
Local Convergence of an Inexact-Restoration Method and

Numerical Experiments ∗

E. G. Birgin † J. M. Mart́ınez ‡

April 29, 2005.

Abstract

Local convergence of an inexact-restoration method for nonlinear programming is
proved. Numerical experiments are performed with the objective of evaluating the be-
havior of the purely local method against a globally convergent nonlinear-programming
algorithm.

Key words: Inexact-restoration methods, nonlinear programming, local convergence,
numerical experiments.

1 Introduction

We address the nonlinear programming problem:

min f(x)

s.t. h(x) = 0, x ∈ Ω, (1)

where f : IRn → IR, h : IRn → IRm are smooth functions and Ω ⊂ IRn is a (generally
simple) closed and convex set.

Inexact restoration (IR) methods (see [1, 2, 3]) are modern versions of the classical
feasible methods ([4, 5, 6, 7, 8, 9, 10, 11, 12]) for nonlinear programming. The main
iteration of an IR algorithm consists of two phases: in the restoration phase, infeasibility is
reduced and in the optimality phase a Lagrangian function is approximately minimized on
an appropriate linear approximation of the constraints. Global convergence is obtained in
[1] by means of a trust-region strategy where the trust balls are centered, not in the current

∗This work was supported by PRONEX-CNPq/FAPERJ Grant E-26/171.164/2003 - APQ1, FAPESP
Grants 03/09169-6 and 01/04597-4, and CNPq. The authors are indebted to Juliano B. Francisco and
Yalcin Kaya for their careful reading of the first draft of this paper.

†Associate Professor, Department of Computer Science, Institute of Mathematics and Statistics, Uni-
versity of São Paulo, São Paulo, SP, Brazil.

‡Professor, Department of Applied Mathematics, Institute of Mathematics, Statistics and Scientific
Computing, University of Campinas, Campinas, SP, Brazil.

1

point, as in several sequential quadratic programming algorithms (see, for example, [13])
but in the inexactly restored point. The merit function used in [1] is a sharp Lagrangian
as defined in [14], Example 11.58.

Merit functions are useful tools in all branches of optimization. However, it has been
observed that in many practical situations the performance of optimization algorithms
that do not impose merit-function decrease is better than the performance of algorithms
whose global convergence is based on merit functions. The reason is that merit-function
decrease imposes a restrictive path towards the limit point whereas, sometimes, the purely
local algorithm climbs over merit-function valleys in a very efficient way.

In unconstrained optimization, nonmonotone strategies, where decrease of the merit
function is not required at every iteration ([15]), became a popular tool in the last decade.

In nonlinear programming, the more consistent strategy for globalizing algorithms
without the use of merit functions seems to be the filter technique introduced by Fletcher
and Leyffer ([16]). Gonzaga, Karas and Vanti ([17]) applied the filter strategy to an
algorithm that resembles Inexact Restoration. Previous attempts of eliminating merit
functions as globalization tools for semifeasible methods go back to [18].

It is not difficult to modify poor algorithms in order to obtain theoretically globally
convergent methods. This can be made using both monotone or nonmonotone strategies.
In general, the modification of a poor local method leads to a poor global method. A
good globally convergent method is usually good even before the global modification and,
sometimes, the purely local version is better than the global one. One of the key features
that allow one to predict the practical behavior of an optimization algorithm is the presence
of a local convergence theorem with order of convergence. In general, the existence of such
a theorem indicates that the model used at each iteration to mimic the original problem is
adequate. (Other evidences of this adequacy exist but are less susceptible of mathematical
formalization.) This was our motivation for developing a local convergence theory for the
Inexact Restoration algorithm. Since our main objective is to explain and test the behavior
of methods for solving practical problems, the numerical experiments that complete this
paper are directed to evaluate the efficiency and robustness of the purely local algorithm,
against globally convergent ones.

The local algorithm and its convergence theory is presented in Section 2. In Section 3
we describe the implementation. Numerical experiments are shown in Section 4 and
conclusions are given in Section 5.

2 Local Convergence of Inexact Restoration

In this section we assume that Ω ⊂ IRn is closed and convex. We also assume that
f : IRn → IR and h : IRn → IRm admit continuous first derivatives on an open set that
contains Ω. The optimization problem to be considered is:

min f(x) s.t. h(x) = 0, x ∈ Ω. (2)

For all x ∈ Ω, λ ∈ IRm, we define the Lagrangian function L(x, λ) as

L(x, λ) = f(x) + 〈h(x), λ〉.

2

We denote ∇h(x) = (∇h1(x), . . . ,∇hm(x)) and h′(x) = ∇h(x)T . Therefore,

∇L(x, λ) = ∇f(x) + ∇h(x)λ.

The symbol ‖ · ‖ will always denote the Euclidian norm along this paper. Let P be the
projection operator on Ω with respect to ‖ · ‖. We say that (x∗, λ∗) ∈ Ω× IRm is a critical

pair of the optimization problem (2) if

h(x∗) = 0 (3)

and
P (x∗ −∇L(x∗, λ∗)) − x∗ = 0. (4)

Under suitable constraint qualifications every local minimizer of (2) defines, with its La-
grange multipliers, a critical pair. (See, for example, [19].) In this section we will analyze a
locally convergent algorithm for finding critical pairs, without any mention to the origin of
the nonlinear system (3)–(4). We will address the resolution of this nonsmooth nonlinear
system of equations using a variation of the inexact restoration (IR) algorithm introduced
in [1]. We denote

G(x, λ) = P (x −∇L(x, λ)) − x ∀ x ∈ Ω, λ ∈ IRm.

Therefore, ‖h(x)‖ is a measure of the feasibility of x ∈ Ω and ‖G(x, λ)‖ measures the
“optimality” of the pair (x, λ). Given the current iterate x ∈ Ω, the idea of IR is to find,
first, a “more feasible” point y ∈ Ω, and then, to find a “more optimal” point z such that
z ∈ Ω and

h′(y)(z − y) = 0. (5)

(Condition (5) will be relaxed in (8).)
The inexact restoration iteration depends on five algorithmic parameters θ ∈ [0, 1), η ∈

[0, 1) and K1,K2,K3 > 0. The first two indicate the amount of improvement that we
require in the feasibility phase and the optimality phase, respectively. The role of K1 and
K3 is to maintain the new iterate reasonably close to the current one. (See [1, 3] for
details.) The constant K2 gives a tolerance for the linear infeasibility of the optimality-
phase minimizer.

Given x ∈ Ω and λ ∈ IRm, we say that an IR iteration starting from (x, λ) can be
completed (or is well defined) if we can compute y, z ∈ Ω, µ ∈ IRm such that:

‖h(y)‖ ≤ θ‖h(x)‖, (6)

‖y − x‖ ≤ K1‖h(x)‖, (7)

‖h′(y)(z − y)‖ ≤ K2‖G(y, λ)‖2, (8)

‖P (z −∇L(z, λ) −∇h(y)(µ − λ)) − z‖ ≤ η‖G(y, λ)‖ (9)

and
‖z − y‖ + ‖µ − λ‖ ≤ K3‖G(y, λ)‖. (10)

3

The motivation for the condition (9) comes from considering that, in the optimality
phase, one generally minimizes the Lagrangian L(z, λ) subject to z ∈ Ω and h′(y)(z−y) =
0. Writing the optimality conditions for this subproblem and defining (µ−λ) as the vector
of Lagrange multipliers corresponding to these conditions, we obtain

P (z −∇L(z, λ) −∇h(y)(µ − λ)) − z = 0.

So, inequality (9) is an inexact version of this condition. The stability conditions (7) and
(10) express the necessity of staying close to the current point if this point is close to
feasibility or optimality respectively.

Given the pair (x, λ) ∈ Ω× IRm, if the IR iteration can be completed giving (z, µ), we
denote

N[θ,η,K1,K2,K3](x, λ) = (z, µ).

For simplicity, we will always denote

N(x, λ) = N[θ,η,K1,K2,K3](x, λ) = (z, µ).

Throughout this section we will assume that ∇f and ∇h are Lipschitz-continuous.
To simplify the notation, and without loss of generality, we assume that, for the same
Lipschitz constant γ and for all x,w ∈ Ω, i = 1, . . . ,m,

‖∇f(x) −∇f(w)‖ ≤ γ‖x − w‖, ‖∇hi(x) −∇hi(w)‖ ≤ γ‖x − w‖, (11)

‖∇h(x) −∇h(w)‖ ≤ γ‖x − w‖, (12)

and
‖h(w) − h(x) − h′(x)(w − x)‖ ≤ γ‖w − x‖2. (13)

We define the following constants, that will be used along this section:

c = max{K1,K2,K3},

c1 = 2c + cγ,

c2 = cγ,

c3 = c + 2c2 + c2γ,

c4 = c2γ + c.

Theorem 2.1. Assume that the IR iteration starting from (x, λ) can be completed and
(z, µ) = N(x, λ). Then,

‖h(z)‖ ≤ θ‖h(x)‖ + c4[‖G(x, λ)‖ + (c1 + c2‖λ‖)‖h(x)‖]2 , (14)

‖G(z, µ)‖ ≤
η[(c1 + c2‖λ‖)‖h(x)‖ + ‖G(x, λ)‖] + c4[‖G(x, λ)‖ + (c1 + c2‖λ‖)‖h(x)‖]2 ,

(15)

‖z − x‖ ≤ (c3 + c4‖λ‖)‖h(x)‖ + c‖G(x, λ)‖ (16)

4

and
‖µ − λ‖ ≤ (c3 + c4‖λ‖)‖h(x)‖ + c‖G(x, λ)‖. (17)

Proof. By (13),
‖h(z) − h(y)‖ ≤ ‖h′(y)(z − y)‖ + γ‖z − y‖2.

So, by (6), (8) and (10),

‖h(z)‖ ≤ θ‖h(x)‖ + (γc2 + c)‖G(y, λ)‖2 . (18)

Now, by (7) and (11)–(13),

‖G(y, λ) − G(x, λ)‖ = ‖P (y −∇L(y, λ)) − y − (P (x −∇L(x, λ)) − x)‖

≤ ‖y − x‖ + ‖P (y −∇L(y, λ)) − P (x −∇L(x, λ))‖

≤ ‖y − x‖ + ‖y − x + ∇L(x, λ) −∇L(y, λ)‖

≤ 2‖y − x‖ + ‖∇f(y) −∇f(x)‖ + ‖[∇h(x) −∇h(y)]λ‖

≤ 2c‖h(x)‖ + γ‖y − x‖ + γ‖y − x‖‖λ‖

≤ (2c + cγ + cγ‖λ‖)‖h(x)‖ = (c1 + c2‖λ‖)‖h(x)‖.

Therefore,
‖G(y, λ)‖ ≤ ‖G(x, λ)‖ + (c1 + c2‖λ‖)‖h(x)‖. (19)

So, by (18) and (19),

‖h(z)‖ ≤ θ‖h(x)‖ + (γc2 + c)[‖G(x, λ)‖ + (c1 + c2‖λ‖)‖h(x)‖]2. (20)

So, (14) is proved.
Now,

‖P (z −∇L(z, µ)) − z‖ = ‖P (z −∇f(z) −∇h(z)µ) − z‖

= ‖P [z −∇f(z) −∇h(z)(µ − λ) + ∇h(z)(µ − λ) −∇h(z)µ] − z‖

= ‖P [z −∇f(z) −∇h(z)λ −∇h(z)(µ − λ)] − z‖

= ‖P [z −∇L(z, λ) −∇h(y)(µ − λ) + (∇h(y) −∇h(z))(µ − λ)] − z‖.

Using the property

‖P (v + w) − z‖ ≤ ‖P (v + w) − P (v)‖ + ‖P (v) − z‖ ≤ ‖w‖ + ‖P (v) − z‖

with v = z−∇L(z, λ)−∇h(y)(µ−λ) and w = (∇h(y)−∇h(z))(µ−λ), by (9), (11)–(13)
and (10), we get:

‖P (z −∇L(z, µ)) − z‖

≤ ‖P [z −∇L(z, λ) −∇h(y)(µ − λ)] − z‖ + ‖∇h(y) −∇h(z)‖‖µ − λ‖

≤ η‖G(y, λ)‖ + γ‖y − z‖‖µ − λ‖

≤ η‖G(y, λ)‖ + γ(‖y − z‖ + ‖µ − λ‖)2

5

≤ η‖G(y, λ)‖ + γc2‖G(y, λ)‖2.

So, by (19),

‖G(z, µ)‖ ≤
η[‖G(x, λ)‖ + (c1 + c2‖λ‖)‖h(x)‖] + γc2[‖G(x, λ)‖ + (c1 + c2‖λ‖)‖h(x)‖]2 .

(21)

Therefore, (15) is also proved.
Now, by (7), (10) and (19),

‖z − x‖ ≤ ‖y − x‖ + ‖z − y‖ ≤ c‖h(x)‖ + c‖G(y, λ)‖

≤ c‖h(x)‖ + c[‖G(x, λ)‖ + (2c2 + c2γ + c2γ‖λ‖)‖h(x)‖]

= (c + 2c2 + c2γ + c2γ‖λ‖)‖h(x)‖ + c‖G(x, λ)‖.

So, (16) is proved.
Moreover, by (10) and (19),

‖µ − λ‖ ≤ c‖G(y, λ)‖

≤ c‖G(x, λ)‖ + (2c2 + c2γ + c2γ‖λ‖)‖h(x)‖.

Thus, (17) is also proved. 2

From now on we assume that (x̄, λ̄) ∈ Ω × IRm is a critical pair. That is,

h(x̄) = 0

and
G(x̄, λ̄) = 0.

We also define
M = 2‖λ̄‖ + 1,

c5 = c1 + c2M,

and H ∈ IR2×2 by

H =

(

θ 0
c5 η

)

.

The eigenvalues of H are θ and η. Since both are strictly smaller than 1, given an arbitrarily
small ε > 0, there exists a vector norm ‖ · ‖H on IR2 such that

‖H‖H = ρ ≤ max{θ, η} + ε < 1. (22)

Moreover, this norm is monotone in the sense that

0 ≤ v ≤ w ⇒ ‖v‖H ≤ ‖w‖H .

From now on, we fix a “contraction” parameter r such that

ρ < r < 1. (23)

6

Theorem 2.2. There exist ε1 > 0, δ1 > 0, β > 0 such that, if r is given by (23),

‖x − x̄‖ ≤ ε1, ‖λ − λ̄‖ ≤ δ1,

and the IR iteration starting from (x, λ) is well defined, with

(z, µ) = N(x, λ),

then
‖λ‖ ≤ M,

∥

∥

∥

∥

(

‖h(z)‖
‖G(z, µ)‖

) ∥

∥

∥

∥

H

≤ r

∥

∥

∥

∥

(

‖h(x)‖
‖G(x, λ)‖

) ∥

∥

∥

∥

H

, (24)

‖z − x‖ ≤ β

∥

∥

∥

∥

(

‖h(x)‖
‖G(x, λ)‖

)
∥

∥

∥

∥

H

, (25)

and

‖µ − λ‖ ≤ β

∥

∥

∥

∥

(

‖h(x)‖
‖G(x, λ)‖

) ∥

∥

∥

∥

H

. (26)

Proof. Take δ0 = ‖λ̄‖ + 1. Then,

‖λ − λ̄‖ ≤ δ0 ⇒ ‖λ‖ ≤ ‖λ̄‖ + δ0 ⇒ ‖λ‖ ≤ M.

By (14) and (15), if ‖λ − λ̄‖ ≤ δ0 and the iteration is well defined,

‖h(z)‖ ≤ θ‖h(x)‖ + c4[‖G(x, λ)‖ + (c1 + c2M)‖h(x)‖]2,

and

‖G(z, µ)‖ ≤ (c1 + c2M)‖h(x)‖ + η‖G(x, λ)‖ + c4[‖G(x, λ)‖ + (c1 + c2M)‖h(x)‖]2.

So, since the norm ‖ · ‖H is monotone,

∥

∥

∥

∥

(

‖h(z)‖
‖G(z, µ)‖

)
∥

∥

∥

∥

H

≤

∥

∥

∥

∥

H

(

‖h(x)‖
‖G(x, λ)‖

) ∥

∥

∥

∥

H

+ c4

∥

∥

∥

∥

(

[‖G(x, λ)‖ + (c1 + c2M)‖h(x)‖]2

[‖G(x, λ)‖ + (c1 + c2M)‖h(x)‖]2

) ∥

∥

∥

∥

H

≤ ρ

∥

∥

∥

∥

(

‖h(x)‖
‖G(x, λ)‖

) ∥

∥

∥

∥

H

+ c4[‖G(x, λ)‖ + (c1 + c2M)‖h(x)‖]2 ×

∥

∥

∥

∥

(

1
1

) ∥

∥

∥

∥

H

.

Now, by the equivalence of norms in IR2 there exists ᾱ > 0 such that, for all a, b > 0,

(c1 + c2M)a + b ≤ ᾱ

∥

∥

∥

∥

(

a
b

) ∥

∥

∥

∥

H

,

so,

∥

∥

∥

∥

(

‖h(z)‖
‖G(z, µ)‖

) ∥

∥

∥

∥

H

≤ ρ

∥

∥

∥

∥

(

‖h(x)‖
‖G(x, λ)‖

) ∥

∥

∥

∥

H

+ c4ᾱ
2

∥

∥

∥

∥

(

‖h(x)‖
‖G(x, λ)‖

) ∥

∥

∥

∥

2

H

∥

∥

∥

∥

(

1
1

) ∥

∥

∥

∥

H

.

7

Since ‖h(x)‖ and ‖G(x, λ)‖ are continuous and vanish at x̄, λ̄, taking δ1 and ε1 small
enough, with δ1 ≤ δ0 we obtain (24).

Now, let us prove (25) and (26).
By (16) and (17), if ‖x − x̄‖ ≤ ε1, ‖λ − λ̄‖ ≤ δ1 and the iteration is well defined,

‖z − x‖ ≤ (c3 + c4M)‖h(x)‖ + c‖G(x, λ)‖ (27)

and
‖µ − λ‖ ≤ (c3 + c4M)‖h(x)‖ + c‖G(x, λ)‖. (28)

But, by the equivalence of norms in IR2, there exists β > 0 such that, for all a, b > 0,

(c3 + c4M)a + cb ≤ β

∥

∥

∥

∥

(

a
b

)
∥

∥

∥

∥

H

.

Therefore, taking a = ‖h(x)‖ and b = ‖G(x, λ)‖, (25) and (26) follow from (27) and (28).
2

From now on, for all x ∈ Ω such that ‖x − x̄‖ ≤ ε1 and ‖λ − λ̄‖ ≤ δ1, we define:

R(x, λ) =

∥

∥

∥

∥

(

‖h(x)‖
‖G(x, λ)‖

) ∥

∥

∥

∥

H

.

In the next theorem we prove that, if (x0, λ0) is close enough to the critical pair (x̄, λ̄),
the sequence generated by (xk+1, λk+1) = N(xk, λk) converges to a critical pair. Unique-
ness of the critical pair is not assumed. Convergence at a linear rate can take place to a
different critical pair than (x̄, λ̄).

Theorem 2.3. Let (x̄, λ̄) be a critical pair. Let ρ and r be given by (22) and (23).
Assume that ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] are such that the IR iteration starting from (x, λ)
can be completed whenever ‖x − x̄‖ ≤ ε2 and ‖λ − λ̄‖ ≤ δ2.

For all k = 0, 1, 2, . . ., if ‖xk − x̄‖ ≤ ε2 and ‖λk − λ̄‖ ≤ δ2, we define

(xk+1, λk+1) = N(xk, λk).

Then, there exist ε3 ∈ (0, ε2], δ3 ∈ (0, δ2] such that, taking ‖x0−x̄‖ ≤ ε3 and ‖λ0−λ̄‖ ≤
ε3 we have:

(a) The whole sequence {xk}, k = 0, 1, 2, . . . is well defined and

‖xk − x̄‖ ≤ ε2, ‖λk − λ̄‖ ≤ δ2 (29)

for all k = 0, 1, 2, . . .;
(b) R(xk+1, λk+1) ≤ r R(xk, λk) and R(xk, λk) ≤ rkR(x0, λ0) for all k = 0, 1, 2, . . .
(c) The sequence {(xk, λk)} is convergent to a critical pair (x∗, λ∗).
(d) For all k = 0, 1, 2, . . .,

‖xk − x∗‖ ≤
βrk

1 − r
R(x0, λ0) and ‖λk − λ∗‖ ≤

βrk

1 − r
R(x0, λ0), (30)

8

where β > 0 is the constant defined in the thesis of Theorem 2.2.

Proof. Define

Φ(ε, δ) = max{R(x, λ) | ‖x − x̄‖ ≤ ε, ‖λ − λ̄‖ ≤ δ}.

By the continuity of R(x, λ) and the fact that R(x̄, λ̄) = 0,

lim
ε→0,δ→0

Φ(ε, δ) = 0.

Let ε3 ≤ ε2/2 and δ3 ≤ δ2/2 such that

Φ(ε3, δ3) ≤ R(x0, λ0)

and
βΦ(ε3, δ3)

1 − r
≤

min{ε2, δ2}

2
.

Let x0 ∈ Ω, λ0 ∈ IRm be such that ‖x0 − x̄‖ ≤ ε3, ‖λ0 − λ̄‖ ≤ δ3. Then,

ε3 +
βR(x0, λ0)

1 − r
≤ ε2 (31)

and

δ3 +
βR(x0, λ0)

1 − r
≤ δ2. (32)

Let us prove by induction on k that xk, λk are well defined,

R(xk, λk) ≤ rkR(x0, λ0), (33)

‖xk − x̄‖ ≤ ε3 + βR(x0, λ0)
k−1
∑

j=0

rj, (34)

‖λk − λ̄‖ ≤ δ3 + βR(x0, λ0)
k−1
∑

j=0

rj. (35)

For k = 0, (33), (34) and (35) are obviously true. Assume, as inductive hypothesis, that
(33), (34) and (35) hold for some k. Then, by (31) and (32), since

∑k−1
j=0 rj ≤

∑∞
j=0 rj = 1

1−r

we have that
‖xk − x̄‖ ≤ ε2 ≤ ε1, ‖λk − λ̄‖ ≤ δ2 ≤ δ1.

Therefore, by the hypothesis of the theorem, xk+1 and λk+1 are well defined. Then, by
(24),

R(xk+1, λk+1) ≤ rR(xk, λk).

So, by the inductive hypothesis (33),

R(xk+1, λk+1) ≤ rk+1R(x0, λ0).

9

Now, by Theorem 2.2 and the inductive hypothesis,

‖xk+1 − x̄‖ ≤ ‖xk − x̄‖ + ‖xk+1 − xk‖

≤ ε3 + βR(x0, λ0)
k−1
∑

j=0

rj + βR(xk, λk)

≤ ε3 + βR(x0, λ0)
k−1
∑

j=0

rj + βrkR(x0, λ0)

≤ ε3 + βR(x0, λ0)
k

∑

j=0

rj.

Therefore, (34) holds replacing k by k+1. Analogously, we prove that (35) holds replacing
k by k + 1.

So far, the inductive proof is finished. Thus, the sequence is well defined,

‖xk − x̄‖ ≤ ε3 + βR(x0, λ0)
k−1
∑

j=0

rj ≤ ε3 +
βR(x0, λ0)

1 − r
≤ ε2 (36)

and

‖λk − λ̄‖ ≤ δ3 + βR(x0, λ0)
k−1
∑

j=0

rj ≤ δ3 +
βR(x0, λ0)

1 − r
≤ δ2 (37)

for all k = 0, 1, 2, . . . Thus, (a) and (b) are proved.
Now, by Theorem 2.2 and (b), for all k = 0, 1, 2, . . . we have that

‖xk+1 − xk‖ ≤ βR(xk, λk) ≤ βrkR(x0, λ0)

and
‖λk+1 − λk‖ ≤ βR(xk, λk) ≤ βrkR(x0, λ0).

This means that for all k, j = 0, 1, 2, . . .,

‖xk+j − xk‖ ≤ β(rk + . . . + rk+j−1)R(x0, λ0) ≤
βrk

1 − r
R(x0, λ0)

and

‖λk+j − λk‖ ≤ β(rk + . . . + rk+j−1)R(x0, λ0) ≤
βrk

1 − r
R(x0, λ0).

Therefore, {xk} and {λk} are Cauchy sequences, thus convergent to x∗ ∈ Ω and λ∗ ∈ IRm

respectively. Taking limits, we have the error estimates

‖xk − x∗‖ ≤
βrk

1 − r
R(x0, λ0)

and

‖λk − λ∗‖ ≤
βrk

1 − r
R(x0, λ0).

10

From R(xk, λk) ≤ rkR(x0, λ0) and by the continuity of R we obtain that R(x∗, λ∗) = 0.
Therefore, the theorem is proved. 2

Remark 2.1. We used the fact that ‖ · ‖ is the Euclidian norm in the theorems above
because the properties of the projection operator P are part of the proving arguments. In
the particular case in which Ω = IRn the projection P is the identity. In this case, it is
easy to see that the results hold for an arbitrary norm.

Theorem 2.4. In addition to the hypotheses of Theorem 2.3, assume that the parameters
θ and η depend on k and tend to zero. Then, R(xk, λk) tends to zero Q-superlinearly and
(xk, λk) tends to (x∗, λ∗) R-superlinearly.

Proof. The fact that R(xk, λk) tends to zero Q-superlinearly follows from Part (b) of The-
orem 2.3. By (25) and (26) ‖xk+1−xk‖+‖λk+1−λk‖ is bounded by a sequence that tends
superlinearly to zero. This implies that (‖xk − x∗‖, ‖λk+1 − λ∗‖) tends R-superlinearly to
zero. 2

Theorem 2.5. In addition to the hypotheses of Theorem 2.3, assume that θ = η = 0.
Then, R(xk, λk) converges Q-quadratically to zero and the convergence of (xk, λk) to
(x∗, λ∗) is R-quadratic.

Proof. From (14) and (15), R(xk, λk) tends to zero Q-quadratically. By (25) and (26)
‖xk+1−xk‖+‖λk+1−λk‖ is bounded by a sequence that tends quadratically to zero. This
implies that (xk+1 − x∗, λk+1 − λ∗) tends R-quadratically to zero. 2

Remark 2.2. Although somewhat cumbersome, it is not difficult to prove that, under
some classical assumptions, the hypothesis of Theorem 2.3 holds. The more simple case
is when x̄ is an interior point of Ω. In this case the critical pair x̄, λ̄ is a solution of the
nonlinear system

h(x) = 0

and
∇f(x) + ∇h(x)λ = 0.

If the Jacobian of this nonlinear system is nonsingular at (x̄, λ̄), Brent’s generalized method
([20, 21]) defines an admissible iteration for constants that only depend on (x̄, λ̄). The basic
properties of this method guarantee that the iteration is well defined in a neighborhood
of the critical pair and that the conditions (6)–(10) are satisfied.

The case in which x̄ is not interior can be reduced to the interior case after some
manipulations assuming nonsingularity of a reduced nonlinear system.

3 Implementation

From now on, we define
Ω = {x ∈ IRn | ℓ ≤ x ≤ u}.

11

Algorithm 3.1 is an implementation of (6)–(10). Suppose that the initial pair (x0, λ0)
is given, x0 ∈ Ω, as well as the algorithmic parameters θ ∈ [0, 1), η ∈ [0, 1), K1,K2, K̃3 > 0
and ε ≥ 0. The algorithm describes the steps to obtain (xk+1, λk+1) starting from (xk, λk).

Algorithm 3.1.

Step 1. Feasibility Phase. Solve, approximately, the minimization problem

miny ‖h(y)‖2

s.t. ‖y − xk‖∞ ≤ K1‖h(xk)‖,
y ∈ Ω.

(38)

The approximate solution yk is asked to satisfy

‖h(yk)‖ ≤ max{ε, θ‖h(xk)‖}. (39)

If we are not able to find such an approximate solution, stop the execution declaring
“Failure at the Feasibility Phase”.

Step 2. Test Solution. If ‖h(yk)‖∞ ≤ ε and ‖G(yk, λk)‖∞ ≤ ε, terminate the execution of
the algorithm. The pair (yk, λk) is an approximate solution of the problem (exact if ε = 0).

Step 3. Optimality Phase. Obtain an approximate solution of

minz L(z, λk)
s.t. h′(yk)(z − yk) = 0,

‖z − yk‖∞ ≤ K̃3 max{1, ‖yk‖∞},
z ∈ Ω.

(40)

Let (λk+1 − λk) ∈ IRm be the vector of Lagrange multipliers associated to the approx-
imate solution xk+1 of (40). This approximate solution is asked to satisfy

‖h′(yk)(xk+1 − yk)‖ ≤ max{ε, K2‖G(yk, λk)‖
2} (41)

and

‖P̃ [xk+1 −∇L(xk+1, λk) −∇h(yk)(λk+1 − λk)] − xk+1‖ ≤ max{ε, η‖G(yk, λk)‖}, (42)

where P̃ is de Euclidian projection operator onto the box

Ω ∩ {z ∈ IRn | ‖z − yk‖∞ ≤ K̃3 max{1, ‖yk‖∞}}.

If we are not able to satisfy these requirements we declare “Failure at the Optimality

Phase”.

Observe that approximate solutions that satisfy (41)–(42) can be always found by or-
dinary algorithms for linearly constrained minimization since the feasible set is nonempty

12

and compact. Therefore, the diagnostic of Failure at the Optimality Phase can only rep-
resent lack of success of the algorithm used to solve the linearly constrained optimization
problem (40). As we will see, this failure never occurred in our experiments.

The situation is somewhat different in the feasibility phase, because in this case it
is possible to incorporate the theoretically required steplength control in the definition
of the optimization problem (38). In this case, failure might be a characteristic of the
problem. For example, “Failure at the Feasibility Phase” necessarily occurs if xk is a
global minimizer of (38) where h(xk) 6= 0.

It is well known by practitioners that, in the process of solving nonlinear systems,
locally convergent methods can be improved by the simple device of maintaining the
distance between consecutive iterates under control. See [22]. This is the role of the
constraint

‖z − yk‖∞ ≤ K̃3 max{1, ‖yk‖∞} (43)

in (40).
In a neighborhood of a solution, the step-control constraint tends to be inactive. In

this case, we usually have that

‖P [xk+1 −∇L(xk+1, λk) −∇h(yk)(λk+1 − λk)] − xk+1‖ ≤ max{ε, η‖G(yk, λk)‖}. (44)

In our implementation we used GENCAN, an algorithm introduced in [23] for solv-
ing (38) and ALGENCAN, a straightforward Augmented Lagrangian algorithm based on
GENCAN for solving (40). Very likely, these are not the best choices from the point of
view of efficiency, but they serve for the purpose the main questions that we want to be
answered by the numerical experiments, which are related with robustness. Nevertheless,
we would like to mention that in recent works ([24, 25, 26]) excellent numerical behavior of
Augmented Lagrangian algorithms applied to linearly constrained minimization has been
reported.

The way in which the requirement (39) was implemented was as follows: we ran
GENCAN with a maximum of 1000 iterations and the stopping criterion ‖h(y)‖ ≤ ε.
If, at the final point, (39) is not satisfied, we declare “Failure at the Feasibility Phase”.

At the Optimality Phase, we ran ALGENCAN with a maximum of 25 iterations and
the stopping criteria

‖h′(yk)(z − yk)‖ ≤ ε,

and
‖P̃ [z −∇L(z, λk) −∇h(yk)(µ − λk)] − z‖ ≤ ε.

If, at the final point, (41) and (42) are not satisfied, we declare “Failure at the Optimality

Phase”.

4 Numerical Experiments

The question that we want to answer by means of numerical experiments may be for-
mulated as follows: How bad is the local Inexact Restoration method when compared to

13

globally convergent nonlinear-programming algorithms? The key point is, of course, ro-
bustness. The comparison between local and global methods in nonlinear optimization is,
sometimes, surprising. As far as in 1979, Moré and Cosnard ([22]) published a numerical
study where Brent’s method for solving nonlinear systems ([27, 28]) appeared to be bet-
ter than globally convergent nonlinear solvers when a suitable control for the steplength
was used. The analogy between the local Inexact Restoration method and the generalized
Brown-Brent methods ([20]) as well as the natural way in which steplength controls appear
in our implementation increases the motivation for the numerical study.

In [1] a globally convergent form of Algorithm 3.1 was presented. Global versions
of Inexact Restoration algorithms using filters were introduced by Gonzaga, Karas and
Vanti ([17]). The main question is: from the practical point of view, how necessary are
globally convergent modifications? Is the local method (with step control) competitive
with well established global algorithms for Nonlinear Programming from the point of view
of robustness?

We selected all the nonlinearly constrained problems with quadratic or nonlinear ob-
jective function from the CUTE collection ([29]). The initial points were the ones provided
with the problem definition and the initial estimate for the multiplier vector was λ0 = 0.

The algorithmic parameters selected were: θ = η = 0.99, K1 = K2 = 106, K̃3 = 0.1,
and ε = 10−4.

The globally convergent method selected for numerical comparison was LANCELOT
([30]) with second derivatives, a maximum of 10000 iterations and remaining default op-
tions. In both methods we declared Convergence when the current iterate (x, λ) satisfies

‖h(x)‖∞ ≤ ε and ‖P (x −∇L(x, λ)) − x‖∞ ≤ ε.

In Algorithm 3.1 we used a maximum of 100 iterations.
The comparison is given in Table 1. In this table, we report the essential quantities

that are necessary to compare the robustness of both methods.
Both in LANCELOT as in Algorithm 3.1, IER=0 means that feasibility and optimality

up to the desired precision was achieved and IER=1 means that the maximum allowed
number of iterations was exhausted. In Algorithm 3.1, IER=2 means failure of the feasi-
bility phase. In LANCELOT, IER=3 means that the algorithm stopped because of a very
small step and IER=8 is a failure for a non-reported reason. In spite of the diagnostic
IER=0, feasibility was not achieved by LANCELOT in problem SREADIN3.

In HS99, Algorithm 3.1 exhausted the allowed number of iterations. However, it
achieved feasibility and the objective function value coincided with the one reported in
CUTE (−831079892). Therefore, the obtained point is an accurate approximate solution
of the problem but the required precision on the Lagrange condition was not achieved
possibly because of the effect of bad scaling on floating point calculations.

Table 1 shows that, surprisingly, Algorithm 3.1 is, at least, as robust as LANCELOT
in the set of problems considered.

Let us now address the following question: To what extent, in practice, the imple-
mented algorithm is the local algorithm defined by (6)–(10)? In order to answer this
question, we define, for each problem and each iteration, the quantities:

14

θk = ‖h(yk)‖/‖h(xk)‖, (45)

[K1]k = ‖yk − xk‖/‖h(xk)‖, (46)

[K2]k = ‖h′(yk)(xk+1 − yk)‖/‖G(yk , λk)‖
2, (47)

ηk = ‖P (xk+1 −∇L(xk+1, λk) −∇h(yk)(λk+1 − λk)) − xk+1‖/‖G(yk , λk)‖ (48)

and
[K3]k = (‖xk+1 − yk‖ + ‖λk+1 − λk‖)/‖G(yk, λk)‖. (49)

In (45)–(49) we use the convention 0/0 = 0. If, for an infinite sequence generated by
Algorithm 3.1, there exist θ̄, η̄, K̄ such that θk ≤ θ̄ < 1, ηk ≤ η̄ < 1, [K1]k, [K2]k, [K3]k ≤
K̄ < ∞ and if the Lipschitz assumption holds, then the sequence exactly represents the
IR iteration. Of course, we never compute an infinite sequence, but the values of the
quantities (45)–(49) in a finite computed sequence may give an idea of how much the
practical algorithm with step control differs from the theoretical convergent algorithm.

With this in mind, we compute θk, ηk, [Kstep1]k, [K2]k, [K3]k at all the iterations of
each problem of our experiments. It is also interesting to discover the number of cases
in which the step control constraint (43) is active at the approximate solution xk+1 of
(40). Some statistics related to these figures are reported in Table 2. Under column
#AC, we report the number of iterations in which (43) is active, the last iteration in
which it was active, and the total number of iterations performed. The other columns are
self-explanatory. The problems for which IRLOC did not stop satisfying the convergence
criterion appear at the end of the table.

As expected, except in the cases of Failure at the Feasibility Phase, the value of θk was
always smaller than 1. This means that the theoretical requirement for an approximate
solution of the feasibility phase was always satisfied.

Large values of [K2]k (say, greater than 100) appear in only 6 cases. They are associated
with subproblems where the linearly constrained solver failed to obtain linear feasibility
at the required precision. Nevertheless, is interesting to observe that in all these cases
global convergence of the main algorithm took place.

On the other hand, in 14 problems values of [K3]k greater than 100 appear and three
of these problems are global failures. Large values of [K3]k represent situations where the
stability condition (10) is hard to satisfy. However, one must be cautious in the analysis
of these quantities because they are quite susceptible to scaling of the original problem.

The first column of Table 2 shows that, as expected, the constraint that controls
steplength at the optimality phase is not active at the final iterations of the cases in which
the method converges. The comparison of this column with the fourth column of the table
reveals that, in many cases, although the steplength constraint was active, the theoretical
condition ηk < 1 was fulfilled.

15

Problem (n, m) IRLOC LANCELOT
IT f(x) ‖h(x)‖∞ ‖∇L(x)‖∞ IER f(x) ‖h(x)‖∞ ‖∇L(x)‖∞ IER

ALSOTAME (2, 1) 12 8.2085D−02 1.6D−12 1.2D−06 0 8.2085D−02 3.5D−06 1.7D−07 0
BT11 (5, 3) 14 8.2474D−01 6.3D−05 5.0D−05 0 8.2471D−01 7.2D−05 2.2D−05 0
BT6 (5, 2) 11 2.7705D−01 1.6D−05 9.3D−07 0 2.7705D−01 1.2D−05 3.4D−05 0
CLNLBEAM (33, 20) 40 3.4503D+02 5.0D−05 3.1D−06 0 3.4503D+02 5.7D−05 5.3D−05 0
DNIEPER (61, 24) 4 1.8744D+04 6.9D−06 3.1D−06 0 1.8743D+04 5.7D−05 9.6D−06 0
DTOC2 (298, 196) 9 4.8681D−01 1.8D−05 1.8D−06 0 4.8631D−01 1.2D−05 4.4D−05 0
DTOC4 (29, 18) 3 3.7509D+00 6.2D−05 8.7D−05 0 3.7508D+00 4.6D−06 3.8D−05 0
DTOC6 (201, 100) 16 7.2790D+02 1.4D−05 2.8D−05 0 7.2795D+02 4.0D−06 6.4D−05 0
HS100LNP (7, 2) 7 6.8063D+02 8.1D−06 5.0D−07 0 6.8063D+02 3.1D−06 1.1D−05 0
HS107 (9, 6) 4 5.0548D+03 3.7D−05 8.8D−05 0 5.0545D+03 4.9D−05 1.5D−08 0
HS111 (10, 3) 16 -4.7761D+01 5.8D−05 1.2D−05 0 -4.7761D+01 2.6D−05 4.1D−05 0
HS111LNP (10, 3) 16 -4.7761D+01 6.7D−05 4.6D−05 0 -4.7761D+01 2.6D−05 3.6D−05 0
HS26 (3, 1) 26 5.3806D−09 8.1D−07 3.1D−06 0 2.3577D−07 1.6D−06 3.9D−05 0
HS40 (4, 3) 4 -2.4999D−01 1.3D−05 1.8D−05 0 -2.5002D−01 2.1D−05 2.9D−05 0
HS46 (5, 2) 10 4.4356D−07 1.3D−08 7.0D−05 0 7.4195D−07 1.5D−05 6.4D−05 0
HS47 (5, 3) 17 1.8142D−08 6.4D−05 2.6D−05 0 2.3121D−07 2.5D−05 6.3D−05 0
HS56 (7, 4) 12 -3.4560D+00 1.4D−05 1.8D−05 0 -3.4559D+00 5.7D−05 4.4D−06 0
HS60 (3, 1) 6 3.2569D−02 7.7D−05 9.1D−06 0 3.2568D−02 9.3D−07 3.2D−05 0
HS7 (2, 1) 12 -1.7321D+00 9.8D−07 2.1D−06 0 -1.7320D+00 4.0D−06 6.2D−06 0
HS77 (5, 2) 11 2.4150D−01 7.4D−06 3.7D−06 0 2.4151D−01 1.8D−06 1.8D−05 0
HS78 (5, 3) 4 -2.9197D+00 3.9D−05 4.1D−09 0 -2.9197D+00 4.3D−06 4.8D−05 0
HS79 (5, 3) 4 7.8779D−02 8.3D−05 8.3D−06 0 7.8777D−02 2.6D−05 1.6D−05 0
HS80 (5, 3) 4 5.3947D−02 3.4D−05 1.7D−06 0 5.3950D−02 5.6D−06 2.4D−05 0
HS81 (5, 3) 4 5.3950D−02 2.2D−05 8.9D−06 0 5.3950D−02 8.2D−06 6.3D−05 0
HS99 (7, 2) 100 -8.3108D+08 7.4D−06 1.0D−01 1 -8.3125D+08 1.9D+01 1.28+00 1
HS99EXP (31, 21) 2 -1.4195D+11 2.7D+05 7.4D+05 2 -1.6249D+21 2.47+11 1
LAKES (90, 78) 2 7.2323D+11 4.7D+02 5.5D+05 2 3.7607D+10 1
LCH (150, 1) 13 -4.2301D+00 8.1D−05 2.3D−06 0 -4.1990D+00 1.4D−05 4.3D−07 0
LEWISPOL (6, 9) 11 1.1268D+00 3.4D−05 1.2D−08 0 1.1267D+00 3.6D−05 2.5D−06 0
LUBRIF (151, 100) 2 0.0000D+00 3.2D+00 0.0D+00 2 0.0000D+00 3.2D+00 8.3D−02 8
ORTHRDM2 (4003, 2000) 4 1.5553D+02 9.1D−08 5.1D−07 0 1.5553D+02 1.6D−07 3.9D−05 0
ORTHRDS2 (203, 100) 4 3.0432D+01 8.9D−05 7.1D−07 0 3.0433D+01 7.2D−05 1.2D−05 0
ORTHREGD (23, 10) 4 3.4121D+00 8.4D−06 3.1D−06 0 3.4121D+00 2.6D−08 2.0D−05 0
ORTHREGE (36, 20) 33 5.9596D+00 2.0D−05 3.2D−06 0 3.3908D+00 7.3D−06 8.4D−05 0
ORTHREGF (152, 49) 7 1.3150D+00 2.0D−05 2.2D−06 0 1.3149D+00 4.8D−05 4.3D−05 0
ORTHRGDM (4003, 2000) 4 6.0562D+02 4.6D−07 1.0D−06 0 6.0562D+02 2.6D−05 3.5D−09 0
ORTHRGDS (103, 50) 94 2.0735D+07 1.3D+02 1.0D+20 2 1.0815D+02 8.8D−03 5.0D−05 3
READING1 (102, 50) 17 -1.6067D−01 3.2D−05 4.7D−05 0 -1.6067D−01 2.0D−05 8.4D−06 0
READING3 (102, 51) 17 -1.5296D−01 8.6D−06 4.1D−05 0 -1.5296D−01 5.1D−05 5.2D−05 0
READING5 (51, 50) 2 2.2532D−08 5.9D−06 2.9D−05 0 8.1371D−06 2.2D−05 5.5D−05 0
READING6 (102, 50) 100 -1.4462D+02 6.0D−03 4.2D−02 1 -9.9392D+15 2.0D+07 1.17+09 1
READING9 (402, 200) 9 -4.4308D−02 1.4D−05 1.2D−05 0 -6.0705D+39 3.0D+18 2.06+06 1
ROBOT (14, 2) 3 6.5932D+00 1.5D−05 3.2D−10 0 6.5930D+00 2.6D−05 4.1D−08 0
SREADIN3 (12, 6) 16 -1.9147D−01 1.2D−05 4.4D−05 0 -1.9147D−01 3.3D−04 2.0D−06 0
SSNLBEAM (33, 20) 31 3.3779D+02 4.6D−05 3.2D−06 0 3.3776D+02 4.9D−05 2.0D−05 0
TRAINH (48, 22) 3 1.2004D+01 5.0D−05 6.1D−06 0 1.2004D+01 6.5D−05 1.0D−05 0
ZAMB2-10 (270, 96) 6 -1.5824D+00 8.4D−05 7.2D−05 0 -1.5812D+00 3.5D−05 6.8D−05 0
ZAMB2-11 (270, 96) 4 -1.1161D+00 5.8D−06 8.1D−05 0 -1.1157D+00 5.4D−05 8.5D−05 0
ZAMB2-8 (138, 48) 6 -1.5294D−01 1.4D−05 2.6D−06 0 -1.5293D−01 9.5D−06 3.4D−05 0
ZAMB2-9 (138, 48) 5 -3.5457D−01 1.9D−05 2.0D−05 0 -3.5422D−01 8.7D−05 2.3D−05 0
ZAMB2 (1326, 480) 7 -4.1422D+00 1.0D−05 5.8D−05 0 -4.1421D+00 2.6D−05 8.4D−05 0

Table 1: IRLOC vs. LANCELOT: measuring robustness.

16

Problem (n, m) #AC maxk{θk} maxk{[K1]k} #{ηk ≥ 1} maxk{[K2]k} maxk{[K3]k}

ALSOTAME (2, 1) 9 9 12 3.119D−07 1.000D+00 3 9.552D−03 2.223D+00
BT11 (5, 3) 11 11 14 9.060D−04 7.628D−01 0 2.216D−01 9.213D−01
BT6 (5, 2) 8 8 11 1.919D−02 2.286D−01 0 9.967D+00 2.830D+00
CLNLBEAM (33, 20) 37 37 40 9.358D−01 3.404D+01 18 4.949D−01 1.346D+03
DNIEPER (61, 24) 1 1 4 8.308D−05 3.349D−01 0 2.003D−05 1.796D+00
DTOC2 (298, 196) 6 6 9 9.947D−02 1.997D+00 0 2.566D+02 3.995D+01
DTOC4 (29, 18) 0 0 3 2.616D−01 2.369D+00 0 4.549D−02 3.247D+00
DTOC6 (201, 100) 13 13 16 1.118D−02 9.468D+00 1 6.869D−01 6.306D+00
HS100LNP (7, 2) 3 3 7 2.405D−05 5.879D−02 0 9.358D−01 1.473D−01
HS107 (9, 6) 1 1 4 1.398D−02 1.268D+00 1 5.251D−05 6.889D+03
HS111 (10, 3) 14 14 16 1.964D−01 1.798D+00 0 5.621D+02 9.478D+02
HS111LNP (10, 3) 14 14 16 2.115D−01 1.702D+00 0 2.736D+02 8.157D+02
HS26 (3, 1) 24 24 26 6.276D−03 2.006D−01 0 3.452D−02 3.334D+00
HS40 (4, 3) 1 1 4 5.479D−06 8.047D−01 0 1.538D−01 1.335D+00
HS46 (5, 2) 7 7 10 7.670D−03 3.109D−01 1 1.394D+00 7.526D+00
HS47 (5, 3) 15 15 17 1.822D−03 9.181D−01 0 3.719D−02 8.772D+00
HS56 (7, 4) 9 9 12 9.412D−02 3.437D−01 4 1.105D−03 1.530D+00
HS60 (3, 1) 3 3 6 3.301D−03 8.632D−02 0 6.310D−01 3.964D−01
HS7 (2, 1) 9 9 12 6.074D−03 2.879D−01 6 2.487D−02 4.237D−01
HS77 (5, 2) 8 8 11 3.203D−03 2.486D−01 0 1.263D+00 2.304D+00
HS78 (5, 3) 0 0 4 5.431D−02 1.616D−01 0 1.886D+01 3.102D−01
HS79 (5, 3) 1 1 4 1.955D−04 3.913D−01 1 5.717D−01 1.482D+00
HS80 (5, 3) 1 1 4 2.335D−05 1.621D−01 0 6.219D+00 3.818D+00
HS81 (5, 3) 1 1 4 2.325D−05 1.621D−01 0 4.641D−02 1.188D+00
LCH (150, 1) 7 8 13 6.363D−03 4.968D−01 1 6.190D−02 5.472D+00
LEWISPOL (6, 9) 8 8 11 3.031D−01 1.095D+00 0 3.812D+02 1.043D+00
ORTHRDM2 (4003, 2000) 0 0 4 2.965D−03 7.061D−03 0 5.207D−03 8.479D−02
ORTHRDS2 (203, 100) 0 0 4 2.007D−01 6.696D−03 0 6.011D−01 2.500D+00
ORTHREGD (23, 10) 0 0 4 1.271D−05 5.650D−03 0 1.493D−01 4.109D−01
ORTHREGE (36, 20) 26 27 33 1.149D−01 9.302D−01 12 2.028D+02 4.771D+00
ORTHREGF (152, 49) 3 3 7 1.675D−03 8.462D−01 1 3.352D+00 9.577D−01
ORTHRGDM (4003, 2000) 0 0 4 1.971D−05 7.135D−03 0 1.303D−05 1.803D−01
READING1 (102, 50) 14 14 17 5.903D−03 4.228D−01 3 3.416D+00 8.125D+01
READING3 (102, 51) 15 15 17 5.131D−03 9.268D−02 6 8.963D+01 9.950D+02
READING5 (51, 50) 0 0 2 1.137D−05 9.092D−01 0 4.259D−04 7.696D−01
READING9 (402, 200) 8 8 9 9.653D−01 1.020D+01 7 9.941D+00 6.791D+02
ROBOT (14, 2) 0 0 3 4.468D−07 5.444D−01 0 4.124D+02 1.375D+00
SREADIN3 (12, 6) 13 13 16 1.408D−02 1.678D−01 5 3.275D−01 1.246D+01
SSNLBEAM (33, 20) 28 28 31 9.246D−01 4.122D+01 20 2.957D−01 1.625D+02
TRAINH (48, 22) 0 0 3 2.958D−05 5.099D+00 0 3.091D+02 4.884D+01
ZAMB2-10 (270, 96) 4 4 6 3.087D−03 4.063D+00 0 2.825D+03 1.355D+05
ZAMB2-11 (270, 96) 2 2 4 3.623D−05 5.798D+00 0 1.535D+01 1.727D+04
ZAMB2-8 (138, 48) 0 0 6 1.454D−01 3.828D+00 1 8.186D+02 2.267D+04
ZAMB2-9 (138, 48) 2 2 5 4.587D−01 3.052D+00 0 3.516D+00 1.190D+03
ZAMB2 (1326, 480) 4 4 7 9.401D−03 8.472D+00 0 2.595D+02 8.516D+04

HS99 (7, 2) 1 1 100 1.848D−09 1.079D−06 97 3.031D−06 1.633D+04
HS99EXP (31, 21) 1 1 2 9.999D−01 6.581D−01 1 9.210D−12 7.137D−02
LAKES (90, 78) 1 1 2 9.954D−01 8.319D+00 0 3.597D−12 2.343D−03
LUBRIF (151, 100) 0 0 2 1.000D+00 4.158D−01 0 0.000D+00 0.000D+00
ORTHRGDS (103, 50) 93 93 94 3.174D−01 6.021D−02 82 6.825D−09 1.378D+06
READING6 (102, 50) 100 100 100 8.802D−03 1.912D+00 36 6.966D−02 1.251D+02

Table 2: IRLOC statistics.

17

5 Conclusions

Inexact-restoration algorithms for nonlinear programming are based on inexact achieve-
ment of feasibility at each iteration followed by inexact minimization of the Lagrangian
on a linear approximation of the constraints. Different methods can be used at both
phases of the IR algorithm. In this paper we proved a local convergence result for an
inexact-restoration algorithm. Essentially, the theorem says that if the IR iteration is well
defined in a neighborhood of the solution, then linear convergence takes places to some
solution of the KKT system. Under additional assumptions the convergence is superlinear
or quadratic.

Based on the fact that, in Newtonian methods for nonlinear systems of equations,
practical convergence can be dramatically improved by means of simple steplength control
modifications, we proposed a modification of the optimality phase of IR that implicitly
maintains the steplength under control. The proposed modification resembles a trust-
region constraint added to the natural constraints of the feasibility phase. However, this
trust-region constraint is fixed, and not reduced according to merit-function decrease as
in [1].

Numerical experiments showed that the IR algorithm with this simple modification is
at least as robust as a well established globally convergent nonlinear programming method
in a set of problems taken from the CUTE collection. A more careful observation of the
tests showed that, in spite of the steplength control, the iterations satisfied the theoretical
requirements of the local algorithm at most iterations.

The conclusion of this work is not that one should abandon the project of defining
algorithms with the best possible convergence theories, including global convergence, but
to put in evidence what kind of practical effects one should expect from globally convergent
methods (with or without merit functions). It seems that one should be tolerant with local
methods that use a lot of information about the true problem, as Inexact Restoration does,
and that the main effect of global modifications should be to maintain the steplength under
control. Probably, this reinforces the importance of working with filter strategies and with
algorithms that do not force merit function decrease at every iteration.

The results of this paper can be straightforwardly extended to the resolution of KKT
systems of type:

h(x) = 0, x ∈ Ω,

P (x − F (x) −∇h(x)λ) − x = 0.

Essentially, the modifications in the proof required to consider these systems consist
in the judicious replacement of ∇f(x) by F (x) in the proper places. This opens the path
for the application of Inexact Restoration to variational inequalities, equilibrium problems
and other extensions of constrained optimization.

References

[1] MARTÍNEZ, J.M., Inexact Restoration Method with Lagrangian Tangent Decrease

and New Merit Function for Nonlinear Programming, Journal of Optimization Theory

18

and Applications, Vol. 111, pp. 39–58, 2001.

[2] MARTÍNEZ, J.M., and PILOTTA, E.A., Inexact Restoration Algorithms for Con-

strained Optimization, Journal of Optimization Theory and Applications, Vol. 104,
pp. 135–163, 2000.

[3] MARTÍNEZ, J.M., and PILOTTA, E.A., Inexact Restoration Methods for Nonlinear

Programming: Advances and Perspectives, Optimization and Control with Applica-
tions, Edited by L.Q. Qi, K.L. Teo and X.Q. Yang, Kluwer Academic Publishers,
2005.

[4] ABADIE, J., and CARPENTIER, J., Generalization of the Wolfe Reduced-Gradient

Method to the Case of Nonlinear Constraints, Optimization, Edited by R. Fletcher,
Academic Press, New York, NY, pp. 37–47, 1968.

[5] DRUD, A., CONOPT: A GRG Code for Large Sparse Dynamic Nonlinear Optimiza-

tion Problems, Mathematical Programming, Vol. 31, pp. 153–191, 1985.

[6] LASDON, L.S., Reduced Gradient Methods, Nonlinear Optimization 1981, Edited by
M.J.D. Powell, Academic Press, New York, NY, pp. 235–242, 1982.

[7] MIELE, A., HUANG, H.Y., and HEIDEMAN, J.C., Sequential Gradient-Restoration

Algorithm for the Minimization of Constrained Functions: Ordinary and Conjugate

Gradient Version, Journal of Optimization Theory and Applications, Vol. 4, pp. 213–
246, 1969.

[8] MIELE, A., LEVY, A.V., and CRAGG, E.E., Modifications and Extensions of the

Conjugate-Gradient Restoration Algorithm for Mathematical Programming Problems,
Journal of Optimization Theory and Applications, Vol. 7, pp. 450–472, 1971.

[9] MIELE, A., SIMS, E.M., and BASAPUR, V.K., Sequential Gradient-Restoration Al-

gorithm for Mathematical Programming Problems with Inequality Constraints, Part 1,

Theory, Rice University, Aero-Astronautics Report No. 168, 1983.

[10] ROSEN, J.B., The Gradient Projection Method for Nonlinear Programming, Part 1,

Linear Constraints, SIAM Journal on Applied Mathematics, Vol. 8, pp. 181–217,
1960.

[11] ROSEN, J.B., The Gradient Projection Method for Nonlinear Programming, Part 2,

Nonlinear Constraints, SIAM Journal on Applied Mathematics, Vol. 9, pp. 514–532,
1961.

[12] ROSEN, J.B., and KREUSER, J., A Gradient Projection Algorithm for Nonlin-

ear Constraints, Numerical Methods for Nonlinear Optimization, Edited by F.A.
Lootsma, Academic Press, London, UK, pp, 297–300, 1972.

[13] GOMES, F.M., MACIEL, M.C., and MARTÍNEZ, J.M., Nonlinear Programming

Algorithms Using Trust Regions and Augmented Lagrangians with Nonmonotone

Penalty Parameters, Mathematical Programming, Vol. 84, pp. 161–200, 1999.

19

[14] ROCKAFELLAR, R.T., and WETS, R.J.-B., Variational Analysis, Springer-Verlag,
Berlin, Germany, 1998.

[15] GRIPPO, L., LAMPARIELLO, F., and LUCIDI, S., A Class of Nonmonotone Sta-

bilization Methods in Unconstrained Optimization, Numerische Mathematik, Vol. 59,
pp. 779–805, 1991.

[16] FLETCHER, R., and LEYFFER, S., Nonlinear Programming without a Penalty

Function, Mathematical Programming, Vol. 91, pp. 239–269, 2002.

[17] GONZAGA, C.C., KARAS, E., and VANTI, M., A Globally Convergent Filter Method

for Nonlinear Programming, SIAM Journal on Optimization, Vol. 14, pp. 646–669,
2003.

[18] BIELSCHOWSKY, R.H., Nonlinear Programming Algorithms with Dynamic Defini-

tion of Near-Feasibility: Theory and Implementations, University of Campinas, PhD
Thesis, 1996.

[19] BERTSEKAS, D.P., Nonlinear Programming, 2nd Edition, Athena Scientific, Bel-
mont, Massachusetts, 1999.

[20] MARTÍNEZ, J.M., Generalization of the Methods of Brent and Brown for Solving

Nonlinear Simultaneous Equations, SIAM Journal on Numerical Analysis, Vol. 16,
pp. 434–448, 1979.

[21] MARTÍNEZ, J.M., Solving nonlinear simultaneous equations with a generalization of

Brent’s method, BIT, Vol. 20, pp. 501–510, 1980.

[22] MORÉ, J.J., and COSNARD, M.Y., Numerical Solution of Nonlinear Equations,
ACM Transactions on Mathematical Software, Vol. 5, pp. 64–85, 1979.

[23] BIRGIN, E.G., and MARTÍNEZ, J.M., Large-Scale Active-Set Box-Constrained Opti-

mization Method with Spectral Projected Gradients, Computational Optimization and
Applications, Vol. 23, pp. 101–125, 2002.

[24] DOSTÁL, Z., FRIEDLANDER, A., and SANTOS, S.A., Augmented Lagrangians with

Adaptive Precision Control for Quadratic Programming with Equality Constraints,
Computational Optimization and Applications, Vol. 14, pp. 37–53, 1999.

[25] DOSTÁL, Z., FRIEDLANDER, A., and SANTOS, S.A., Augmented Lagrangians

with Adaptive Precision Control for Quadratic Programming with Simple Bounds and

Equality Constraints, SIAM Journal on Optimization, Vol. 13, pp. 1120–1140, 2003.

[26] DOSTÁL, Z., GOMES, F.A.M., and SANTOS, S.A., Solution of Contact Problems by

FETI Domain Decomposition with Natural Coarse Space Projection, Computational
Method in Applied Mechanics and Engineering, Vol. 190, pp. 1611–1627, 2002.

[27] BRENT, R.P., Some Efficient Algorithms for Solving Systems of Nonlinear Equations,
SIAM Journal on Numerical Analysis, Vol. 10, pp. 327–344, 1973.

20

[28] MORÉ, J.J., and COSNARD, M.Y., Algorithm 554 - BRENTM, A FORTRAN Sub-

routine for the Numerical Solution of Systems of Nonlinear Equations, ACM Trans-
actions on Mathematical Software, Vol. 6, pp. 240–251, 1980.

[29] BONGARTZ, I., CONN, A.R., GOULD, N.I.M., and TOINT, Ph.L., CUTE: Con-

strained and Unconstrained Testing Environment, ACM Transactions on Mathemat-
ical Software, Vol. 21, pp. 123–160, 1995.

[30] CONN, A.R., GOULD, N.I.M., and TOINT, Ph.L., A Globally Convergent Aug-

mented Lagrangian Algorithm for Optimization with General Constraints and Simple

Bounds, SIAM Journal on Numerical Analysis, Vol. 28, pp. 545–572, 1991.

21

