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Abstract. Local convergence of an Inexact-Restoration method for nonlinear program-

ming is proved. Numerical experiments are performed with the objective of evaluat-

ing the behavior of the purely local method against a globally convergent nonlinear-

programming algorithm.
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1 Introduction

Inexact-Restoration (IR) methods (see Ref. 1–3) are modern versions of the classical

feasible methods ( Ref. 4–12) for nonlinear programming. The main iteration of an

IR algorithm consists of two phases: in the restoration phase, infeasibility is reduced

and in the optimality phase a Lagrangian function is approximately minimized on an

appropriate linear approximation of the constraints. Global convergence is obtained

in Ref. 1 by means of a trust-region strategy where the trust balls are centered, not in

the current point, as in several sequential quadratic programming algorithms (see, for

example, Ref. 13) but in the inexactly restored point. The merit function used in Ref.

1 is a sharp Lagrangian as defined in Ref. 14, Example 11.58.

Merit functions are useful tools in all branches of optimization. However, it has been

observed that in many practical situations the performance of optimization algorithms

that do not impose merit-function decrease is better than the performance of algorithms

whose global convergence is based on merit functions. The reason is that merit-function
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decrease imposes a restrictive path towards the limit point whereas, sometimes, the

purely local algorithm climbs over merit-function valleys in a very efficient way.

In unconstrained optimization, nonmonotone strategies, where decrease of the merit

function is not required at every iteration ( Ref. 15), became a popular tool in the last

decade.

In nonlinear programming, the more consistent strategy for globalizing algorithms

without the use of merit functions seems to be the filter technique introduced by Fletcher

and Leyffer ( Ref. 16). Gonzaga, Karas and Vanti ( Ref. 17) applied the filter strategy

to an algorithm that resembles Inexact Restoration. Previous attempts of eliminating

merit functions as globalization tools for semifeasible methods go back to Ref. 18.

It is not difficult to modify poor algorithms in order to obtain theoretically globally

convergent methods. This can be made using both monotone or nonmonotone strate-

gies. In general, the modification of a poor local method leads to a poor global method.

A good globally convergent method is usually good even before the global modification

and, sometimes, the purely local version is better than the global one. One of the key
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features that allow one to predict the practical behavior of an optimization algorithm is

the presence of a local convergence theorem with order of convergence. In general, the

existence of such a theorem indicates that the model used at each iteration to mimic

the original problem is adequate. (Other evidences of this adequacy exist but are less

susceptible of mathematical formalization.) This was our motivation for developing a

local convergence theory for the Inexact-Restoration algorithm. Since our main objec-

tive is to explain and test the behavior of methods for solving practical problems, the

numerical experiments that complete this paper are directed to evaluate the efficiency

and robustness of the purely local algorithm, against globally convergent ones.

The local algorithm and its convergence theory is presented in Section 2. In Section 3

we describe the implementation. Numerical experiments are shown in Section 4 and

conclusions are given in Section 5.
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2 Local Convergence of Inexact Restoration

In this section we assume that Ω ⊂ IRn is closed and convex. We also assume that

f : IRn → IR and h : IRn → IRm admit continuous first derivatives on an open set that

contains Ω. The optimization problem to be considered is:

min f(x) s.t. h(x) = 0, x ∈ Ω. (1)

For all x ∈ Ω, λ ∈ IRm, we define the Lagrangian function L(x, λ) as

L(x, λ) = f(x) + 〈h(x), λ〉.

We denote ∇h(x) = (∇h1(x), . . . ,∇hm(x)) and h′(x) = ∇h(x)T . Therefore, ∇L(x, λ) =

∇f(x) + ∇h(x)λ. The symbol ‖ · ‖ will always denote the Euclidian norm along this

paper. Let P be the projection operator onto Ω with respect to ‖ · ‖. We say that

(x∗, λ∗) ∈ Ω × IRm is a critical pair of the optimization problem (1) if

h(x∗) = 0 and P (x∗ −∇L(x∗, λ∗)) − x∗ = 0. (2)

Under suitable constraint qualifications every local minimizer of (1) defines, with its

Lagrange multipliers, a critical pair. (See, for example, Ref. 19.) In this section we will
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analyze a locally convergent algorithm for finding critical pairs, without any mention to

the origin of the nonlinear system (2). We will address the resolution of this nonsmooth

nonlinear system of equations using a variation of the Inexact-Restoration algorithm

introduced in Ref. 1. We denote

G(x, λ) = P (x −∇L(x, λ)) − x ∀ x ∈ Ω, λ ∈ IRm.

Therefore, ‖h(x)‖ is a measure of the feasibility of x ∈ Ω and ‖G(x, λ)‖ measures the

“optimality” of the pair (x, λ). Given the current iterate x ∈ Ω, the idea of IR is to

find, first, a “more feasible” point y ∈ Ω, and then, to find a “more optimal” point z

such that z ∈ Ω and h′(y)(z − y) = 0. (This condition will be relaxed in (5).)

The Inexact-Restoration iteration depends on five algorithmic parameters θ ∈ [0, 1), η ∈

[0, 1) and K1, K2, K3 > 0. The first two indicate the amount of improvement that we

require in the feasibility phase and the optimality phase, respectively. The role of K1

and K3 is to maintain the new iterate reasonably close to the current one. ( See Ref.

1, 3 for details.) The constant K2 gives a tolerance for the linear infeasibility of the
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optimality-phase minimizer.

Given x ∈ Ω and λ ∈ IRm, we say that an IR iteration starting from (x, λ) can be

completed (or is well defined) if we can compute y, z ∈ Ω, µ ∈ IRm such that:

‖h(y)‖ ≤ θ‖h(x)‖, (3)

‖y − x‖ ≤ K1‖h(x)‖, (4)

‖h′(y)(z − y)‖ ≤ K2‖G(y, λ)‖2, (5)

‖P (z −∇L(z, λ) −∇h(y)(µ − λ)) − z‖ ≤ η‖G(y, λ)‖ (6)

and

‖z − y‖ + ‖µ − λ‖ ≤ K3‖G(y, λ)‖. (7)

The motivation for the condition (6) comes from considering that, in the optimality

phase, one generally minimizes the Lagrangian L(z, λ) subject to z ∈ Ω and h′(y)(z −

y) = 0. Writing the optimality conditions for this subproblem and defining (µ − λ) as

the vector of Lagrange multipliers corresponding to these conditions, we obtain

P (z −∇L(z, λ) −∇h(y)(µ − λ)) − z = 0.
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So, inequality (6) is an inexact version of this condition. The stability conditions (4)

and (7) express the necessity of staying close to the current point if this point is close

to feasibility or optimality respectively.

Given the pair (x, λ) ∈ Ω × IRm, if the IR iteration can be completed giving (z, µ),

we denote N[θ,η,K1,K2,K3](x, λ) = (z, µ). For simplicity, we will always denote N(x, λ) =

N[θ,η,K1,K2,K3](x, λ) = (z, µ).

Throughout this section we will assume that ∇f and ∇h are Lipschitz-continuous.

To simplify the notation, and without loss of generality, we assume that, for the same

Lipschitz constant γ and for all x, w ∈ Ω, i = 1, . . . , m,

‖∇f(x) −∇f(w)‖ ≤ γ‖x − w‖, ‖∇hi(x) −∇hi(w)‖ ≤ γ‖x − w‖, (8)

‖∇h(x) −∇h(w)‖ ≤ γ‖x − w‖, (9)

and

‖h(w) − h(x) − h′(x)(w − x)‖ ≤ γ‖w − x‖2. (10)
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We define the following constants, that will be used along this section:

c = max{K1, K2, K3}, c1 = 2c + cγ, c2 = cγ,

c3 = c + 2c2 + c2γ, c4 = c2γ + c.

Theorem 2.1. Assume that the IR iteration starting from (x, λ) can be completed

and (z, µ) = N(x, λ). Then,

‖h(z)‖ ≤ θ‖h(x)‖ + c4[‖G(x, λ)‖ + (c1 + c2‖λ‖)‖h(x)‖]2, (11)

‖G(z, µ)‖ ≤

η[(c1 + c2‖λ‖)‖h(x)‖ + ‖G(x, λ)‖] + c4[‖G(x, λ)‖ + (c1 + c2‖λ‖)‖h(x)‖]2,

(12)

‖z − x‖ ≤ (c3 + c4‖λ‖)‖h(x)‖ + c‖G(x, λ)‖ (13)

and

‖µ − λ‖ ≤ (c3 + c4‖λ‖)‖h(x)‖ + c‖G(x, λ)‖. (14)

Proof. By (10), ‖h(z) − h(y)‖ ≤ ‖h′(y)(z − y)‖ + γ‖z − y‖2. So, by (3), (5) and (7),

‖h(z)‖ ≤ θ‖h(x)‖ + (γc2 + c)‖G(y, λ)‖2. (15)
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Now, by (4) and (8)–(10),

‖G(y, λ)− G(x, λ)‖ = ‖P (y −∇L(y, λ)) − y − (P (x−∇L(x, λ)) − x)‖

≤ ‖y − x‖ + ‖P (y −∇L(y, λ)) − P (x −∇L(x, λ))‖

≤ ‖y − x‖ + ‖y − x + ∇L(x, λ) −∇L(y, λ)‖

≤ 2‖y − x‖ + ‖∇f(y)−∇f(x)‖ + ‖[∇h(x) −∇h(y)]λ‖

≤ 2c‖h(x)‖ + γ‖y − x‖ + γ‖y − x‖‖λ‖

≤ (2c + cγ + cγ‖λ‖)‖h(x)‖ = (c1 + c2‖λ‖)‖h(x)‖.

Therefore,

‖G(y, λ)‖ ≤ ‖G(x, λ)‖ + (c1 + c2‖λ‖)‖h(x)‖. (16)

So, by (15) and (16),

‖h(z)‖ ≤ θ‖h(x)‖ + (γc2 + c)[‖G(x, λ)‖ + (c1 + c2‖λ‖)‖h(x)‖]2.

Therefore, (11) is proved.

Now,

‖P (z −∇L(z, µ)) − z‖ = ‖P (z −∇f(z) −∇h(z)µ) − z‖
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= ‖P [z −∇f(z) −∇h(z)(µ − λ) + ∇h(z)(µ − λ) −∇h(z)µ] − z‖

= ‖P [z −∇f(z) −∇h(z)λ −∇h(z)(µ − λ)] − z‖

= ‖P [z −∇L(z, λ) −∇h(y)(µ − λ) + (∇h(y) −∇h(z))(µ − λ)] − z‖.

Using the property

‖P (v + w) − z‖ ≤ ‖P (v + w) − P (v)‖ + ‖P (v) − z‖ ≤ ‖w‖ + ‖P (v) − z‖

with v = z−∇L(z, λ)−∇h(y)(µ−λ) and w = (∇h(y)−∇h(z))(µ−λ), by (6), (8)–(10)

and (7), we get:

‖P (z−∇L(z, µ))−z‖ ≤ ‖P [z−∇L(z, λ)−∇h(y)(µ−λ)]−z‖+‖∇h(y)−∇h(z)‖‖µ−λ‖

≤ η‖G(y, λ)‖+ γ‖y − z‖‖µ − λ‖ ≤ η‖G(y, λ)‖+ γ(‖y − z‖ + ‖µ − λ‖)2

≤ η‖G(y, λ)‖ + γc2‖G(y, λ)‖2.

So, by (16),

‖G(z, µ)‖ ≤ η[‖G(x, λ)‖ + (c1 + c2‖λ‖)‖h(x)‖] + γc2[‖G(x, λ)‖ + (c1 + c2‖λ‖)‖h(x)‖]2.

Therefore, (12) is also proved.
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Now, by (4), (7) and (16),

‖z − x‖ ≤ ‖y − x‖ + ‖z − y‖ ≤ c‖h(x)‖ + c‖G(y, λ)‖

≤ c‖h(x)‖ + c[‖G(x, λ)‖ + (2c2 + c2γ + c2γ‖λ‖)‖h(x)‖]

= (c + 2c2 + c2γ + c2γ‖λ‖)‖h(x)‖ + c‖G(x, λ)‖.

So, (13) is proved.

Moreover, by (7) and (16),

‖µ − λ‖ ≤ c‖G(y, λ)‖ ≤ c‖G(x, λ)‖ + (2c2 + c2γ + c2γ‖λ‖)‖h(x)‖.

Thus, (14) is also proved. 2

From now on we assume that (x̄, λ̄) ∈ Ω × IRm is a critical pair. So, h(x̄) = 0 and

G(x̄, λ̄) = 0.

We also define M = 2‖λ̄‖ + 1, c5 = c1 + c2M , and H ∈ IR2×2 by

H =











θ 0

c5 η











.
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The eigenvalues of H are θ and η. Since both are strictly smaller than 1, given an

arbitrary ε > 0, there exists a vector norm ‖ · ‖H on IR2 such that

‖H‖H = ρ ≤ max{θ, η} + ε < 1. (17)

Moreover, this norm is monotone in the sense that 0 ≤ v ≤ w ⇒ ‖v‖H ≤ ‖w‖H . From

now on, we fix a “contraction” parameter r such that

ρ < r < 1. (18)

Theorem 2.2. There exist ε1 > 0, δ1 > 0, β > 0 such that, if r is given by (18),

‖x − x̄‖ ≤ ε1, ‖λ − λ̄‖ ≤ δ1, and the IR iteration starting from (x, λ) is well defined,

with (z, µ) = N(x, λ), then

‖λ‖ ≤ M,

∥

∥

∥

∥











‖h(z)‖

‖G(z, µ)‖











∥

∥

∥

∥

H

≤ r
∥

∥

∥

∥











‖h(x)‖

‖G(x, λ)‖











∥

∥

∥

∥

H

, (19)

‖z − x‖ ≤ β
∥

∥

∥

∥











‖h(x)‖

‖G(x, λ)‖











∥

∥

∥

∥

H

, (20)

14



and

‖µ − λ‖ ≤ β
∥

∥

∥

∥











‖h(x)‖

‖G(x, λ)‖











∥

∥

∥

∥

H

. (21)

Proof. Take δ0 = ‖λ̄‖+1. Then, ‖λ−λ̄‖ ≤ δ0. So, ‖λ‖ ≤ ‖λ̄‖+δ0 and, thus, ‖λ‖ ≤ M .

By (11) and (12), if ‖λ − λ̄‖ ≤ δ0 and the iteration is well defined, we have that

‖h(z)‖ ≤ θ‖h(x)‖ + c4[‖G(x, λ)‖ + (c1 + c2M)‖h(x)‖]2

and

‖G(z, µ)‖ ≤ (c1 + c2M)‖h(x)‖ + η‖G(x, λ)‖ + c4[‖G(x, λ)‖ + (c1 + c2M)‖h(x)‖]2.

So, since the norm ‖ · ‖H is monotone,

∥

∥

∥

∥











‖h(z)‖

‖G(z, µ)‖











∥

∥

∥

∥

H

≤

∥

∥

∥

∥

H











‖h(x)‖

‖G(x, λ)‖











∥

∥

∥

∥

H

+ c4

∥

∥

∥

∥











[‖G(x, λ)‖ + (c1 + c2M)‖h(x)‖]2

[‖G(x, λ)‖ + (c1 + c2M)‖h(x)‖]2











∥

∥

∥

∥

H

≤ ρ

∥

∥

∥

∥











‖h(x)‖

‖G(x, λ)‖











∥

∥

∥

∥

H

+ c4[‖G(x, λ)‖ + (c1 + c2M)‖h(x)‖]2 ×

∥

∥

∥

∥











1

1











∥

∥

∥

∥

H

.

Now, by the equivalence of norms in IR2 there exists ᾱ > 0 such that, for all a, b > 0,

(c1 + c2M)a + b ≤ ᾱ

∥

∥

∥

∥











a

b











∥

∥

∥

∥

H

,
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so,

∥

∥

∥

∥











‖h(z)‖

‖G(z, µ)‖











∥

∥

∥

∥

H

≤ ρ
∥

∥

∥

∥











‖h(x)‖

‖G(x, λ)‖











∥

∥

∥

∥

H

+ c4ᾱ
∥

∥

∥

∥











‖h(x)‖

‖G(x, λ)‖











∥

∥

∥

∥

2

H

∥

∥

∥

∥











1

1











∥

∥

∥

∥

H

.

Since ‖h(x)‖ and ‖G(x, λ)‖ are continuous and vanish at x̄, λ̄, taking δ1 and ε1 small

enough, with δ1 ≤ δ0 we obtain (19).

Now, let us prove (20) and (21). By (13) and (14), if ‖x − x̄‖ ≤ ε1, ‖λ − λ̄‖ ≤ δ1

and the iteration is well defined,

max{‖z − x‖, ‖µ − λ‖} ≤ (c3 + c4M)‖h(x)‖ + c‖G(x, λ)‖. (22)

But, by the equivalence of norms in IR2, there exists β > 0 such that, for all a, b > 0,

(c3 + c4M)a + cb ≤ β
∥

∥

∥

∥











a

b











∥

∥

∥

∥

H

.

Therefore, taking a = ‖h(x)‖ and b = ‖G(x, λ)‖, (20) and (21) follow from (22). 2

From now on, for all x ∈ Ω such that ‖x − x̄‖ ≤ ε1 and ‖λ − λ̄‖ ≤ δ1, we define:

R(x, λ) =

∥

∥

∥

∥











‖h(x)‖

‖G(x, λ)‖











∥

∥

∥

∥

H

.
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In the next theorem we prove that, if (x0, λ0) is close enough to the critical pair

(x̄, λ̄), the sequence generated by (xk+1, λk+1) = N(xk, λk) converges to a critical pair.

Uniqueness of the critical pair is not assumed. Convergence at a linear rate can take

place to a different critical pair than (x̄, λ̄).

Theorem 2.3. Let (x̄, λ̄) be a critical pair. Let ρ and r be given by (17) and (18).

Assume that ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] are such that the IR iteration starting from

(x, λ) can be completed whenever ‖x− x̄‖ ≤ ε2 and ‖λ− λ̄‖ ≤ δ2. For all k = 0, 1, 2, . . .,

if ‖xk − x̄‖ ≤ ε2 and ‖λk − λ̄‖ ≤ δ2, we define (xk+1, λk+1) = N(xk, λk). Then, there

exist ε3 ∈ (0, ε2], δ3 ∈ (0, δ2] such that, taking ‖x0 − x̄‖ ≤ ε3 and ‖λ0 − λ̄‖ ≤ ε3 we

have:

(a) The whole sequence {xk}, k = 0, 1, 2, . . . is well defined and

‖xk − x̄‖ ≤ ε2, ‖λk − λ̄‖ ≤ δ2 for all k = 0, 1, 2, . . . (23)

(b) R(xk+1, λk+1) ≤ r R(xk, λk) and R(xk, λk) ≤ rkR(x0, λ0) for all k = 0, 1, 2, . . .

17



(c) The sequence {(xk, λk)} is convergent to a critical pair (x∗, λ∗).

(d) For all k = 0, 1, 2, . . .,

‖xk − x∗‖ ≤
βrk

1 − r
R(x0, λ0) and ‖λk − λ∗‖ ≤

βrk

1 − r
R(x0, λ0), (24)

where β > 0 is the constant defined in the thesis of Theorem 2.2.

Proof. Define Φ(ε, δ) = max{R(x, λ) | ‖x−x̄‖ ≤ ε, ‖λ−λ̄‖ ≤ δ}. By the continuity of

R(x, λ) and the fact that R(x̄, λ̄) = 0, we have that limε→0,δ→0 Φ(ε, δ) = 0. Let ε3 ≤ ε2/2

and δ3 ≤ δ2/2 such that Φ(ε3, δ3) ≤ R(x0, λ0) and βΦ(ε3, δ3)/(1 − r) ≤ min{ε2, δ2}/2.

Let x0 ∈ Ω, λ0 ∈ IRm be such that ‖x0 − x̄‖ ≤ ε3, ‖λ0 − λ̄‖ ≤ δ3. Then,

ε3 +
βR(x0, λ0)

1 − r
≤ ε2 and δ3 +

βR(x0, λ0)

1 − r
≤ δ2. (25)

Let us prove by induction on k that xk, λk are well defined,

R(xk, λk) ≤ rkR(x0, λ0), (26)

‖xk − x̄‖ ≤ ε3 + βR(x0, λ0)
k−1
∑

j=0

rj, (27)

‖λk − λ̄‖ ≤ δ3 + βR(x0, λ0)
k−1
∑

j=0

rj. (28)
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For k = 0, (26), (27) and (28) are obviously true. Assume, as inductive hypothesis, that

(26), (27) and (28) hold for some k. Then, by (25), since
∑k−1

j=0 rj ≤
∑

∞

j=0 rj = 1
1−r

we

have that ‖xk − x̄‖ ≤ ε2 ≤ ε1, ‖λk − λ̄‖ ≤ δ2 ≤ δ1. Therefore, by the hypothesis of the

theorem, xk+1 and λk+1 are well defined. Then, by (19), R(xk+1, λk+1) ≤ rR(xk, λk).

So, by the inductive hypothesis (26), R(xk+1, λk+1) ≤ rk+1R(x0, λ0). Now, by The-

orem 2.2 and the inductive hypothesis, ‖xk+1 − x̄‖ ≤ ‖xk − x̄‖ + ‖xk+1 − xk‖ ≤

ε3 + βR(x0, λ0)
∑k−1

j=0 rj + βR(xk, λk) ≤ ε3 + βR(x0, λ0)
∑k−1

j=0 rj + βrkR(x0, λ0) ≤ ε3 +

βR(x0, λ0)
∑k

j=0 rj. Therefore, (27) holds replacing k by k + 1. Analogously, we prove

that (28) holds replacing k by k + 1. So far, the inductive proof is finished. Thus, the

sequence is well defined,

‖xk − x̄‖ ≤ ε3 + βR(x0, λ0)
k−1
∑

j=0

rj ≤ ε3 +
βR(x0, λ0)

1 − r
≤ ε2 (29)

and

‖λk − λ̄‖ ≤ δ3 + βR(x0, λ0)
k−1
∑

j=0

rj ≤ δ3 +
βR(x0, λ0)

1 − r
≤ δ2 (30)

for all k = 0, 1, 2, . . . Thus, (a) and (b) are proved.
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Now, by Theorem 2.2 and (b), for all k = 0, 1, 2, . . . we have that ‖xk+1 − xk‖ ≤

βR(xk, λk) ≤ βrkR(x0, λ0) and ‖λk+1 − λk‖ ≤ βR(xk, λk) ≤ βrkR(x0, λ0). This means

that for all k, j = 0, 1, 2, . . ., ‖xk+j −xk‖ ≤ β(rk + . . .+rk+j−1)R(x0, λ0) ≤
βrk

1−r
R(x0, λ0)

and ‖λk+j − λk‖ ≤ β(rk + . . . + rk+j−1)R(x0, λ0) ≤ βrk

1−r
R(x0, λ0). Therefore, {xk}

and {λk} are Cauchy sequences, thus convergent to x∗ ∈ Ω and λ∗ ∈ IRm respec-

tively. Taking limits, we have the error estimates ‖xk − x∗‖ ≤ βrk

1−r
R(x0, λ0) and

‖λk − λ∗‖ ≤ βrk

1−r
R(x0, λ0). From R(xk, λk) ≤ rkR(x0, λ0) and by the continuity of

R we obtain that R(x∗, λ∗) = 0. Therefore, the theorem is proved. 2

Remark 2.1. We used the fact that ‖ · ‖ is the Euclidian norm in the theorems above

because the properties of the projection operator P are part of the proving arguments.

In the particular case in which Ω = IRn the projection P is the identity. In this case, it

is easy to see that the results hold for an arbitrary norm.

Theorem 2.4. In addition to the hypotheses of Theorem 2.3, assume that the parame-
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ters θ and η depend on k and tend to zero. Then, R(xk, λk) tends to zero Q-superlinearly

and (xk, λk) tends to (x∗, λ∗) R-superlinearly.

Proof. The fact that R(xk, λk) tends to zero Q-superlinearly follows from Part (b) of

Theorem 2.3. By (20) and (21) ‖xk+1 − xk‖ + ‖λk+1 − λk‖ is bounded by a sequence

that tends superlinearly to zero. This implies that (xk+1 − x∗, λk+1 − λ∗) tends R-

superlinearly to zero. 2

Theorem 2.5. In addition to the hypotheses of Theorem 2.3, assume that θ = η = 0.

Then, R(xk, λk) converges Q-quadratically to zero and the convergence of (xk, λk) to

(x∗, λ∗) is R-quadratic.

Proof. From (11) and (12), R(xk, λk) tends to zero Q-quadratically. By (20) and (21)

‖xk+1 − xk‖ + ‖λk+1 − λk‖ is bounded by a sequence that tends quadratically to zero.

This implies that (xk+1 − x∗, λk+1 − λ∗) tends R-quadratically to zero. 2
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Remark 2.2. Although somewhat cumbersome, it is not difficult to prove that, under

some classical assumptions, the hypothesis of Theorem 2.3 holds. The more simple case

is when x̄ is an interior point of Ω. In this case the critical pair x̄, λ̄ is a solution of the

nonlinear system

h(x) = 0, ∇f(x) + ∇h(x)λ = 0.

If the Jacobian of this nonlinear system is nonsingular at (x̄, λ̄), Brent’s generalized

method ( Ref. 20,21) defines an admissible iteration for constants that only depend on

(x̄, λ̄). The basic properties of this method guarantee that the iteration is well defined

in a neighborhood of the critical pair and that the conditions (3)–(7) are satisfied.

The case in which x̄ is not interior can be reduced to the interior case after some

manipulations assuming nonsingularity of a reduced nonlinear system.
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3 Implementation

From now on, we define Ω = {x ∈ IRn | ℓ ≤ x ≤ u}. Algorithm 3.1 is an implemen-

tation of (3)–(7). Suppose that the initial pair (x0, λ0) is given, x0 ∈ Ω, as well as the

algorithmic parameters θ ∈ [0, 1), η ∈ [0, 1), K1, K2, K̃3 > 0 and ε ≥ 0. The algorithm

describes the steps to obtain (xk+1, λk+1) starting from (xk, λk).

Algorithm 3.1.

Step 1. Feasibility Phase. Solve, approximately, the minimization problem

miny ‖h(y)‖2 s.t. ‖y − xk‖∞ ≤ K1‖h(xk)‖, y ∈ Ω. (31)

The approximate solution yk is asked to satisfy

‖h(yk)‖ ≤ max{ε, θ‖h(xk)‖}. (32)

If we are not able to find such an approximate solution, stop the execution declaring

“Failure at the Feasibility Phase”.
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Step 2. Test Solution. If ‖h(yk)‖∞ ≤ ε and ‖G(yk, λk)‖∞ ≤ ε, terminate the execution

of the algorithm. The pair (yk, λk) is an approximate solution of the problem (exact if

ε = 0).

Step 3. Optimality Phase. Obtain an approximate solution of

minz L(z, λk) s.t. h′(yk)(z − yk) = 0, ‖z − yk‖∞ ≤ K̃3 max{1, ‖yk‖∞}, z ∈ Ω. (33)

Let (λk+1 − λk) ∈ IRm be the vector of Lagrange multipliers associated to the approxi-

mate solution xk+1 of (33). This approximate solution is asked to satisfy

‖h′(yk)(xk+1 − yk)‖ ≤ max{ε, K2‖G(yk, λk)‖
2} (34)

and

‖P̃ [xk+1 −∇L(xk+1, λk)−∇h(yk)(λk+1 − λk)]− xk+1‖ ≤ max{ε, η‖G(yk, λk)‖}, (35)

where P̃ is de Euclidian projection operator onto the box Ω ∩ {z ∈ IRn | ‖z − yk‖∞ ≤

K̃3 max{1, ‖yk‖∞}. If we are not able to satisfy these requirements we declare “Failure
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at the Optimality Phase”.

Approximate solutions that satisfy (34)–(35) exist since the feasible set is nonempty

and compact. Therefore, the diagnostic of Failure at the Optimality Phase can only

represent lack of success of the algorithm used to solve the linearly constrained opti-

mization problem (33). This failure never occurred in our experiments. The situation

is somewhat different in the feasibility phase, because in this case it is possible to incor-

porate the theoretically required steplength control in the definition of the optimization

problem (31). In this case, failure might be a characteristic of the problem. For exam-

ple, “Failure at the Feasibility Phase” necessarily occurs if xk is a global minimizer of

(31) where h(xk) 6= 0.

It is well known by practitioners that, in the process of solving nonlinear systems,

locally convergent methods can be improved by the simple device of maintaining the

distance between consecutive iterates under control. See Ref. 22. This is the role of

the constraint ‖z − yk‖∞ ≤ K̃3 max{1, ‖yk‖∞} in (33).
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We used Gencan ( Ref. 23) for solving (31) and Algencan, a straightforward

Augmented Lagrangian algorithm based on Gencan for solving (33). Very likely, these

are not the best choices from the point of view of efficiency, but they serve for the main

questions that we want to be answered by the numerical experiments, which are related

with robustness. Nevertheless, we would like to mention that in recent works ( Ref.

24, 25) excellent numerical behavior of Augmented Lagrangian algorithms applied to

linearly constrained minimization has been reported.

4 Numerical Experiments

The question that we want to answer by means of numerical experiments may be for-

mulated as follows: How bad is the local Inexact-Restoration method when compared

to globally convergent nonlinear-programming algorithms? The key point is, of course,

robustness. The comparison between local and global methods in nonlinear optimiza-

tion is, sometimes, surprising. As far as in 1979, Moré and Cosnard ( Ref. 22) published
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a numerical study where Brent’s method for solving nonlinear systems ( Ref. 26, 27)

appeared to be better than globally convergent nonlinear solvers when a suitable con-

trol for the steplength was used. The analogy between the local Inexact-Restoration

method and the generalized Brown-Brent methods ( Ref. 20) as well as the natural way

in which steplength controls appear in our implementation increases the motivation for

the numerical study.

We selected all the nonlinearly constrained problems with quadratic or nonlinear

objective function from the Cute collection ( Ref. 28). Implementation details are

given in Ref. 29. A comparison against Lancelot ( Ref. 30) is given in Table 1

of Ref. 29. Surprisingly, Algorithm 3.1 was, at least, as robust as Lancelot for the

set of problems considered.
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5 Conclusions

Inexact-Restoration algorithms for nonlinear programming are based on inexact achieve-

ment of feasibility at each iteration followed by inexact minimization of the Lagrangian

on a linear approximation of the constraints. Different methods can be used at both

phases of the IR algorithm. In this paper we proved a local convergence result for an

Inexact-Restoration algorithm. Essentially, the theorem says that if the IR iteration is

well defined in a neighborhood of the solution, then linear convergence takes places to

some solution of the KKT system. Under additional assumptions the convergence is

superlinear or quadratic.

Based on the fact that, in Newtonian methods for nonlinear systems of equations,

practical convergence can be dramatically improved by means of simple steplength

control modifications, we proposed a modification of the optimality phase of IR that

implicitly maintains the steplength under control. The proposed modification resembles

a trust-region constraint added to the natural constraints of the feasibility phase. How-
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ever, this trust-region constraint is fixed, and not reduced according to merit-function

decrease as in Ref. 1.

Numerical experiments showed that the IR algorithm with this simple modification

is at least as robust as a well established globally convergent nonlinear programming

method in a set of problems taken from the Cute collection.

The conclusion of this work is not that one should abandon the project of defining

algorithms with the best possible convergence theories, including global convergence,

but to put in evidence what kind of practical effects one should expect from globally

convergent methods (with or without merit functions). It seems that one should be

tolerant with local methods that use a lot of information about the true problem, as

Inexact Restoration does, and that the main effect of global modifications should be

to maintain the steplength under control. Probably, this reinforces the importance

of working with filter strategies and with algorithms that do not force merit function

decrease at every iteration.

The results of this paper can be straightforwardly extended to the resolution of
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KKT systems of type:

h(x) = 0, x ∈ Ω, P (x − F (x) −∇h(x)λ) − x = 0.

Essentially, the modifications in the proof required to consider these systems consist

in the judicious replacement of ∇f(x) by F (x) in the proper places. This opens the

path for the application of Inexact Restoration to variational inequalities, equilibrium

problems and other extensions of constrained optimization.
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