers. In order to enhance the chance of convergence to
global solutions we adopted the following strategies:

• Improving initial approximation. We took some circles that “almost cover” the rect-
angle as shown in Figure 7. Given an initial approximation for (16) we solved the problem
of finding displacements such that the above mentioned circles do not intersect. For this,
we used the same objective function used in [9] for the cylinder packing problem and in
[26] for molecular packing and, once more, we employed GENCAN. This auxiliary problem
is easier and less expensive than (16). Its minimizers (global or not) are not necessarily
solutions of (16) but almost always provide improved initial points for solving our problem.

Figure 7: Partial covering of the rectangle by circles used to generate initial configurations.

• Multistart procedure. When the box-constrained solver does not find a set of dis-
placements that pack the rectangles without overlapping, the objective function of (16) at
the final approximation is strictly positive. In this case one does not know whether the
packing problem is solvable or not. So, we try to solve (16) again using random starting
displacements. The maximum number of trial initial configurations is specified in advance.

Let us mention the main implementation details:

• The center of the basic rectangle is the origin of IR2. The initial translation vectors were
chosen randomly in the feasible region. The initial rotation angles were chosen randomly
between 0 and 2π.

• We tried to pack increasing number of rectangles in the desired region. The pictures
exhibited indicate that we were not able to pack more rectangles than the exhibited ones.
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• We tried a maximum of 1000 initial points for each problem.

• The parameters used in GENCAN were the default ones given in [6].

All the computations were done on an Intel Pentium III Computer with 256 Mb of RAM
and 700MHz. Codes are in Fortran and the compiler used was GNU Fortran 2.95.2, with the
optimization option “–O4”.

4.2 Results

We solved the 30 problems described in Table 1. The solutions are given in Figures 8–14.
Problems 1–10 show how the method pack rectangles in arbitrary convex regions. In [25]

the problem of packing containers in airplanes is analyzed. This practical problem is linked to
the geometrical problems studied here.

Problems 11–18 consist in packing unitary squares in bigger squares. Problems 19–23 consist
in packing unitary squares in equilateral triangles. Both problems are related to classical com-
binatorial and geometrical problems (see [18, 19]); namely, to find the smaller “big” square (or
equilateral triangle) that contains a fixed number of “small” squares. The duality relationships
between this problem and the one considered in this paper can be used to obtain approximations
to the solution of the first.

Problems 24 and 25 show that our approach is able to obtain non-guillotine and guillotine
solutions of the problem of packing rectangles in rectangles. It must be mentioned, however,
that our method is not competitive with clever heuristics for orthogonal packing of rectangles
in a big rectangle. See [24].

In Problems 26–29 we show how the method can be used to pack objects in regions that
have prohibited zones [2, 10], when these zones can be described as unions of rectangles. In this
case, the corresponding problem is handled using constraints that impose a fixed position to the
rectangles that represent the forbidden regions.

Finally, observe that, at a first sight, in Problems 30, the packed objects are not rectangles [5,
17, 16, 1, 22, 23]. However, each object is also a union of rectangles and the desired configuration
is obtained using the basic rectangle-packing procedure and imposing additional constraints to
force that the packed rectangles preserve adequate relative positions. In other words, the problem
of packing objects that are union of rectangles can be handled employing, essentially, the same
technique introduced for rectangles.

5 Conclusions

In this paper we introduced the concept of Sentinels Sets. We proved the existence of finite sets
of sentinels for polygons with their internal angles larger than or equal to π/2. Moreover, we
found two minimal sets of sentinels to pack identical rectangles. An interesting and challenging
problem is to find minimal sets of sentinels for arbitrary non-regular polygons or for 3D objects.

We introduced a nonlinear-programming oriented algorithm for packing objects in arbitrary
regions. The method is based in the new concept of Sentinels Sets. To improve the efficiency of
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(a) (d)

(b) (e)

(c) (f)

Figure 8: (a–c) Linear constraints and circles, (d–f) linear constraints and quadratics (Problems
1 to 6).

the proposed method the initial approximations are chosen using an auxiliary simpler nonlinear-
programming procedure. However, the initial procedure alone is not able to find solutions of the
packing problem and using the Sentinels optimization problem is necessary.

The main limitation of the proposed model for solved packing problems relies in the complex-
ity of the continuous optimization problem. Basically, this is a global optimization problem with
many local-nonglobal minimizers. General and specific novel strategies for global optimization
must be useful for improving the efficiency of the Sentinels approach.
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(a) (c)

(b) (d)

Figure 9: Linear constraints and ellipses (Problems 7 to 10).
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Problem Region S Packed objects
Dimensions Number

1

g1(x1, x2) = −x1

g2(x1, x2) = −x2

g3(x1, x2) = −x1 − x2 + 3
g4(x1, x2) = x2

1
+ x2

2
− 100

2 × 1 32

2
g1(x1, x2) = −7x1 + 6x2 − 24
g2(x1, x2) = 7x1 + 6x2 − 108
g3(x1, x2) = (x1 − 6)2 + (x2 − 8)2 − 9

1.1 × 0.55 30

3

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 8
g3(x1, x2) = (x1 − 6)2 + x2

2
− 81

g4(x1, x2) = (x1 − 1.7)2 + (x2 − 10)2 − 81

2 × 0.6 38

4
g1(x1, x2) = x2

1
− x2

g2(x1, x2) = x2

1
/4 + x2 − 5

1 × 0.4 28

5
g1(x1, x2) = x2

1
− x2

g2(x1, x2) = −x1 + x2

2
− 6x2 + 6

g3(x1, x2) = x1 + x2 − 6
0.9 × 0.3 35

6
g1(x1, x2) = −x1 + x2

2
− 6x2 + 6

g2(x1, x2) = x1 + x2

2
− 3x2 − 3/4

0.9 × 0.3 31

7 g1(x1, x2) = (x1 − 2)2/4 + (x2 − 4)2/16 − 1 2 × 0.5 20

8

g1(x1, x2) = (x1 − 6)2/4 + (x2 − 6)2/36 − 1
g2(x1, x2) = (x1 − 6)2/36 + (x2 − 6)2/4 − 1
g3(x1, x2) = x1 − x2 − 3
g4(x1, x2) = −x1 + x2 − 2

0.7 × 0.5 30

9

g1(x1, x2) = (x1 − 3)2/4 + (x2 − 4)2/16 − 1
g2(x1, x2) = (x1 − 2.65)2/4 + (x2 − 4)2/16 − 1
g3(x1, x2) = −x1 + 1
g4(x1, x2) = x1 − x2 − 1
g5(x1, x2) = x1 + x2 − 9

0.8 × 0.6 23

10
g1(x1, x2) = (x1 − 6)2/36 + (x2 − 6)2/4 − 1
g2(x1, x2) = (x1 − 6)2/9 + (x2 − 8)2/9 − 1

0.95 × 0.35 32

11

g1(x1, x2) = −x1

g2(x1, x2) = x1 − (2 +
√

2/2)
g3(x1, x2) = −x2

g4(x1, x2) = x2 − (2 +
√

2/2)

1 × 1 5

12

g1(x1, x2) = −x1

g2(x1, x2) = x1 − (3 +
√

2/2)
g3(x1, x2) = −x2

g4(x1, x2) = x2 − (3 +
√

2/2)

1 × 1 10

13

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 3.878
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 3.878

1 × 1 11

14

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 4.676
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 4.676

1 × 1 17

15

g1(x1, x2) = −x1

g2(x1, x2) = x1 − (7 +
√

7/2)
g3(x1, x2) = −x2

g4(x1, x2) = x2 − (7 +
√

7/2)

1 × 1 18

Table 1: Problems and regions. The regions are of the form Ω = {x ∈ IR2 | gi(x) ≤ 0}. In
Problem 25, region Ω has the form Ω = {x ∈ IR2 | gi(x) ≤ 0} − {x ∈ IR2 | g̃i(x) ≤ 0}. In most
of the problems, the packed objects are rectangles. When the objects are not rectangles, they
are composed by a combination of (overlapped or not overlapped) rectangles of the mentioned
dimensions (See pictures).
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Problem Region S Packed objects
Dimensions Number

16

g1(x1, x2) = −x1

g2(x1, x2) = x1 − (3 + 4
√

2/3)
g3(x1, x2) = −x2

g4(x1, x2) = x2 − (3 + 4
√

2/3)

1 × 1 19

17

g1(x1, x2) = −x1

g2(x1, x2) = x1 − (7/2 + 3
√

2/2)
g3(x1, x2) = −x2

g4(x1, x2) = x2 − (7/2 + 3
√

2/2)

1 × 1 26

18

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 6.621
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 6.621

1 × 1 37

19
g1(x1, x2) =

√
3x1 + x2 −

√
3(3/2 +

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

1 × 1 27

20
g1(x1, x2) =

√
3x1 + x2 −

√
3(2 + 4/

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

1 × 1 28

21
g1(x1, x2) =

√
3x1 + x2 −

√
3(3 + 4/

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

1 × 1 29

22
g1(x1, x2) =

√
3x1 + x2 −

√
3(2 + 2

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

1 × 1 30

23
g1(x1, x2) =

√
3x1 + x2 −

√
3(4 + 4/

√
3)

g2(x1, x2) = −
√

3x1 + x2

g3(x1, x2) = −x2

1 × 1 31

24

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 23
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 21

6 × 5 16

25

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 10
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 8

2 × 1 40

26

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 10
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 8

2 × 1 34 + 6 fixed

27

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 10
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 8

2 × 1 34 + 6 fixed

28

g1(x1, x2) = −x1

g2(x1, x2) = x1 − 10
g3(x1, x2) = −x2

g4(x1, x2) = x2 − 8

2 × 1 34 + 4 fixed

29

g1(x1, x2) = −x1 + x2 − 6
g2(x1, x2) = x1 − x2 − 6
g3(x1, x2) = −x1 − x2 + 6
g4(x1, x2) = x1 + x2 − 18
g5(x1, x2) = −x1 + 1
g6(x1, x2) = x1 − 11
g7(x1, x2) = −x2 + 1
g8(x1, x2) = x2 − 11

2 × 1 28 + 2 fixed

30
g1(x1, x2) = (x1 − 6)2/36 + (x2 − 6)2/4 − 1
g2(x1, x2) = (x1 − 6)2/9 + (x2 − 6)2/9 − 1

0.95 × 0.35 14

Table 2: Problems and regions (continuation).
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 10: Squares into squares (Problems 11 to 18).
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(a) (e)

(b) (f)

(c)

Figure 11: Squares into triangles (Problems 19 to 23).
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(a) (b)

Figure 12: A non-guillotine and a guillotine patern (Problems 24 and 25).

(a) (c)

(b) (d)

Figure 13: Forbidden regions for special pallet configurations (Problems 26 to 29).

Figure 14: Packing of nonrectangular objects (Problem 30).
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6 Appendix: Proofs of Section 3

Here we collect the technical proofs and theorems stated in Section 3. The results are proved in
the order that they were stated.

Proof of Lemma 1. The proof is by induction. To start the induction, notice that any
polygon with angles bigger than or equal to π/2 with four sides must be a rectangle and the
polygons with five sides with this property are convex too. To apply the induction step for
polygons with six or more sides, we show that any non convex polygon with internal angles
bigger than or equal to π/2 and six or more sides can be splitted into simpler parts. The parts
are simpler in the sense that they have fewer vertices than the original polygon, or have fewer
reflex vertices or have more internal angles equal to π/2, in this order. To prove this claim we
analyze the possibilities described in in the next seven figures which cover all possible cases with
a reflex (or nonconvex) vertex. The idea of the analysis is to let a scan line rotate around the
reflex vertex and check all the possible events that may happen as the scan line rotates. We start
with two preliminary cases and then focus at the scan line. The scan line starts its movement
connecting the point a to the reflex vertex pk so that apk ⊥ pkpk+1. It rotates until it reaches
the point b, such that bpk ⊥ pkpk−1. Let us then look at the several cases.

Figure 15: The angles p̂1, p̂2, . . . p̂k−1 are π/2, p0p1 crosses pkb at x and x is visible from pk.

In the first case all the angles p̂1, p̂2, . . . p̂k−1 are equal to π/2, p0p1 crosses pkb at x and x is
visible from pk. In this case the sides pjpj+1 for j = 0, . . . , k are either orthogonal or parallel. In
particular, p0p1 must be orthogonal to pkb and parallel to pk−1pk. Thus, we can split P along
the line xpk as described in Figure 15, obtaining two polygons with fewer vertices than P .

Figure 16: The side p0p1 makes an acute angle with apk and the symmetric case.

In the second case p0p1 makes an acute angle with apk. More precisely, p0p1 intercepts apk

at a point x and there exists y ∈ p0p1 such that xy ⊥ p0p1 and the sides of P do not cut
the relative interior of pkx and xy. This case also considers the analog situation obtained by
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reflecting things along the y axis, as exposed in Figure 16. In this case we can split P along
the line pkxy (see Figure 16). On the right hand side we get a polygon with at least as many
vertices as P but with one reflex vertex less. The polygon on the left hand side may have at
most as many vertices as P and at most the same number of reflex vertices. In fact, in order to
get the polygon on the left we added two vertices, x and y and removed at least two, pk−1 and
p1. If we removed any other vertex then we have reduced P . Otherwise, the polygon on the left
has as many vertices as P . If the angles p̂1 and p̂k−1 are π/2 then we are in Case 1. Otherwise,
one of them is not π/2 and we removed at least one internal angle different from π/2, on top of
p̂k. Since we inserted only one internal angle different from π/2, the number of internal angles
different from π/2 decreases by one and we are done with Case 2.

Now we start to track the scan line. In the third case it does not hit any vertex visible from
pk as it moves. In this case there must be a side p0p1 hiding the rest of P from pk, as in Figure
17 and the triangle xpky must have one of the angles pkx̂y or pkŷx smaller than π/2. This
reduces the third case to the second.

Figure 17: The scan line s does not hit vertices visible from pk as it rotates from a to b.

In the fourth case the scan line hits a reflex vertex u visible from pk and with neighbors x
and v on the same side of s. In this case we look at the angle pkûv. If it is smaller than π/2
then we add point q close to u, as described in Figure 18, and split P along the line pkqux. If
the angle pkûv is bigger than or equal to π/2 we split P along the line pkux. In both cases we
get parts with fewer vertices than P .

Figure 18: The scan line s hits a reflex vertex u with both neighbors on the same side of s.

In the fifth case, s gets to a vertex u visible from pk at which the internal angle is π/2.
In this case we add a point q in the segment pku, close to u, and take the projections of q on
the sides neighboring u, as in Figure 19. We then split P in simpler parts, as described in this
Figure.

In the sixth case, s passes through only one vertex u visible from pk as it travels from a to
b. If the internal angle at u were π/2 then we would be in the last case. If any of the angles
between tu and apk or uv and bpk were less than π/2 (see Figure 20) then we would be in Case
2. Therefore we can assume that the internal angle at u is bigger than π/2 and that Figure 20
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Figure 19: The scan line s gets to a vertex u with internal angle equal to π/2.

is accurate in the sense that the points x and y are either in the correct side of the segments
apk and bpk or over them, if the angles were exactly π/2. We then move x and y to their new
positions indicated in Figure 20 in order to avoid degeneracies, like having t or v on apk or bpk,
and to make xy orthogonal to upk. (This can always be achieved by taking x and y very close
to u.) Next we split P as indicated in Figure 20, obtaining simpler parts because

1. The bottom part is convex

2. Either we are in Case 1 or the left part L has at most as many vertices as P . If L has
the same number of vertices as P then it has one more right angle than P . In fact, we
added three vertices to build L ( z, x and w) and removed at least three others (u, v
and pk−1.) Thus L has at most as many vertices as P . In the case that L and P have
the same number of vertices, notice that P has nL + nR + 2 internal angles different from
π/2, where nL is the number of internal angles different from π/2 among the vertices from
pk+1 to t and nR is the number of internal angles different from π/2 among the vertices
from v to pk−1. The “2” is due to u and pk, at which the internal angle is also different
from π/2. L, on the other hand, has nL + 2 internal angles different from π/2, the old nL

ones plus the one at pk and the one at x. If nR where zero then we would be in Case 1.
Otherwise nL + 2 < nL + nR + 2 and L has fewer angles different from π/2 than P , as we
have claimed.

3. The right part is analogous to the left one.

Figure 20: The scan line s passes through only one vertex u as it travels from a to b.

Finally, we have the seventh and last case, when the scan line passes through two or more
vertices as it moves from a to b. If one of such vertices were reflex we would be in Case four.
Otherwise, the whole segment uv would be visible from pk and we could take x and y as described
in Figure 21. We could then split P along the line pkyxv, as illustrated in this figure. This would
lead to parts with fewer vertices than P , because we would insert two vertices (x and y) and, as
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the reader can verify in the accurate Figure 21, we would remove more than two vertices during
the construction of each of the parts. This completes the proof of Lemma 1 •

Figure 21: The scan line s passes through at least two vertices u and v as it moves from a to b.

Proof of Lemma 2. Let D be a displacement such that Ak ∩ D(Aj) 6= ∅ for some i 6= j.
Take a ∈ Ai∩D(Aj). By the way Ai and Aj are decomposed according to the hypothesis on the
decomposition of the A’s, there is ik and ij such that c ∈ Akik ∪D(Ajij ) and, by the hypothesis
on the Sij’s, either Akik∩D(Sjij) 6= ∅ or Skik∩D(Ajij ) 6= ∅. Thus, we either have Ak∩D(Sj) 6= ∅
or Sk ∩D(Aj) 6= ∅. This shows that the Si’s are sentinels for the Ai’s as claimed in Lemma 2 •

Proof of Lemma 3. If P = Pi is one of the polygons in the hypothesis and p is one its
vertices then there exists a straight line r and points x and y as described in Figure 22, that is
P is contained in the triangle xpy and the segment xy is parallel to r.

Figure 22: If the vertex p of P is not a sentinel then we can move it into Q.

Take another polygon Q in the family Pi, q ∈ Q and a small number d such that the Figure
22 is accurate, that is,

1. The distance of any sentinel of P different from p to r is bigger than d.

2. The point q is at a distance d from the side of border of Q contained in the straight line v.
The triangle zqw, obtained by displacing the triangle xpy so that the side zw is parallel
to v, does not contain sentinels of Q.

Consider now the displacement of Q described in Figure 22: rotate Q so that v becomes parallel
to u and translate it until q and p coincide. By the way d was chosen, the intersection of Q′ and
P contains no sentinel of Q. It also does not contain any sentinel of P other than, possibly, p.
Since this intersection is not empty it must contain at least one sentinel and, thus, p must be a
sentinel and this proof is complete •
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Proof of Theorem 2. Suppose that there exists a point p in the intersection of the interior
of the polygons P = Pi and Q = D(Pj), for some displacement operator D. Since p is in the
interior of Q, the condition 4 on the hypothesis implies that there exists and internal sentinel s
of Q such that the segment pq is contained in the interior of Q. If this segment contains a vertex
v of P then we are done because in this case v ∈ S(Pi)∩D(Pj). If q is in the interior of P then
we will be done too, because in this case q ∈ Pi ∩ D(Sj). Since p is in the interior of P and q is
not, the segment pq must cross the border of P at a point r, which is in the interior of Q. By
item 3 in the hypothesis, there are sentinels s and s′ on a side pjpj+1 of P such that r ∈ ss′ and
‖s − s′‖ ≤ δ. Notice that if either s or s′ are in the interior of Q then we are done. Otherwise,
we must have sides qaqb and q′aq

′
b of Q separating s and s′ from r. We may also assume that p

is very close to r, so that ‖r− p‖ ≤ min{‖r −u‖, ‖r − v‖}. The last arguments reduce the proof
to the case in which the Figure 23 is accurate.

Figure 23: The point p is in the interior of Pi and D(Pj), q ∈ D(Sj) and 4pq intercepts P at
r ∈ ss′ ⊂ pkpk+1, which is very close to p. The sides qaqb and q′aq

′
b of Q separate r from s and

s′, respectively, and qb,q
′
b and q are on the same side of the straight line containing pkpk+1.

Now, notice that ‖u− v‖ ≤ δ, because ‖s− s′‖ ≤ δ. Thus, by Condition 1 in the hypothesis,
uv cannot split Q. This implies that qaqb and q′bq

′
b are consecutive sides of Q and we have two

possibilities: either qa = q′a or qb = q′b. However, qb = q′b is not possible because of the last
condition on the hypothesis. In fact, if qb were equal to q′b then q would be in the interior of the
triangle qaqbq

′
a, which is formed by three consecutive vertices of Q, contradicting the item 5 in

the hypothesis. Thus we must have qa = q′a. Since the internal angle qbq̂aq
′
b of Q is bigger than

or equal to π/2, qa is contained in the circle with diameter uv, In fact, since qa and q are in
opposite sides of pkpk+1, qa belongs to the semicircle C in Figure 23. Therefore, ‖qa − p‖ ≤ δ.
Notice that the neighbor sides of pkpk+1 in P intersect C at most at pk and pk+1, because the
internal angles of P at pk and pk+1 are bigger than or equal to π/2. As a consequence the border
of P cannot intersect the segment qap. In fact, if the border of P did intercept qap at a point t
then, by the convexity of the semicircle C, tr would be contained in C and would have length
‖t − r‖ ≤ δ. Moreover, t and r would be in nonconsecutive sides of P , because the neighbor
sides of pkpk+1 do not touch C in points other than pk and pk+1. Thus tr would split P and
have length ≤ δ, what contradicts the item 1 in the hypothesis. Therefore, since qap does not
touch the border of P and p belongs to the interior of P , qa is also in the interior of P . Finally,
the item 2 in the hypothesis implies that qa, which is a vertex of Q = D(Pj), belongs to D(Sj).
This shows that Pi ∩ D(Sj) 6= ∅ and completes the proof •

Proof of Lemma 5. This lemma is proved by Figure 24. Notice that the superposition of
R and R′ has a non empty interior (hatched area) which contains no sentinels. The only way to
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avoid this construction is to have sentinels in the relative interior of the segment ab •

Figure 24: R has all its sentinels other than a and b to the left of the line r. R′ is a copy of R
rotated by π.

Proof of Lemma 6. To simplify the notation, we refer to the interior Rλ simply as R. Let
Cν be the square defined by

Cν = {(x, y) ∈ IR2 such that ν < x < ν + 2 and |y| ≤ 1}, (32)

for −λ ≤ ν ≤ λ − 2. We claim that if S is a sentinel set of R then there is an element of S in
Cν . In fact, if we rotate R by π/2 around the center of Cν we get the rectangle R′ described in
Figure 25. More generally, from now on we will use A′ to indicate the displaced copy of the set
A obtained by the same process used to get R′ from R.
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Figure 25: If the segments q0q1 and q3q2 are too long then we can put a rotated copy of R
between them.

Since R∩R′ 6= ∅ and S is a sentinel set we either have S ∩R′ 6= ∅ or S′ ∩R 6= ∅. In the first
case, since S ⊂ R and R ∩ R′ = Cν , we have

S ∩ R′ = S ∩ (R ∩ R′) = S ∩ Cν 6= ∅.

In the second case, decompose S as S = X ∪Y , where X = S ∩Cν and Y = S ∩ (R−Cν). Since
Y is a subset of (R − Cν),

Y ′ ∩ R ⊂ (R − Cν)
′ ∩ R = ∅.
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Therefore, in the second case

S′ ∩ R = (X ′ ∩ R) ∪ (Y ′ ∪ R) = X ′ ∩ R 6= ∅.

This implies that X = S ∩Cν is not empty and we have shown that our claim that S ∩Cν 6= ∅ is
valid. As a consequence of the claim, each one of the ⌊λ⌋ disjoint sets C2i−λ, for i = 0, 1, . . . , ⌊λ⌋−
1, contains a sentinel. Adding the three sentinels on the right side of R given by lemmas 3 and
5 and the three on the left side we get a total of at least 3 + 3 + ⌊λ⌋ sentinels and lemma 6 is
proved •

Proof of Theorem 3. Our proof is based on the analysis of the “dual” sets associated
with each rotation angle θ described in the last section. Along the proof λ will be constant and
thus we drop it from R, S and T . According to the discussion in the last section, in order to
prove the present theorem it is enough to show that

Rθ = Rθ(S) = Rθ(T ),

for

Rθ = Dθ(R,R), (33)

Rθ(A) = Dθ(A,R) ∪ Dθ(R,A). (34)

The dependency of Rθ on θ is described in Figure 26. When 0 ≤ θ < π, the arrows indicate
symmetry axis with directions (1 + c, s) and (−s, 1 + c), for

c = cos θ,

s = sin θ.

R is the horizontal rectangle and the inclined rectangle is rotated by θ, without translation.

Figure 26: The dual sets Rθ for different values of θ.

As Figure 26 suggests, there are many cases to be analyzed and our strategy will be to
exploit the symmetries of Rθ, R,S and T to try to minimize the number of cases in the analysis.
Unfortunately, even after some reductions, our approach still requires a lot of cases and we
could not find a more concise way to prove this theorem. We leave the analysis of the myriad
of particular cases to lemmas that will be proved after this proof is complete and present here
a higher level view. In order to formalize the symmetries mentioned above, we will use the sets

Qθ = {(x, y) ∈ Rθ such that (1 + c)x + sy ≥ 0 and (1 + c)y − sx ≥ 0} (35)

Q̃θ = {(x, y) ∈ Rθ such that (1 + c)x + sy ≥ 0 and (1 + c)y − sx ≤ 0}. (36)
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These sets correspond to the first and fourth quadrants for the axis in Figure 26 and the reader
can verify that they decompose Rθ in the sense that

Rθ = Qθ ∪ Q̃θ ∪ −Qθ ∪ −Q̃θ. (37)

We will be mainly concerned with Qθ for θ ∈ [0, π/2], which is characterized by the next lemma

Lemma 7 If θ ∈ [0, π/2] then any (x, y)t ∈ Qθ satisfies the following inequalities:

(1 + c)x + sy ≥ 0, (38)

(1 + c)y − sx ≥ 0, (39)

y < 1 + sλ + c, (40)

cx + sy < (1 + c)λ + s, (41)

y ≥ 0, (42)

cx + sy ≥ 0. (43)

The last lemma is the main ingredient to prove next three lemmas, which show that Qθ is covered
by Rθ(S) and Rθ(T ) for all θ ∈ [0, π/2]:

Lemma 8 R0(S) ⊃ Q0 and R0(T ) ⊃ Q0.

Lemma 9 Rπ/2(S) ⊃ Qπ/2 and Rπ/2(T ) ⊃ Qπ/2.

Lemma 10 If 0 < θ < π/2 then Rθ(S) ⊃ Qθ and Rθ(T ) ⊃ Qθ.

The next step is to extend this result for the remaining quadrants and for all θ using sym-
metries related to the reflection on the x axis, which is given by

F =

(
−1 0
0 1

)

, (44)

and are listed in the following lemmas:

Lemma 11 If A is a subset of R then

Rθ(−A) = −Rθ(A). (45)

Lemma 12 If A is a subset of R and −π < θ < π then

(Rθ(A) ⊃ Qθ) ⇒
(
Rθ(FA) ⊃ Q̃θ

)
. (46)

Lemma 13 If A is a subset of R then

(Rθ(A) ⊃ Rθ) ⇒ (R−θ(FA) ⊃ R−θ) . (47)

Lemma 14 If A is a subset of R such that −A = A then

(Rθ(A) ⊃ Rθ) ⇒ (Rθ+π(A) ⊃ Rθ+π) . (48)
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Combining lemmas 8 – 12 we deduce that for θ ∈ [0, π/2],

(Rθ(T ) ⊃ Qθ) ⇒
(
Rθ(FT ) ⊃ Q̃θ

)
⇒
(
Rθ(S) ⊃ Q̃θ

)
.

Therefore, if θ ∈ [0, π/2], lemmas 8, 9 and 10 lead to

Rθ(S) ⊃ Qθ ∪ Q̃θ.

Thus, the identity S = −S, lemma 11 and (37) imply

Rθ(S) ⊃ Qθ ∪ Q̃θ ∪−Qθ ∪ −Q̃θ = Rθ

if θ ∈ [0, π/2]. Analogously, Rθ(T ) ⊃ Rθ if θ ∈ [0, π/2]. We then use Lemma 13, the identities
FS = T , FT = S and Lemma 13 to extend these results to [−π/2, π/2]. Finally, we use lemma
14 to extend the result to [−π/2, 3π/2]. This last interval has length 2π and every angle θ can
be reduced to it and the proof of Theorem 3 is complete •

Proof of Lemma 7. The term Qθ ⊂ Rθ is an abbreviation for Dθ(Rλ, Rλ), which was
defined in 21, where Rλ is the rectangle with vertices (±λ,±1)t. Thus, d = (x, y)t belongs to
Dθ if and only if

x = a + cp − sq, (49)

y = b + sp + cq (50)

with

−λ < a, p < λ, (51)

−1 < b, q < 1. (52)

The combination c(49) + s(50) leads to

cx + sy = ca + sb + p.

This equation, the bounds (50), (51), (52), the definition of Qθ in (35) and straightforward
algebra imply the bounds (38) – (41). Multiplying (38) by s, which is nonnegative since θ ∈
[0, π/2], multiplying (39) by 1 + c and adding, we obtain (42). Finally, (38) and c 6= −1 imply

x ≥
−sy

1 + c

and

cx + sy ≥
c(−sy)

1 + c
+ sy =

sy

1 + c
≥ 0.

This verifies the bound (43) and completes the proof of Lemma 7 •
Proof of Lemma 8. This lemma treats the case θ = 0. In this particular case c = 1 and

s = 0 and the bounds (38) – (43) on the coordinates x, y of d ∈ Q0 imply

0 ≤ x < 2λ, (53)

0 ≤ y < 2. (54)
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The next table explains how to obtain s ∈ S, t ∈ T and rs, rt in the interior of R such that
d = rs + H0s and d = rt + H0t.

x = 0 0 < x < 2λ

y = 0 rs = rt = −s = −t = (1 − 2δ, 0)t rs = rt = (x − λ, 0)t, s = t = (λ, 0)t

0 < y < 2 rs = (δ − λ, y − 1)t, s = (λ − δ, 1)t rs = st = (x − λ, y − 1)t

rt = (λ − δ, y − 1)t, t = (δ − λ, 1)t s = t = (λ, 1)t

The reader can use the bounds (53), (54) and δ < 2λ to verify that the rs, rt, s and t above
are valid and this proof is complete •

In the next proof we use the following lemma.

Lemma 15 If 0 < s ≤ 1 and |l| < s(λ − 2δ) + 1 then there exists an integer k ≥ 2 for which
(kδ − λ, 0) ∈ S ∩ T and such that |l − s(kδ − λ)| < 1.

Proof of Lemma 9. If θ = π/2 then c = 0 and s = 1 and the bounds (38) – (42) on the
coordinates x, y of d ∈ Qπ/2 become

x + y ≥ 0, (55)

y − x ≥ 0, (56)

0 ≤ y < 1 + λ. (57)

We proceed by looking at 8 cases below, which cover all possibilities for x and y:

x < 1 − λ (58)

x > λ − 1 (59)

|x| ≤ λ − 1, and y ≤ λ − δ − 1 (60)

|x| ≤ λ − 1 and λ − δ − 1 < y < λ − 1 (61)

x = 1 − λ, and y = λ − 1 (62)

|x| < λ − 1, and y = λ − 1 (63)

x = λ − 1, and y = λ − 1 (64)

|x| ≤ λ − 1, and y > λ − 1 (65)

For each case we show that the corresponding d = (x, y)t belongs to Dπ/2(S)∩Dπ/2(T ). We prove
that by providing r ∈ R, s ∈ S and t ∈ T such that d = (x, y)t = s + Hπ/2r and d = t + Hπ/2r
or r′ ∈ R, s′ ∈ S and t′ ∈ T such that d = r′ +Hπ/2s

′ and d = r′ +Hπ/2t
′. Here is how the cases

are analyzed:

Case (58): Notice that (55) and (57) imply x > −1 − λ and −(x + λ) < 1 and, in this case, this
implies |x + λ| < 1. Since y ≥ 0, (57) implies −λ ≤ −1 < y − 1 < λ and we can take
s = t = (−λ, 1)t and r = (y − 1,−x − λ)t.

Case (59): Notice that (56) and (57) imply x < λ + 1 and in the present case we obtain |λ − x| < 1.
Since y ≥ 0, (57) implies −λ < −1 ≤ y − 1 < λ and we can take r = (y − 1, λ − x)t and
s = t = (λ, 1).
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Case (60): Since δ < 2, in the present case (60) leads to

0 ≤ y ≤ λ − 2δ + 1 + (δ − 2) < (λ − 2δ) + 1.

We can then apply lemma 15 with l = y and s = 1 and obtain k such that s′ = t′ =
(kδ−λ, 0)t ∈ S∩T and |y−(kδ−λ)| < 1. Moreover, in this case (60) implies |x| ≤ λ−1 < λ
and we can take r′ = (x, y − (kδ − λ))t.

Case (61): In this case, since δ < 2, we have that y−λ+ δ < δ− 1 < 1 and |y−λ+ δ| < 1. Moreover,
(55) and (56) imply |x| < λ − 1 and lead to |x ± 1| < λ. The treatments of S and T are
analogous but slightly different. For T we take r′ = (x− 1, y−λ− δ)t and s = (δ−λ,−1)t

and for S we take r′ = (x + 1,−λ− δ)t and s′ = (δ−λ, 1) and, since (x± 1, y −λ− δ) ∈ R
the analysis of this case is complete.

Case (62): Here we treat S and T separately. For S we proceed as in case 63. For T we take
t = (δ −λ, 1)t and r = (λ− 2, δ − 1)t, which are valid because 0 < δ < 2 ⇒ |δ− 1| < 1 and
λ > 1 ⇒ |λ − 2| < λ.

Case (63): For S we take s′ = (λ − δ, 1)t and r′ = (x + 1, δ − 1)t, which are valid because 0 < δ <
2 ⇒ |δ − 1| < 1 and in this case (63) implies |x + 1| < λ. For T we take t′ = (λ − δ,−1)t

and r′ = (x − 1, δ − 1)t, which are valid because 0 < δ < 2 ⇒ |1 − δ| < 1 and in this case
(63) implies |x − 1| < λ.

Case (64): For S we take s = (λ− δ, 1)t and r = (λ − 2, 1 − δ)t, which are valid because 0 < δ < 2 ⇒
|1 − δ| < 1 and λ > 1 ⇒ |λ − 2| < λ. For T we proceed as in case 63.

Case (65): In this case(57) imply that r′ = (x, y − λ)t ∈ R and s′ = t′ = (λ, 0)t are valid.

We have covered all the possibilities and the proof of Lemma 9 is complete •
Proof of Lemma 10. The condition θ ∈ (0, π/2) is part of the hypothesis of this lemma in

order to guarantee that 0 < c, s < 1. The reader should always keep this in mind while working
with the inequalities in this proof. The proof of Lemma 10 is based on the following sequence
of lemmas, the proofs of which will be postponed.

Lemma 16 If 0 < θ < π/2 then Dθ(S) ∩ Dθ(T ) contains the intersection of Qθ with the half
plane

cy − sx < 1 + c − sλ. (66)

Lemma 17 If 0 < θ < π/2 then Dθ(S) ∩ Dθ(T ) contains the intersection of Qθ with the half
plane

y > sλ + c − 1. (67)

Lemma 18 If 0 < θ < π/2 then Dθ(S) ∩ Dθ(T ) contains the intersection of Qθ with the half
plane

y > sλ − 1. (68)
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Lemma 19 If 0 < θ < π/2 then Dθ(S) contains the intersection of Qθ with the half plane

y > s(λ − δ) + c − 1. (69)

Lemma 20 If 0 < θ < π/2 then Dθ(S) contains the intersection of Qθ with the half plane

cy − sx ≤ −s(λ − 2δ) − 1. (70)

Lemma 21 If 0 < θ < π/2 then Dθ(S) contains the intersection of Qθ with the half plane

cy − sx ≥ s(λ − 2δ) + 1. (71)

Lemma 22 If 0 < θ < π/2 then Dθ(T ) contains the intersection of Qθ with the half plane

cy − sx > s(λ − δ) + c − 1. (72)

Lemma 23 If 0 < θ < π/2 then Dθ(T ) contains the intersection of Qθ with the half plane

y ≥ s(λ − δ) + 1 − c. (73)

Lemma 24 If 0 < θ < π/2 then Dθ(T ) contains the intersection of Qθ with the half plane

cy − sx ≤ −s(λ − 2δ) − 1. (74)

Lemma 25 If 0 < θ < π/2 then Dθ(T ) contains the intersection of Qθ with the half plane

cy − sx ≥ s(λ − 2δ) + 1. (75)

To prove these lemmas we rewrite (49) and (50) as

a = x − cp + sq, (76)

b = y − sp − cq, (77)

p = −ca − sb + (cx + sy), (78)

q = sa − cb + (cy − sx). (79)

We then assume that one of the points (a, b) or (p, q) is a sentinel and prove that the other
satisfies (51) or (52), as appropriate.

Let us then continue with the proof of Lemma 10. If (x, y)t satisfies one of the conditions
(68), (70) or (71) then Lemmas 18, 20 and 21 show that d ∈ Dθ(S) and Lemmas 18, 24 and 25
show that d ∈ Dθ(T ). Otherwise the following conditions must hold:

y ≤ sλ − 1. (80)

−s(λ − 2δ) − 1 < l = cy − sx < s(λ − 2δ) + 1.

We can then use Lemma 15 to get an integer k ≥ 2 for which (kδ − λ, 0)t ∈ S ∩T and such that

φ = cy − sx − s(kδ − λ) = l − s(kδ − λ) (81)
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satisfies
|φ| < 1. (82)

Taking a = −(kδ − λ) and b = 0, we have s = t = (a, b) ∈ S ∩ T , because S = −S and
T = −T . Moreover, the equations (78) and (79) lead to

p = c(kδ − λ) + cx + sy (83)

q = −s(kδ − λ) + cy − sx = φ (84)

and the items below prove that r = (p, q)t = d − H−1
θ s ∈ R:

p > −λ : (83), (43) ⇒ p ≥ c(kδ − λ) = −cλ + ckδ > λ.
p < λ : (83) ⇒ sp = cs(kδ − λ) + csx + s2y,

(81) ⇒ sp = c(s(kδ − λ) − cy + sx) + y = y − cφ,
(80) ⇒ sp ≤ sλ − 1 − cφ = −(1 + cφ) + sλ,
(82) ⇒ sp ≤ −(1 − |φ|) + sλ < sλ ⇒ p < λ.

|q| < 1 : (82), (84) ⇒ |q| = |φ| < 1.

Thus, we have shown that (x, y)t ∈ Dθ(S) ∩ Dθ(T ) and the proof of Lemma 10 is complete •
Proof of Lemma 11. If d ∈ Dθ(−A) then either (I) d = a + Hθr or (II) d = r + Hθa, with

r ∈ R and a ∈ A. In case (I) d = −(−a + Hθ(−r)) and in case (II) d = −(−r + Hθ(−a)), with
−r ∈ R and −a ∈ −A in both cases. Therefore, Dθ(−A) ⊂ −Dθ(A). Changing A by −A we get
Dθ(A) = Dθ(−− A) ⊂ −Dθ(−A). This implies −Dθ(A) ⊂ −Dθ(−A) and completes the proof •

Proof of Lemma 12. Let us define

ch = cos(θ/2) and sh = sin(θ/2). (85)

Notice that 1 + c = 2c2
h, s = 2chsh and ch > 0, because, by hypothesis −π/2 < θ/2 < π/2. As a

consequence, by the definitions of Qθ and Q̃θ in (35) and (36),

Qθ = {(x, y) ∈ Rθ such that chx + shy ≥ 0 and chy − shx ≥ 0}, (86)

Q̃θ = {(x, y) ∈ Rθ such that chx + shy ≥ 0 and chy − shx ≤ 0}. (87)

Taking K as the first quadrant of IR2,

K = {(x, y)t ∈ IR2 such that x ≥ 0 and y ≥ 0},

and remembering that F , defined in (44), is the reflection on the x axis, we can rewrite (86) and
(87) as

Qθ = {v ∈ Rθ such that H−θ/2v ∈ K}, (88)

Q̃θ = {v ∈ Rθ such that FH−θ/2v ∈ K}. (89)

To complete this proof we assume that Dθ(A) ⊃ Qθ and show that Dθ(FA) ⊃ Q̃θ. Take
d ∈ Q̃θ. Since d ∈ Rθ, d = u + Hθv for u, v ∈ R. Equation (89) shows that FH−θ/2d ∈ K.
Therefore, FH−θ/2u + FHθ/2v ∈ K. This is equivalent to FH−θ/2FFu + FHθ/2FFv ∈ K.
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Using the identity FHαF = H−α, we deduce that H−θ/2(HθFu + Fv) ∈ K. Thus, by (88),
HθFu + Fv ∈ Qθ. By our assumption that Dθ(A) ⊃ Qθ we have that either (I) HθFu + Fv =
a + Hθr or (II) HθFu + Fv = r + Hθa, with r ∈ R and a ∈ A.

Notice that

d = u + Hθv = F (Fu + FHθFFv) = F (Fu + H−θFv) = FH−θ(HθFu + Fv).

Therefore, in case (I)

d = FH−θ(a + Hθr) = FH−θFFa + Fr = (Fr) + Hθ(Fa)

and in case (II)

d = FH−θ(r + Hθa) = FH−θFFr + Fa = (Fa) + Hθ(Fr).

In both cases we see that d ∈ Dθ(FA) and the lemma is proved •
Proof of Lemma 13. Given d = u + H−θv in R−θ we must show that d ∈ D−θ(FA).

Notice that Fd = Fu + FH−θFFv = Fu + HθFv ∈ Iθ, because FH−θF = Hθ. Since we are
assuming that Dθ(A) = Rθ, there are r ∈ R and a ∈ A such that either (I) Fd = r + Hθσ or
(II) Fd = a + Hθr. In case (I), multiplying by F we get

d = FFd = Fr + FHθFFσ = (Fr) + H−θ(Fa) ∈ D−θ(FA).

In case (II), multiplying by F we get

d = FFd = Fa + FHθFFr = (Fa) + H−θ(Fr) ∈ D−θ(FA).

Therefore, in both cases d ∈ D−θ(FA) and the proof of is complete •
Proof of Lemma 14. Given d = u+Hθ+πv with u, v ∈ R we must show that d ∈ Dθ+π(A).

Notice that d = u + Hθ(−v) ∈ Rθ, because Hθ+π = HπHθ = −Hθ. Since, by hypothesis,
Dθ(A) = Rθ, there are r ∈ R and a ∈ A such that either (I) d = r + Hθa or (II) d = a + Hθr.
In Case (I) we have d = r + Hθ+π(−a) ∈ Dθ+π(A) because −a ∈ A since −A = A. In Case (II)
d = a+Hθ+π(−r) ∈ Dθ+π(A) because a ∈ A and −r ∈ R. Therefore, in both cases d ∈ Dθ+π(A)
and the proof of Lemma 14 is complete •

Proof of Lemma 15. In this proof we will use the identity

2λ = (nλ + 2)δ, (90)

which can be derived by an analysis of (29) for λ < 4 and λ ≥ 4. We have the following cases

l ≤ −s(λ − 3δ/2) (91)

−s(λ − 3δ/2) ≤ l ≤ 0. (92)

l > 0 (93)

which are analyzed as follows
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Case 91: In this case we can take k = 2. In fact, (2δ − λ, 0)t ∈ S ∩ T and the hypothesis of this
lemma implies l − s(2δ − λ) > −1 and, since δ < 2,

l ≤ −s(λ − 3δ/2) ⇒ l − s(2δ − λ) ≤ δ/2 < 1.

and we have verified the condition |l − s(kδ − λ)| < 1.

Case 92: We claim that the following k satisfies the conditions required by the present lemma:

k = ⌈κ⌉ where κ =
2sλ + 2l + sδ

2sδ
. (94)

By the definition of ceiling,

k = κ − φ, with 0 ≤ φ < 1.

Therefore, since δ < 2 by (98) and 0 < s ≤ 1 by hypothesis,

|l − s(kδ − λ)| = |l − s((κ − φ)δ − λ)| = |sφ −
1

2
|δ <

1

2
× 2 = 1. (95)

The definition of k and κ, the condition (92) and equation (29) lead to

κ ≤
2λ + δ

2δ
=

(nλ + 2)δ + δ

2δ
=

nλ

2
+ 1 ≤ nλ. (96)

κ ≥
2sλ + sδ − 2s(λ − 3δ/2)

2sδ
= 2. (97)

The last two equations show that (kδ − λ, 0)t ∈ S ∩ T , because 2 ≤ k = ⌊κ⌋ ≤ nλ. This,
together with (95) shows that the k given by (94) is valid.

Case 92: From the previous cases, there exists k̃ such that | − l − (k̃δ − λ)| < 1 and 2 ≤ k̃ ≤ nλ.
Take k = nλ + 2 − k̃. It is clear that 2 ≤ k ≤ nλ. Thus, using (29), we get

|l − (kδ − λ)| = |l − ((nλ + 2 − k̃)δ − λ)| = | − (−l − (k̃δ − λ)) − ((nλ + 2)δ − 2λ)|

= | − (−l − (k̃δ − λ))| = | − l − (k̃δ − λ)| < 1.

We have analyzed all possibilities and the proof is complete •
Now, let us prove lemmas 16 — 24. Along these proofs we will use the bound

δ < 2, (98)

δ ≤ λ/2 (99)

which can be deduced considering the cases λ < 4 and λ ≥ 4 and (25) and (26). These lemmas
assume 0 < c, s < 1 and we will use the following bounds on (x, y)t ∈ Qθ:

cy − sx ≤ y, (100)

cy − sx ≥ −y (101)

sy ≥ (1 − c)x, (102)

s(cy − sx) ≥ (c − 1)(cx + sy), (103)

(1 − c)(cy − sx) ≤ s(cx + sy), (104)

(1 − c)(cx + sy) ≤ sy. (105)
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These bounds are consequence of the definition of Qθ in (35) and the identities:

(100) : cy − sx = y −
s

1 + c
((1 + c)x + sy),

(101) : cy − sx = −y + ((1 + c)y − sx),

(102) : sy = (1 − c)x +
s

1 + c
((1 + c)y − sx)

(103) : s(cy − sx) = −(1 − c)(cx + sy) +
s

1 + c
((1 + c)y − sx),

(104) : (1 − c)(cy − sx) = s(cx + sy) −
s

1 + c
((1 + c)x + sy),

(105) : (1 − c)(cx + sy) = sy −
cs

1 + c
((1 + c)y − sx).

Proof of Lemma 16. Given d ∈ Qθ satisfying (66), if we take (a, b)t = (λ, 1)t ∈ S ∩ T ,
then p and q given by (78) and (79) satisfy

p = −cλ − s + (cx + sy), (106)

q = sλ − c + (cy − sx). (107)

The items below prove that (p, q)t ∈ R, showing that d ∈ Dθ(S) ∩ Dθ(T ).

p > −λ : (106), (104) ⇒ sp = −csλ − s2 + s(cx + sy) ≥ −csλ − s2 + (1 − c)(cy − sx)
(66) ⇒ sp > −csλ − s2 + (1 − c)(1 + c − sλ) = −sλ ⇒ p > −λ.

p < λ : (106), (41) ⇒ p < −cλ − s + ((1 + c)λ + s) = λ.
q > −1 : (107), (103) ⇒ sq = s(sλ − c) + s(cy − sx)

⇒ sq ≥ s(sλ − c) − (1 − c)(cx + sy)
(41) ⇒ sq > s(sλ − c) − (1 − c)((1 + c)λ + s) = −s ⇒ q > −1.

q < 1 : (107), (66) ⇒ q < (sλ − c) + (1 + c − sλ) = 1.

Proof of Lemma 17. Consider (x, y)t ∈ Qθ. If x and y satisfy (66) then Lemma 16 shows
that (x, y)t ∈ Dθ(S) ∩Dθ(T ). Otherwise, we have that

cy − sx ≥ 1 + c − sλ. (108)

Taking (p, q)t = (λ, 1)t ∈ S ∩ T and a,b as in (76) and (77) we get

a = x − cλ + s, (109)

b = y − sλ − c. (110)

The items below prove that (a, b)t ∈ R, showing that (x, y)t ∈ Dθ(S) ∩ Dθ(T ).

a > −λ : (109) ⇒ sa = sx − csλ + s2 = cy − (cy − sx) − csλ + s2

(100) ⇒ sa ≥ (c − 1)y − csλ + s2

(40) ⇒ sa > (c − 1)(1 + c + sλ) − csλ + s2 = −sλ ⇒ a > −λ.
a < λ : (109) ⇒ sa = sx − csλ + s2 = cy + (sx − cy) − csλ + s2

(108) ⇒ sa ≤ cy − 1 − c + sλ − csλ + s2

(40) ⇒ sa < c(1 + sλ + c) − 1 − c + sλ − csλ + s2 = sλ ⇒ a < λ.
b > −1 : (110), (67) ⇒ b > −1.
b < 1 : (110), (40) ⇒ b < 1.
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Proof of Lemma 18. Consider (x, y)t ∈ Qθ. If x and y satisfy either (66) or (67) then
Lemmas 16 and 17 show that (x, y)t ∈ Dθ(S) ∩ Dθ(T ). Otherwise, we must have

cy − sx ≥ 1 + c − sλ. (111)

y ≤ sλ + c − 1. (112)

Taking (p, q)t = (λ, 0)t ∈ S ∩ T and a and b as in (76) and (77) we get

a = x − cλ (113)

b = y − sλ. (114)

The items below prove that (a, b)t ∈ R, showing that (x, y)t ∈ Dθ(S) ∩ Dθ(T ).

a > −λ : (113) ⇒ sa = sx − csλ ≥ cy − (cy − sx) − csλ.
(100), (112) ⇒ sa ≥ (c − 1)y − csλ > (c − 1)(sλ − 1) − csλ

⇒ sa ≥ −sλ + 1 − c > −sλ ⇒ a > −λ.
a < λ : (113) ⇒ sa = sx − csλ = cy + (sx − cy) − csλ

(111) ⇒ sa ≤ cy − 1 − c + sλ − csλ
(112) ⇒ sa ≤ c(c + sλ − 1) − 1 − c + sλ − csλ = sλ − s2 − 2c

⇒ a < λ.
b > −1 : (114), (68) ⇒ b > −1.
b < 1 : (114), (112) ⇒ b ≤ c − 1 < 1.

Proof of Lemma 19. Consider (x, y)t ∈ Qθ. If sδ ≤ c then the hypothesis (69) implies

y > s(λ − δ) + c − 1 ≥ sλ − 1

and in this case Lemma 18 shows that (x, y)t ∈ Dθ(S). Therefore, using the hypothesis that
c > 0, we assume from now on that

sδ > c > 0. (115)

If x and y satisfy either (66) or (68) then Lemmas 16 and 18 show that (x, y)t ∈ Dθ(S).
Otherwise we have

cy − sx ≥ 1 + c − sλ. (116)

y ≤ sλ − 1. (117)

Taking v = (p, q)t = (λ − δ, 1)t ∈ S and a and b as in (76) and (77) we get

a = x − c(λ − δ) + s (118)

b = y − s(λ − δ) − c. (119)
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The items below prove that (a, b)t ∈ R, showing that (x, y)t ∈ Dθ(S).

a > −λ : (118) ⇒ sa = sx − cs(λ − δ) + s2

⇒ sa = cy − (cy − sx) − cs(λ − δ) + s2

(100), (117) ⇒ sa ≥ (c − 1)(sλ − 1) − cs(λ − δ) + s2

(115) ⇒ sa ≥ −sλ + 1 − c + s2 + csδ
⇒ sa ≥ −sλ + 1 − c + s2 + c2

⇒ sa ≥ −sλ + 2 − c ⇒ a > −λ.
a < λ : (118) ⇒ sa = sx − cs(λ − δ) + s2

⇒ sa = cy − (cy − sx) − cs(λ − δ) + s2

(116), (117) ⇒ sa ≤ c(sλ − 1) − 1 − c + sλ − cs(λ − δ) + s2

(98), (115) ⇔ sa ≤ sλ − (1 + 2c − csδ − s2)
(115) ⇒ sa < sλ − c(c + 2 − 2s) < sλ ⇒ a < λ.

b > −1 : (119), (69) ⇒ b > −1.
b < 1 : (119), (117), (98) ⇒ b ≤ −1 − c + δs < 2s − 1 − c ≤ 1 ⇒ b < 1.

Proof of Lemma 20. Consider (x, y)t ∈ Qθ. If x and y satisfy (66) or (68) then Lemmas 16
and 18 show that (x, y)t ∈ Dθ(S). Otherwise we have

cy − sx ≥ 1 + c − sλ, (120)

y ≤ sλ − 1. (121)

Taking u = (a, b)t = (λ − δ, 1)t ∈ S and p and q as in (78) and (79) we get

p = −c(λ − δ) − s + (cx + sy) (122)

q = s(λ − δ) − c + (cy − sx). (123)

and the items below prove that (p, q)t ∈ R, showing that (x, y)t ∈ Dθ(S).

p > −λ : (122) ⇒ (1 − c)p = −(1 − c)(c(λ − δ) + s) + (1 − c)(cx + sy)
(103) ⇒ (1 − c)p ≥ −(1 − c)(c(λ − δ) + s) − s(cy − sx)
(70) ⇒ (1 − c)p ≥ −(1 − c)(c(λ − δ) + s) + s(s(λ − 2δ) + 1)

⇒ (1 − c)p ≥ −(1 − c) (c(λ − δ) − (1 + c)(λ − 2δ)) + cs
(99) ⇒ p > −(1 + c)δ + (λ − δ) ≥ −(1 + c)λ/2 + λ/2 ≥ −cλ/2 > −λ.

p < λ : (122) ⇒ (1 − c)p = −(1 − c)c(λ − δ) − (1 − c)s + (1 − c)(cx + sy)
(105) ⇒ (1 − c)p ≤ −(1 − c)c(λ − δ) − (1 − c)s + sy
(121) ⇒ (1 − c)p ≤ −(1 − c)c(λ − δ) − (1 − c)s + s(sλ − 1)

⇒ (1 − c)p ≤ (1 − c)λ + c(1 − c)δ − (2 − c)s
⇒ (1 − c)p < (1 − c)λ + 2c(1 − c) − (2 − c)s
⇒ (1 − c)p < (1 − c)λ − 1−c

s ((2 − c)(1 + c) − 2cs)
⇒ (1 − c)p < (1 − c)λ − 1−c

s (2(1 − cs) + c(1 − c)) ≤ (1 − c)λ
⇒ p < λ.

q > −1 : (123), (120) ⇒ q ≥ s(λ − δ) − c + 1 + c − sλ
(98) ⇒ q ≥ 1 − sδ > 1 − 2s > −1 ⇒ q > −1.

q < 1 : (123), (70) ⇒ q ≤ s(λ − δ) − c − s(λ − 2δ) − 1
(98) ⇒ q ≤ δs − 1 − c < 2s − 1 ≤ 1 ⇒ q < 1.
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Proof of Lemma 21. Consider (x, y)t ∈ Qθ. If sδ ≤ 2 − c then (100) and the hypothesis (68)
imply

y ≥ cy − sx > s(λ − 2δ) + 1 = s(λ − δ) + 1 − δs ≥ s(λ − δ) + c − 1

and the present lemma follows from lemma 19. Therefore, we may assume that

sδ ≥ 2 − c. (124)

If x and y satisfy (69) then lemma 19 shows that d ∈ Dθ(S). Otherwise we have

y ≤ s(λ − δ) + c − 1. (125)

Taking u = (a, b)t = −(λ − δ, 1)t ∈ S and p and q as in (78) and (79) we get

p = c(λ − δ) + s + (cx + sy) (126)

q = −s(λ − δ) + c + (cy − sx). (127)

The items below prove that (p, q)t ∈ R, showing that (x, y)t ∈ Dθ(S).

p > −λ : (126), (43) ⇒ p ≥ 0 > −λ.
p < λ : (126) ⇒ sp = cs(λ − δ) + s2 − c(cy − sx) + y

(71) ⇒ sp ≤ s2 + csδ − c + y
(125) ⇒ sp ≤ sλ − (1 − c)sδ − c + c − 1 + s2

(124) ⇒ sp ≤ sλ − (1 − c)sδ − c2 ⇒ p < λ.
q > −1 : (127), (71), (98) ⇒ q ≥ 1 − δs + c > 1 − 2s + c ≥ −1 ⇒ q > −1.
q < 1 : (127), (100) ⇒ q ≤ c − s(λ − δ) + y

(125) ⇒ q ≤ 2c − 1 < 1.

Proof of Lemma 22. Consider (x, y)t ∈ Qθ. If x and y satisfy (68) then Lemma 18 shows
that (x, y)t ∈ Dθ(T ). Otherwise we have

y ≤ sλ − 1. (128)

Taking u = (a, b)t = −(λ − δ,−1)t ∈ T and p and q as in (78) and (79) we get

p = c(λ − δ) − s + (cx + sy) (129)

q = −s(λ − δ) − c + (cy − sx). (130)

The items below prove that (p, q)t ∈ R, showing that (x, y)t ∈ Dθ(T ).

p > −λ : (129), (43) ⇒ p > −s > −1 > −λ.
p < λ : (129) ⇒ sp = cs(λ − δ) − s2 + c(sx − cy) + y

(72) ⇒ sp ≤ cs(λ − δ) − s2 − cs(λ − 2δ) − c2 + c + y
(128) ⇒ sp ≤ (csδ − 1) + c + sλ − 1 = sλ − (1 − c) − (1 − 2cs) ⇒ p < λ.

q > −1 : (130), (72) ⇒ q > −1.
q < 1 : (130), (100), (128) ⇒ q ≤ y − s(λ − δ) − c < s(λ − 1) − s(λ − δ) − c < s − c < 1.
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Proof of Lemma 23. Consider (x, y)t ∈ Qθ. If d satisfies either (66), (68) or (72) then
Lemmas 16, 18 and 22 show that d ∈ Dθ(T ). Otherwise d satisfies

cy − sx ≥ 1 + c − sλ, (131)

y ≤ sλ − 1. (132)

cy − sx ≤ s(λ − δ) + c − 1. (133)

Taking v = (p, q)t = (λ,−1)t ∈ T and a and b as in (76) and (77) we get

a = x − cλ − s (134)

b = y − sλ + c. (135)

The items below prove that (a, b)t ∈ R, showing that (x, y)t ∈ Dθ(T ).

a > −λ : (134) ⇒ sa = cy − (cy − sx) − s(cλ + s)
(133) ⇒ sa ≥ cy + 1 − c − s(λ − δ) − csλ − s2

(73) ⇒ sa ≥ c(s(λ − δ) − c + 1) + c2 − c − s(λ − δ) − csλ
⇔ sa ≥ −sλ + (1 − c)sδ ⇒ a > −λ.

a < λ : (134) ⇒ sa = cy − (cy − sx) − s(cλ + s)
(132) ⇒ sa ≤ c(sλ − 1) − (cy − sx) − s(cλ + s)
(131) ⇒ sa ≤ −c − s2 − (1 + c − sλ)

⇔ sa ≤ sλ − (1 + 2c + s2) ⇒ a < λ.
b > −1 : (135), (73) ⇒ b ≥ (s(λ − δ) + 1 − c) − sλ + c

(98) ⇒ b ≥ 1 − δs > 1 − 2s ≥ −1 ⇒ b > −1.
b < 1 : (135), (132) ⇒ b ≤ c − 1 < 1.

Proof of Lemma 24. Consider (x, y)t ∈ Qθ. If sδ ≤ 1 + c/2 then the hypothesis (74)
implies cy − sx < −sλ + 2sδ − 1 ≤ 1 + c − sλ and the present lemma follows from Lemma 16.
Thus we can assume that

sδ > 1 + c/2. (136)

If x and y satisfy (72) or (73) then lemmas 22 and 23 show that (x, y)t ∈ Dθ(T ). Otherwise we
have

cy − sx ≤ s(λ − δ) + c − 1. (137)

y < s(λ − δ) + 1 − c. (138)

Taking v = (p, q)t = (λ − δ,−1)t ∈ T and a b as in (76) and (77) we get

a = x − c(λ − δ) − s, (139)

b = y − s(λ − δ) + c. (140)
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The items below prove that (a, b)t ∈ R, showing that (x, y)t ∈ Dθ(T ).

a > −λ : (139) ⇒ sa = sx − s(c(λ − δ) + s)
⇔ sa = cy − (cy − sx) − s(c(λ − δ) + s)

(100) ⇒ sa ≥ (c − 1)(cy − sx) − s(c(λ − δ) + s)
(137) ⇒ sa ≥ −(1 − c)(s(λ − δ) + c − 1) − s(c(λ − δ) + s)

⇒ sa ≥ −sλ + sδ + (1 − c)2 − s2 = −sλ + sδ + 2c2 − 2c
(136) ⇒ sa > −sλ + 1 − 2c + c2 + c2 + c/2 ≥ −sλ + (1 − c)2

⇒ a > −λ.
a < λ : (139) ⇒ (1 − c)a = (1 − c)x − (1 − c)(c(λ − δ) + s)

(102), (137) ⇒ (1 − c)a ≤ s(s(λ − δ) + 1 − c) − (1 − c)(c(λ − δ) + s)
⇒ (1 − c)a ≤ (1 − c)(λ − δ) ⇒ a < λ.

b > −1 : (140), (101) ⇒ b ≥ −(cy − sx) − s(λ − δ) + c
(74) ⇒ b ≥ s(λ − 2δ) + 1 − s(λ − δ) + c
(98) ⇒ b ≥ 1 + c − δs > 1 + c − 2s ≥ −1 ⇒ b > −1.

b < 1 : (140), (138) ⇒ b < 1.

Proof of Lemma 25. Consider (x, y)t ∈ Qθ. If sδ < 2− c then the hypothesis (75) implies
that

cy − sx ≥ s(λ − 2δ) + 1 = s(λ − δ) + 1 − sδ > s(λ − δ) + c − 1

and this lemma follows from lemma 16. Therefore, we can assume that

sδ ≥ 2 − c. (141)

If x and y satisfy (72) or (73) then Lemmas 22 and 23 show that (x, y)t ∈ Dθ(T ). Otherwise we
have

cy − sx ≤ s(λ − δ) + c − 1, (142)

y < s(λ − δ) + 1 − c. (143)

Taking v = (p, q)t = (λ − δ,−1)t ∈ T and a and b as in (76) and (77) we get

a = x − c(λ − δ) − s (144)

b = y − s(λ − δ) + c (145)

40



and the items below prove that (a, b)t ∈ R, showing that (x, y)t ∈ Dθ(T ).

a > −λ : (144) ⇒ sa = sx − s(c(λ − δ) + s)
⇔ sa = cy − (cy − sx) − s(c(λ − δ) + s)

(100) ⇒ sa ≥ (c − 1)(cy − sx) − s(c(λ − δ) + s)
(142) ⇒ sa ≥ (c − 1)(s(λ − δ) + c − 1) − s(c(λ − δ) + s)

⇒ sa ≥ −sλ + sδ + (1 − c)2 − s2 = −sλ + sδ + 2c2 − 2c
(141) ⇒ sa ≥ −sλ + 2 − 3c + 2c2

⇒ sa ≥ −sλ + 2(1 − c)2 + c > −sλ ⇒ a > −λ.
a < λ : (144) ⇒ (1 − c)a = (1 − c)x − (1 − c)(c(λ − δ) + s)

(102), (142) ⇒ (1 − c)a ≤ s(s(λ − δ) + 1 − c) − (1 − c)(c(λ − δ) + s)
⇒ (1 − c)a ≤ (1 − c)(λ − δ) ⇒ a < λ.

b > −1 : (145), (100) ⇒ b ≥ cy − sx − s(λ − δ) + c
(75) ⇒ b ≥ 1 + c − sδ
(98) ⇒ b > 1 + c − 2s ≥ −1 ⇒ b > −1.

b < 1 : (144), (143) ⇒ b < 1.
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