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Abstract

Large-scale electronic structure calculations usually involve huge nonlinear eigenvalue

problems. A method for solving these problems without employing expensive eigenvalue

decompositions of the Fock matrix is presented in this work. The sparsity of the input and

output matrices is preserved at every iteration and the memory required by the algorithm

scales linearly with the number of atoms of the system. The algorithm is based on a pro-

jected gradient iteration applied to the constraint fulfillment problem. The computer time

required by the algorithm also scales approximately linearly with the number of atoms (or

non-null elements of the matrices), and the algorithm is faster than standard implementa-

tions of modern eigenvalue decomposition methods for sparse matrices containing more than

50,000 non-null elements. The new method reproduces the sequence of semiempirical SCF
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iterations obtained by standard eigenvalue decomposition algorithms to good precision.

Key words: Electronic Structure Calculations, Semiempirical methods, Projected Gradient,

linear scaling, sparsity.

1 Introduction

For fixed nuclei coordinates, an electronic structure calculation consists of finding the wave

functions from which the spatial electronic distribution of the system can be derived.1 These

wave functions are the solutions of the time-independent Schrödinger equation.1

The practical solution of the Schrödinger equation is computationally very demanding.

Therefore, simplifications are made leading to more tractable mathematical problems. The

best-known approach consists of approximating the solution by a (Slater) determinant. Such

approximation allows for a significant simplification which results in a “one-electron” eigenvalue

(Hartree-Fock) equation. The solutions of this eigenvalue problem are used to reconstitute the

Slater-determinant and, therefore, the electronic density of the system.

For simplicity, our discussion will focus on the Restricted-Hartree-Fock (RHF) case, for which

the number of electrons is 2N , where N is the number of functions that compose the Slater-

determinant. These functions are written as linear combinations of a basis with K elements,

thus the unknowns of the problem turn out to be the coefficients of the unknown functions with

respect to the basis, giving rise to the Hartree-Fock-Roothaan nonlinear eigenvalue problem.1

The discretization technique uses plane wave basis or localized basis functions with compact

support2 or with a Gaussian fall-off.3 In this way, the unknowns of the problem are represented

by a coefficient matrix C ∈ RK×N . The optimal choice of the coefficients comes from the solution

of the optimization problem:

Minimize E(P )

subject to P = P T , PMP = P, Trace(PM) = N,
(1)
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where M is a symmetric positive definite overlap matrix which is computed from the basis

and P = CCT is known as the Density matrix.

Within RHF, the form of E(P ) in (1) is:

ERHF (P ) = Trace

[
2HP +G(P )P

]
,

where P is the one-electron Density matrix in the atomic-orbital (AO) basis, H is the one-

electron Hamiltonian matrix, the entries of G(P ) are given by

Gij(P ) =

K∑
k=1

K∑
`=1

(2gijk` − gi`kj)P`k, 1 ≤ i, j ≤ K,

gijk` is a two-electron integral in the AO basis, K is the number of functions in the basis, and

2N is the number of electrons. For all i, j, k, ` = 1, . . . ,K one has:

gijk` = gjik` = gij`k = gk`ij .

The Fock matrix is defined by F (P ) ≡ H +G(P ) and direct calculation shows that:

∇ERHF (P ) = 2F (P ).

Since G(P ) is linear, the objective function ERHF (P ) is quadratic.

The best known algorithm for solving (1) is given by the SCF fixed-point iteration.1 Given

an iterate Pk that satisfies the constraints of (1), the next iterate is defined as the minimizer of

the linear approximation of E(P ) at Pk on the true feasible region.4 Therefore, since ∇E(P ) =

2F (P ), it turns out that Pk+1 is a solution of

Minimize Trace[F (Pk)P ]

subject to P = P T , P 2 = P, Trace(P ) = N.
(2)
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Note that F (Pk) is the Fock Matrix associated with the Density Matrix Pk. The solution of (2)

is a projection matrix onto the subspace generated by the eigenvectors associated with the N

lowest eigenvalues of F (Pk). In the case of multiplicity of the N -th eigenvalue, multiple solutions

exist. As a consequence, the standard form of solving (2) relies on well-established solvers for

eigenvalue calculations like Lapack5 or Arpack.6

In the context of the SCF iteration, two basic improvements are usually employed: DIIS-

extrapolation,7 by means of which convergence to the solution of (1) is accelerated, and approx-

imate solution (instead of exact) of (2), in order to abbreviate the computer work associated

with the first iterations of the Fixed Point method.8–10 The global convergence properties of the

Fixed-Point SCF method can be improved by means of trust-region techniques.4,11–13 Moreover,

effective optimization algorithms that include the trust-region paradigm and exploit the case in

which N � K were studied.14–16

If the number of atoms is large, both the computation of the Fock Matrix and the solution

of (2) may be very expensive. Modern techniques as Fast Multipole methods17 have been able

to reduce the computer time associated with Fock Matrix computations to a multiple of N .

However, the eigenvalue calculations typically involve O(N3) floating point operations, which

is unaffordable for large molecular systems. Therefore, most recent research involving linear

scaling methods for electronic structure calculations aims to reduce the computer time dedicated

to solve (2).8–10,18–22

The solution of the eigenvalue problem for very large systems may be possible because the

electron density is naturally sparse. Except when long-range electron delocalization is present

(as for periodic systems at low temperature), every wave function is to some degree localized

and, therefore, for sufficiently large systems, wave functions corresponding to distant groups

do not overlap.23 Only algorithms that explore the sparsity of the electron density at every

step make it possible the computation of the electronic density of very large systems. Different

strategies handle the sparsity using physically sensible arguments even for medium-size systems.

Electronic structure calculations that incorporate cutoffs for long-range integral overlaps are
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quite common.24–26 The more aggressive strategy for incorporating sparsity relies on localization

of the molecular orbitals.25,27 With these assumptions one can accelerate the calculation of

the Fock matrices and we may substitute the solution of the eigenvalue problem by suitable

approximations.25 Localized orbital methods lead to rapid responses and are useful for many

systems for which one seeks mostly structural and energetic parameters.25,27 Nevertheless, as

larger and more complex systems are studied, methods substituting the eigenvalue decomposition

that are not restricted by any specific sparsity representation will be required.

The best known methods for solving (2) in the large-scale case can be classified in two

groups: the ones focusing on the explicit minimization of the functional, and the ones involving

Density matrix iterations without explicitly evoking optimization arguments. The best known

minimization-based methods were given by Millam et al.8 and Li et al.19 In both cases prob-

lem (2) is reduced to the unconstrained minimization of a cubic function, which is processed

using conjugate gradients. The cubic nature of the objective function eliminates the possibility

of having more than one local minimizer. By the same reason global minimizers do not exist and

the iterated functional values could go to −∞, although experiments suggest that this failure is

not very common in real-life calculations.8

The second group of methods began with the purification scheme of McWeeny,28 which was

adapted by Palser and Manolopoulos29 to the solution of problem (2). The idea is that, starting

from a suitable initial Density matrix, the McWeeny iteration, which merely aimed to achieve

idempotency (P 2 = P ), in fact converges to solutions of the more structured problem (2).

Alternative purification schemes have been suggested in many papers20,21,30–33 and careful error

analyses were given by Rubensson and Zahedi20 and Rubensson and Rudberg.31 In the Grand-

Canonical Purification method29 a point in the HOMO-LUMO gap is supposed to be known, the

initial iterate is conveniently chosen as a transformation of the Fock matrix and global quadratic

convergence follows as a consequence of elementary properties of the one-dimensional iteration

xk+1 = 3x2k − 2x3k. In the Canonical Purification method the iteration is considerably more

complicated than in the Grand-Canonical scheme. On the other hand, the chemical potential
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is not assumed to be known. Instead, it is updated at each iteration exploiting flexibility of

the unstable fixed point, maintaining the number of occupied states and guaranteeing monotone

energy decrease. In these methods, the sparsity of the Density is obtained by the application of

cutoffs.

The strategy presented in this paper shares characteristics of both groups of methods. On

the one hand we iterate truncated Density matrices as done by Palser and Manolopoulus29 and

later improvements20 but, on the other hand, we rely on a well established damped projected

gradient optimization strategy with a global convergence theory for getting suitable solutions.

This strategy is consistent with the imposition of a fixed sparsity pattern at each iteration.

Although damping is not necessary in the case that sparsity is not imposed (because, in that

case, convergence relies only on the properties of McWeeny-like purification), it is essential when

one restricts the solution to some given (sparse-like) subspace. As a consequence, our method

can benefit both from the development of purification based strategies and from the stability

advantages of consolidated optimization approaches. Our outer iteration consists of obtaining

an estimate of the position of the gap using a root-finding process. Numerical experiments

demonstrate that the algorithm scales linearly with the number of non-null elements of the Fock

matrix and, thus, with the number of atoms of the systems, and that the solutions obtained

coincide with the solutions of standard eigenvalue decompositions methods to good precision.

The method proposed here is faster than standard eigenvalue decomposition strategies for sparse

systems with 50 thousand non-null matrix elements, and may incorporate any desired sparsity

pattern for the Fock and Density matrices. We will illustrate the reliability of the proposed

algorithm in full SCF semiempirical calculations of up to 6 thousand atoms.

Notation Given the symmetric K×K real matrices A and B, we denote 〈A,B〉 = Trace(AB).

We also denote ‖A‖ =
√
〈A,A〉.
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2 Algorithms

The problem considered in this section is

Minimize Trace[AP ]

subject to P = P T , P 2 = P, Trace(P ) = N.
(3)

In the large-scale case, the reduction of (3) to an unconstrained optimization problem is

very attractive because effective large-scale unconstrained minimization solvers are nowadays

available. Problem (3) has been reduced to unconstrained optimization and handled using

conjugate gradients.8,19 However, in recent years projected gradient techniques proved to be very

effective for large-scale optimization problems.34,35 They use even less memory than conjugate

gradient methods, they can handle simple constraints (i.e. constraints onto which one knows how

to project) and guarantee descent directions that are not affected by the potential accumulation

of roundoff errors that is inherent to conjugate gradients.35 This is due to the fact that the

search direction in a projected gradient method does not depend at all on the search directions

at previous iterations.

Since the matrix A is symmetric, we have that

A =
K∑
i=1

σiviv
T
i , (4)

where σ1 ≤ . . . ≤ σK are its eigenvalues and v1, . . . , vK are the corresponding orthonormal

eigenvectors. A solution of (3) is

P =

N∑
i=1

viv
T
i . (5)

This solution is unique if σN < σN+1. The obvious way for computing the solution of (3) requires

to compute the spectral decomposition of A, but this procedure may be unaffordable if N and K

are very large.

In order to solve (3) without computing eigenvectors, we will consider the “associated feasi-
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bility problem” (AFP) given by

Minimize Φ(P ) subject to P = P T , (6)

where Φ(P ) = 1
2‖P

2 − P‖2, and the “associated feasibility sparse problem” (AFSP) given by

Minimize Φ(P ) subject to P = P T and P ∈ S, (7)

where S is a closed convex set of symmetric matrices such that A ∈ S. In general we define S

as an affine subspace of symmetric matrices with a given sparsity pattern.

We solve (7) using a particular case of the projected gradient method.36–38 Note that prob-

lem (7) has in fact the constraints P = P T and P ∈ S. However, since these constraints are

simple enough and do not involve inequalities, the method derives its properties directly from

its unconstrained counterpart.

Algorithm 2.1

Let the symmetric K ×K matrix P0 ∈ S be a given initial approximation. Initialize k ← 0.

Step 1. Compute Γk ≡ Γ(Pk), the projection of ∇Φ(Pk) onto S.

Step 2. Set t← 1.

Step 3. Test the descent condition

Φ(Pk − tΓk) ≤ Φ(Pk)− 10−6 t 〈Γk,∇Φ(Pk)〉. (8)

If (8) holds, define Pk+1 = Pk − tΓk, update k ← k + 1 and go to Step 1.

Step 4. Compute a new value of t in the interval [0.1t, 0.5t] (usually by quadratic or quartic

interpolation37) and go to Step 3.

It can be proved36–38 that every limit point P∗ of a sequence generated by Algorithm 2.1
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is a critical point of (7) (Γ(P∗) = 0). Roughly speaking, as we will see below, this implies

that the algorithm converges to a minimum of 1
2‖P

2 − P‖ subject to P ∈ S. We always

choose S in such a way that it contains the Identity matrix, therefore global minimizers of

1
2‖P

2 − P‖ are, in fact, solutions of P 2 = P . Our implementation of Algorithm 2.1 does not

involve the explicit computation of the projection of ∇Φ(Pk) onto S. Instead, the problem (3)

is formulated from the beginning in terms of the free variables that describe S and is handled

as an unconstrained problem on this reduced set of variables. Accordingly, the gradient (with

respect to the free variables) is computed employing an appropriate data structure with standard

reverse differentiation39 which trivially gives rise to the projected gradient.

We still need to show that a limit point P∗ of a sequence generated by Algorithm 2.1 satisfies,

not only P 2 = P but also Trace(P ) = N and that it minimizes Trace(AP ). For the sake of

clarity, we will define Algorithm 2.1b as being identical to Algorithm 2.1 except for the definition

of the set S, which, in Algorithm 2.1b, will be the whole subspace of symmetric K × K real

matrices. Therefore, in Algorithm 2.1b the matrix Γk is the projection of ∇Φ(Pk) onto the set of

symmetric matrices (Γk = 1
2(∇Φ(Pk) +∇Φ(Pk)

T ). (Of course, no projection is necessary in this

case since ∇Φ(Pk) is already symmetric.) By direct calculations, if P and ∆P are symmetric

matrices, we have:

Φ(P + ∆P ) =
1

2
‖(P + ∆P )2 − (P + ∆P )‖2 = Φ(P ) + 〈2P 3 − 3P 2 + P,∆P 〉+O(‖∆P‖2).

Therefore, the projection of ∇Φ(P ) onto the subspace of symmetric matrices is given by

Γ(P ) = 2P 3 − 3P 2 + P.

It turns out that, if Γ(P∗) = 0, as guaranteed by the gradient projection theory, P∗ is a fixed point

of the McWeeny purification process Pk+1 = 3P 2
k −2P 3

k . This means that the limit points of the

projected gradient method are matrices with eigenvalues 0, 1, and 1
2 . Eigenvalue decomposition

and second derivative computations show that eigenvalues 0 and 1 correspond to minimizers
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whereas the eigenvalue 1
2 represents a direction along which the objective function is maximized.

So, local minimizers correspond only to matrices with eigenvalues 0 and 1. Therefore, the limit

points of the projected gradient process are global minimizers of Φ (solutions of P 2 = P ) with

probability 1.

Assume that the spectral decomposition (with increasing eigenvalues) of P0 is:

P0 =
K∑
i=1

λiwiw
T
i . (9)

Then, if λ1, . . . , λK−N0 are in the interval (1−
√
3

2 , 1/2) ≈ (−0.366, 0.5), and λK−N0+1, . . . , λK

are in the interval (1/2, 1+
√
3

2 ) ≈ (0.5, 1.366), it is well known40 that the purification process

converges quadratically to the matrix P∗ given by

P∗ =
K∑

i=K−N0+1

wiw
T
i . (10)

We aim to employ an initial point P0 in such a way that the limit P∗ will solve (3). According

to (5), (9), and (10), the eigenvectors of P0 should be those of A and the eigenvalues of P0 should

be in the adequate intervals to ensure convergence.

Since the matrix αI − A has the same eigenvectors as A and its eigenvalues are α − σK ≤

· · · ≤ α − σ1, for an appropriate computable value of β > 0 we have that all the eigenvalues of

β[αI − A] lie between −1
2 and 1

2 . Therefore, choosing P0 = (1/2)I + β[αI − A] we have that

all the eigenvalues of P0 are in [0, 1] and the eigenvectors coincide with those of A. Applying

Algorithm 2.1b, eigenvalues bigger than 1
2 would converge to 1 and eigenvalues smaller than 1

2

would converge to 0. Clearly, eigenvalues of P0 bigger than 1
2 correspond to eigenvalues of A

smaller than α and eigenvalues of P0 smaller than 1
2 correspond to eigenvalues of A bigger

than α. Thus, the limit matrix P∗(α) can be written as

P∗(α) =

N0(α)∑
i=1

viv
T
i ,

10



where v1, . . . , vN0(α) are the eigenvectors of A corresponding its N0(α) smaller eigenvalues. Obvi-

ously, the eigenvalues of P∗(α) are 1, with multiplicity N0(α), and 0 with multiplicity K−N0(α),

whereas the trace of P∗(α) is N0(α). Therefore, P∗(α) will be the solution of (3) if and only if

N0(α) = N . Note that N0(α) is a non-decreasing function of α.

If the gap between the eigenvalues N and N+1 of A is not very small, it can be expected that

the “affordable” Algorithm 2.1 and the “non-affordable” Algorithm 2.1b should exhibit similar

qualitative behavior. In order to adress large-scale problems only Algorithm 2.1 is implemented.

If a tentative α is smaller than σN , the trace of P∗(α) will be smaller than N whereas this trace

will be bigger than N if the tentative α is bigger than σN+1. Therefore, the trace of Pk provides

a suitable criterion for deciding whether α should be increased or decreased. The algorithm

Bisalfa, described below, explains the way in which a satisfactory α is found, and, consequently,

problem (3) is solved.

Algorithm 2.2: Bisalfa

Compute, using Gershgorin theorem,41 lower and upper bounds σmin and σmax for the eigenval-

ues of A. Define αmin = σmin, αmax = σmax, and α = ((N + 1
2)αmin + (K −N − 1

2)αmax)/K.

Step 1. Compute β and P0 as explained above. Compute P∗(α) and N0(α) using Algorithm 2.1.

Step 2. If N0(α) > N re-define αmax ← α, choose α annihilating the linear interpolation be-

tween (αmin, Trace(αmin)−N) and (αmax, Trace(αmax)−N) (or taking α = (αmin +αmax)/2 if

the value of α computed by interpolation is excessively close to αmin or to αmax), and go to Step 1.

Both Algorithms 2.1 and 2.2 have been implemented using suitable stopping criteria which

take into account compatibility with complete SCF calculations. Algorithm 2.1 stops when∑
ij [Γ(P )ij ]

2)/K ≤ 10−12 and Algorithm 2.2 stops when |N0(α) − N | ≤ 0.45. (In general,

when this criterion is met we observe, in practice, that |N0(α)−N | ≤ 0.001.) Stopping criteria

revealing possible failures of the algorithms were also implemented.

Density matrix purification methods with rigorous error control, developed in20,21,30–32 and
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other papers, resemble the Bisalfa technique in some aspects, although they are not based on

optimization arguments. In these methods confidence intervals for the HOMO and LUMO

eigenvalues are computed using specific Lanczos-like procedures and the purification technique

is proved to be satisfactory due to careful monitoring of the error that results from truncating

small elements of the approximate Density. These techniques can be used to estimate the Bisalfa

error associated with the a priori sparsity constraint P ∈ S. By formula (11) of Rubensson and

Rudberg,31 if Ã is the projection of A onto S, E = Ã − A, ξ is the HOMO-LUMO gap,

‖E‖2 ≤ εξ/(1 + ε), and ‖ · ‖2 is the spectral matricial norm, we have that the angle between the

corresponding subspaces generated by the eigenvectors associated to the N smaller eigenvalues

is smaller than ε. Thus, by knowing the HOMO-LUMO gap we are able to control, in principle,

the error associated with the application of Algorithm 2.1 and the sparsity assumption. The

cost associated with the computation of ‖E‖2 may be alleviated by the employment of a “mixed

norm”.31 The error may be iteratively updated in the process of purification20 with a dynamic

choice of the constraint set S. The possibility of changing S at each iteration of Algorithm 2.1

does not modify the projected gradient convergence result if the same S is eventually used at

each iteration of 2.1.

This section can be summarized in the following way:

1. In order to solve (3) we minimize the infeasibility function Φ(P ) subject to sparsity con-

straints inherited from A. A convergent projected gradient method with sparse reverse

differentiation is employed with that purpose.

2. If the initial approximation P0 is correctly chosen and the HOMO-LUMO gap is not very

small, the method plausibly converges to the solution of (3). (Quadratic convergence can

also be expected in this case.)

3. The choice of the correct P0 comes from a safeguarded interpolatory one-dimensional root-

finding process with guaranteed convergence.
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3 Numerical experiments

In order to compare the efficiency and scalability of Bisalfa relatively to standard diagonalization

methods, we performed the eigenvalue decomposition of real Fock matrices obtained using the

MOPAC2009 semimepirical quantum chemistry program42 with RM1 parameters.43 The matri-

ces in these examples were obtained from the first SCF iteration for spherical clusters of water

with 80, 120, 160, 300, 1000, and 5000 molecules. The structures were built with Packmol44,45

with low density, 0.5 g×ml−1, and a cutoff of 9.0Å was used for electron integrals, so that the

matrices are sparse. We used MKL Lapack implementation of routine dsyev for eigenvalue

decomposition. All examples were run in a single computing node of a SGI Altix XE cluster

with Xeon X5670 CPUs and 24 Gb of RAM memory, running RedHat Linux 5.3. Our in-house

code was compiled with the Intel Fortran Compiler version 12.0.0 with “-O3 -mkl:sequential

-mcmodel=medium -intel-shared” options, unless if stated otherwise.

Table 1: Performance of Bisalfa and Lapack for the eigenvalue decomposition of single real Fock
matrices obtained from low-density water clusters.

Computer time / s
Nwater K N Nnon-null Bisalfa Lapack

80 480 320 25,354 0.51 0.17
120 720 480 39,367 0.91 0.53
160 960 640 52,142 1.21 1.17
300 1,800 1,200 108,907 3.06 8.52
1000 6,000 4,000 391,946 13.40 451.39
5000 30,000 20,000 2,112,571 79.37 43415.64

Bisalfa and Lapack calculations were completed for systems of up to 5000 water molecules.

The results of these tests are summarized in Table 1 and Figure 1. The number of non-null

elements on the Fock matrix is roughly proportional to the number of atoms of the system, as

expected. The log-log plot of the required time as a function of the number of non-null elements

indicates the scalability of each method. Lapack eigenvalue decomposition scales with the third

power (slope 2.85) of the number of non-null elements, that is, with the third power of the
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Figure 1: Scaling of Lapack and Bisalfa for systems of up to 2 million non-null elements. Bisalfa
is nearly linear-scaling in practice, and it is faster than Lapack for sparse systems with more
than 50 thousand non-null matrix elements and ≈ 99.5% sparsity.

number of atoms of the system. Bisalfa, on the other hand, scales almost linearly (slope 1.14).

The result is that Bisalfa is faster than Lapack’s eigenvalue decomposition for matrices with

more than 50 thousand non-null elements and ≈ 99.5% sparse, which in this case corresponded

to a system with 160 water molecules.

Now we will show numerically to which degree the substitution of a standard diagonal-

ization method with Bisalfa affects successive iterations of a full SCF procedure. Bisalfa was

implemented in Fortran and incorporated to MOPAC2009.42 The UGTR algorithm4,11 was also

implemented in MOPAC2009 in order to stabilize the SCF calculation and to guarantee con-

vergence. For such, we replaced the ITER FOR MOZYME subroutine with one containing our

UGTR code. In addition, the modified MOPAC2009 code was compiled using both BLAS and

LAPACK subroutines from Intel MKL. Similar strategies were previously used by Maia et al.

to show that it is possible to obtain large speedups for single point energy calculations just by
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using CPU serial highly optimized linear algebra libraries in MOPAC2009 code.46
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Figure 2: Iterative SCF calculations of poly-(Glu-Ala) peptides using standard diagonalization
or Bisalfa. Both methods proceed identically for relative precisions of up to 10−4, demonstrat-
ing that the Bisalfa algorithm reproduces the results of standard diagonalizations with good
accuracy.

We performed SCF calculations on small Glutamic Acid-Alanine peptides (obtained at the

ErgoSCF site: http://ergoscf.org/xyz/gluala.php32) to compare the sequence of iterates

produced by using Bisalfa or Lapack’s dsyev for small systems different from the water clusters

of the previous examples. Figure 2 shows that the SCF iterations are essentially identical up

to relative energy errors of about 10−4. Only for precisions greater than those the SCF iterates

do not coincide and, in these cases, the results have relative differences of about 10−5. It is
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expected, in general, that the sparse computation converges to slightly higher energies than

the denser computation, as the assumption of a sparsity pattern implies the introduction of

additional constraints on the Density matrix. Fluctuations in termination resulting from the

stopping criteria can also lead to a slightly smaller energy for Bisalfa relative to Lapack, as

occurred for (Glu-Ala)32.
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Figure 3: SCF calculations on water clusters of varying size. Detailed data on these problems
are described in Table 2.

Similar tests for larger systems composed of spherical clusters containing up to 6 thousand

water molecules with 1 g×ml−1 density, built with Packmol,45 were performed. A cutoff for

the computation of electron integrals of 9Å was used in these calculations. As only valence
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Table 2: Details of the SCF calculations on water clusters of up to 6000 water molecules using
Bisalfa or Lapack.

Iterations1 Time Final energy / kcal mol−1

Nwaters Sparsity (%) Bisalfa Lapack Bisalfa Lapack Bisalfa Lapack
350 89.9 19(19) 16 7.0 min 4.6 min -18878.2084 -18879.1351
1500 97.2 18(22) 17 56.5 min 6.0 hours -80772.7671 -80777.4152
3000 98.6 20(21) 18 2.2 hours 61 hours -161353.3016 -161358.2292
3500 98.8 17(24) 16 4.3 hours 84 hours -187935.4158 -187940.7421
3500 Parallel MKL using 12 cores 29 hours -187940.7421
4000 98.9 16(20) 16 3.3 hours 122 hours -214526.6706 -214532.6311
6000 99.3 22(25) - 6.4 hours * -321889.2913 -
1Total number of calls to Algorithm 2.1 from Bisalfa in parentheses.
∗Unable to run problem due to lack of memory.

atomic orbitals are explicitly used by the semiempirical calculation, the dimension of the Fock

and Density matrices is 6×Nwaters, and the number of non-null elements can be computed from

the Sparsity by (1−Sparsity/100)× [1/2×6Nwaters× (6Nwaters−1)]. As these systems are large,

the computation of the Fock matrix with the Mozyme orbital localization method and cuttofs

is sparse by itself. In these examples, null elements which are nevertheless allocated by Mozyme

were disconsidered in the consecutive Bisalfa iteration.

The SCF profiles are very similar to the ones observed for the small peptide systems. SCF

iterates based on Bisalfa and Lapack differ only for relative errors of about 10−4, as shown

in Figure 3. For the systems in which Lapack could be used, Bisalfa converged to slightly

higher energies and performed two to four iterations more than SCF-Lapack. However, the

diagonalization of the converged Bisalfa Fock matrix with Lapack leads in these examples to the

same final energy than SCF-Lapack. Therefore, the error in these examples is not cumulative

through SCF iterations, but limited to the restrictions imposed by the sparsity of the Density

at each iteration.

We were not able to run examples with Lapack for systems with more than 4000 water

molecules. The computational times required by SCF-Bisalfa and SCF-Lapack for each of these

calculations are shown in Table 2. Computer times of SCF-Bisalfa are roughly proportional to

the number of atoms of the system (or the number or water molecules), with oscillations that
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depend on the number of calls to Algorithm 2.1 and the total number of SCF iterations. We

have also run the SCF calculation for 3500 water molecules using the parallel implementation

of the MKL libraries (by compiling the codes with “-mkl:parallel”), using 12 cores of a single

computing node. The wall time required decreased to 29 hours (instead of 84 hours for the serial

MKL implementation), but for systems of this size the Bisalfa code was still much faster (4.3

hours).

Therefore, numerical experiments show that SCF calculations can be successfully undertaken

by means of the replacement of a standard eigenvalue decomposition method with Bisalfa. In

general, the final energy of the sparse computation is larger than the final energy of the dense

computation, but this difference is, for the current setup of the methods, of the order of 10−4,

which is quite satisfactory for semiempirical calculations. This difference of course can be reduced

by choosing larger cutoffs, or by preserving any subset of the Density matrix elements which one

believes from physico-chemical arguments that must be non-null and contribute to the electron

density of the system. The method presented here does not impose any restriction on the Fock

sparsity pattern. The practical efficiency of Bisalfa depends on the size of the gap, but the

interpolatory-bisection root-finding procedure can be trivially generalized and parallelized, so

that we expect that large systems with small gaps will also benefit from the proposed algorithm.

4 Conclusions

We introduced an alternative algorithm to the standard diagonalization to be used in SCF

calculations. The algorithm can be implemented to preserve sparsity of the Fock and Density

matrices and scales linearly with the number of non-null elements. It can be used on any

SCF calculation relying on standard diagonalizations. The new method is particularly fast for

systems with not very small gaps, but its interpolatory root-finding procedure can be trivially

generalized and parallelized in order to effectively deal with systems with small gaps as well.

Bisalfa is faster than Lapack’s eigenvalue decompositions for sparse systems with more than

50 thousands non-null elements and about 99.5% sparse, which in semiempirical calculations
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correspond to systems with a few hundred atoms. This suggests that the the new method can

be useful, to date, for semiempirical calculations which cannot rely on approximate strategies

as the localization of molecular orbitals. The method accepts any sparsity pattern for the

Fock matrices and preserves the sparsity at every iteration, thus having only modest memory

requirements.

The method introduced in this paper relies on projected gradient optimization techniques

(Algorithm 2.1) and secant approximate root-finding (Algorithm 2.2). The root-finding process,

since it is safeguarded by bijections and is applied to a non-decreasing function, necessarily

converges to a solution. The projected gradient iterative method converges with probability 1

to a feasible solution by the projected gradient theory. Therefore, accuracy of the SCF iterate

depends on the choice of the sparsity pattern S. In our experiments we used S as the sparsity

pattern of the Fock matrix but different adaptive choices are possible.

5 Appendix - Considerations on sparsity patterns

In our experiments we imposed that the sparsity pattern of the solution should be inherited

from the one of the Fock matrix. Different strategies for the proposal of these patterns could be

made, based on physico-chemical insights or molecular structure considerations.

First, let us provide a simple, perhaps new, argument to support the assumption that the

sparsity structure of a K ×K symmetric A is generally inherited by the solution of (3), which

is denoted here by B. (Different arguments that lead to conclusions on the sparsity of P ,

are available.47) Without loss of generality, assume that all the eigenvalues of A are positive.

By the Diagonalization theorem one has that A = A1 + A2, where A1 =
∑N

i=1 σiviv
T
i and

A2 =
∑K

i=N+1 σiviv
T
i , the eigenvalues of A are σ1 ≤ · · · ≤ σK and v1, . . . , vK are the associated

orthonormal eigenvectors. Thus, B =
∑N

i=1 viv
T
i . Assume now that σN � σN+1. Then,

cancellation between entries of A1 and A2 turns out to be quite improbable and, so, a zero-entry

of A = A1+A2 very likely corresponds to a zero-entry both in A1 and A2. This means that, when

the gap is sufficiently large, sparsity of A is probably inherited both by A1 and A2. Moreover,
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if the eigenvalues of A1 are relatively clustered, there exists σ such that A1 ≈ σ
∑N

i=1 viv
T
i .

Therefore, sparsity of A1 implies sparsity of the solution matrix
∑N

i=1 viv
T
i in this case.

Now we describe how the sparsity of both matrices evolve at each iteration of the calculation

of the 350 water molecule cluster described in Table 2, showing that the assumption is valid

to a good approximation in the examples presented here. In the calculations of this appendix,

no element was desconsidered in the Density matrix, even if it was null (yet allocated) in the

Fock matrix. This allows for potentially denser Fock and Density matrices at each iteration,

permitting the study of evolution of the sparsity of both matrices. Note that this differs from

the approach used in the experiments of Table 2, where null elements of the Fock matrix were

not considered in the consecutive application of Algorithm 2.1, thus providing greater speed at

the risk of eliminating significant Density elements (the final energies in Table 2 in comparison

with Lapack calculations show that the error introduced is small).

Figures 4a&b display how the sparsity patterns of the Fock and Density matrices evolve

from iteration to iteration. These plots show the number of elements of these matrices that were

smaller than a threshold δ in an iteration and became greater than δ in the next iteration. Both

sparsities coincide up to a precision of 10−3 after the 13th iteration. After the 15th iteration,

only very few (less than 10) elements of these matrices become larger than 10−7. Therefore, the

sparsity patterns become constant while the SCF converges, indicating that the assumption of

the Fock sparsity pattern does not introduce unexpected instabilities for the Density.

Figure 4c displays the comparison of the sparsity patterns of the Fock and Density matrices

in this example. If we consider that an element of the Fock matrix is negligible if smaller than

10−7, we would want to know how many corresponding elements of the Density matrix may be

significant. As the Figure 4c shows, only a single negligible Fock element is greater than 10−4

at the solution Density, only about 20 elements are greater than 10−5, a few hundred elements

are greater than 10−6, and about two thousand elements are greater than 10−7. Therefore, the

sparsity pattern of the converged Density matrix is contained to good precision in the sparsity

pattern of the Fock matrix in this example, except on the very first iterations.
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Figure 4: Evolution of the sparsity patterns of the Fock and Density matrices through SCF iter-
ations of a 350 water-molecule cluster. (a) and (b) Stability of the sparsity patterns. The plots
indicate the number of elements of each matrix which have increased and crossed a threshold δ
from one iteration to the next, for each matrix. (c) Validity of the assumption that the sparsity
pattern of the Density matrix is similar to that of the Fock matrix: number of elements of the
Density matrix, P greater than a given threshold δ, which are smaller than 10−7 in in the Fock
matrix, F . These matrices have 2100×2100 (∼ 4.4 × 106) elements, of which ∼ 4.2 × 105 are
allocated for calculations after use of orbital localization and structural cutoffs by Mozyme.
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