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Abstract

This paper deals with the prediction of river levels by means of polynomial regression models
using only elevation data and inflow forecasts. Different models for this purpose are examined and
a new approach based on the concept of virtual stations is presented. Detailed numerical experi-
ments show that this proposal may be useful as a tool for making predictions when the physical
characteristics of the river are uncertain.
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1 Introduction

River flow modelling is an important tool for analysing and predicting dam failures and their conse-
quences. The main mathematical procedure for this task is based on the solution of partial differential
equations (PDE). The equations of Saint Venant [20] are the best known equations for this purpose.
Their numerical solution requires initial and boundary conditions in terms of river wetted cross-sections
and flow-rates. In addition, geometric descriptions of the cross sections and bed elevations are required.
Finally, Manning roughness coefficients, which may be spatially and temporally dependent, must be
determined. See [1, 2, 3, 5, 4, 6, 7, 8, 11, 12, 13, 14, 17, 18, 19, 20, 21].

Typically, partial observations of river surface elevations at different spatial and temporal coordi-
nates are available. These observations make it possible the estimation of the unknown characteristics
of the river, which are necessary for the numerical integration of the partial differential equations.
The resulting PDE-constrained parameter estimation problem can be difficult to solve, requires in-
tegration of the PDE’s for different instances, and is subject to instability and lack of reliability
of results. However, this problem has been the subject of valuable research over many years. See
[1, 2, 3, 5, 6, 7, 8, 11, 14, 15, 17, 18].

The PDE approach obtains predictions by means of the estimation of unknown physical character-
istics and associated PDE integration. Moreover, the estimation of unknown physical characteristics
is based on fitting the direct solution of the PDE’s to available observations. This suggests the pos-
sibility of obtaining river predictions directly from available data without the need to estimate the
physical characteristics of the river. The obvious drawback of this approach relies on the fact that
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we do not have reliable physical models that directly link observations to predictions. For this rea-
son we believe that data-based predictions should generally be considered in conjunction with PDE
predictions, although the specific form of this relation is highly problem-dependent [6].

Reliable data-based approaches should start with a reliable identification of cause-effect relation-
ships. For example, in the case of river flow phenomena, a high correlation may be found between
upstream discharge and downstream elevations. Obviously, upstream discharges are the cause of down-
stream elevations and not the other way round. If a cause-effect relationship is established, the next
step could be to propose an appropriate form of dependence relationship, the specific form of which
should be based on previous data analysis.

Let us consider an example that is well suited to introduce and motivate the rest of this paper.
It has been widely observed that water elevation at an arbitrary fixed station of a natural river is a
smooth function of the upstream (inlet) flow-rate. See [12] and [2, Fig.12b]. In Figure 1, we consider
data for the Fork River published in [9]. Figure 1a shows observations of the elevation z corresponding
to the section x = 751m, together with linear, quadratic and cubic polynomials representing elevation
as a function of the inflow rate Qmin (in m3/s). The polynomials were fitted using simple least squares.
Figure 1b shows the same information but related to the section x = 3256m. The observations are
taken every 12 hours starting at zero hours on day 3. The polynomial coefficients and the corresponding
root mean square deviation (RMSD) are given in Table 1.

Station Polynomial RMSD c0 c1 c2 c3

75
1
m linear 8.69579603E-02 7.35113673 3.75568519E-02 −− −−

quadratic 2.69668513E-02 7.08338033 8.19336547E-02 -1.36086954E-03 −−
cubic 2.42162234E-02 7.01642805 9.97412870E-02 -2.60953038E-03 2.47226020E-05

32
56

m linear 6.02123240E-02 5.44084782 3.91356263E-02 −− −−
quadratic 3.13462816E-02 5.28175904 6.62052107E-02 -8.39381211E-04 −−
cubic 3.07813747E-02 5.24970397 7.49278445E-02 -1.45802975E-03 1.23271897E-05

Table 1: Fork river: fitting polynomials, their coefficients, and the corresponding RMSD (in meters).

It is interesting to fit the data of, say, the first 10 days and observe if the approximating curves fit
well the data for the remaining days. Figure 2 and Table 2 show the results. Throughout this paper
surface elevations and the corresponding RMSD errors are expressed in meters. So, for example, the
testing error of the cubic polynomial for x = 751m meters is 4.80 cm according to Table 2. This error
is quite small for practical prediction purposes regarding a real river.

Station Polynomial
RMSD

c0 c1 c2 c3training testing

75
1
m linear 4.36362260E-02 2.24297179E-01 7.66210301 2.34403945E-02 −− −−

quadratic 1.97586581E-02 1.11828660E-01 7.33545084 5.90878962E-02 -8.67373515E-04 −−
cubic 1.06148710E-02 4.79787043E-02 6.94435497 1.24958948E-01 -4.23241309E-03 5.33788086E-05

32
56

m linear 4.41380828E-02 1.67298488E-01 5.67319985 2.89537322E-02 −− −−
quadratic 3.43615061E-02 8.69890046E-02 5.44061014 5.43362118E-02 -6.17605427E-04 −−
cubic 2.73302025E-02 7.05794611E-02 4.95184090 1.36658084E-01 -4.82303941E-03 6.67097817E-05

Table 2: Fork river: Fitting polynomials, their coefficients, and the corresponding RMSD. In this case,
observations of the first 10 days were used as training data to fit the polynomials. The remaining
observations (20 or 21 days for Sections x = 751m and Section x = 3256m, respectively) were not
used in the fitting (training) phase and, then, were used to test the predictions provided by the fitted
polynomials.
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(a) Section x = 751m.
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(b) Section x = 3256m.

Figure 1: Fork river: Observed elevations at a given station and their approximation as a (linear,
quadratic and cubic) fitting polynomial of the inlet discharge.

These results suggest that, for predicting elevations at a fixed station x in “future days” under
suitable forecast on the inlet discharge, it is enough to fit the curve of the surface elevation z(x, t)
versus Qmin(t) using available data at station x, with the reasonable belief that, in the next days, this
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(a) Section x = 751m.
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(b) Section x = 3256m.

Figure 2: Fork river: Observed elevations at a given station and their approximation as a (linear,
quadratic and cubic) fitting polynomial of the inlet discharge. In this case, observations of the first
10 days were used as training data to fit the polynomials. The remaining observations (20 or 21 days
for Sections x = 751m and Section x = 3256m, respectively) were not used in the fitting (training)
phase and, then, were used to test the predictions provided by the fitted polynomials.
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curve will provide reasonable elevation estimates, provided that inlet discharge forecasts are reliable.
In fact, this should be the case if one has data for a suitable number of days before “today” and for
all the relevant stations along the river. Unfortunately both situations are unlike to occur. Usually,
one needs previsions for the future employing a possibly moderate number of past data at a possibly
moderate number of stations x.

For example, according to Table 1, for x = 751m, the best third-order polynomial that represents
z(x, t) as a function of Qmin(t) is given by

z(751, t) ≈ 7.02 + 9.97× 10−2Qmin(t)− 2.61× 10−3Qmin(t)
2 + 2.47× 10−5Qmin(t)

3, (1)

while, for x = 3256m, the best third-order polynomial that represents z(x, t) as a function of Qmin(t)
is given by

z(3256, t) ≈ 5.25 + 7.49× 10−2Qmin(t)− 1.46× 10−3Qmin(t)
2 + 1.23× 10−5Qmin(t)

3. (2)

However, if x /∈ {751, 3256}, we do not know, for example, which is the best third-order polynomial
that fits the elevations z(x, t) at Section x = 555m as a function of Qmin(t). This question is addressed
in the present paper.

We will start from the empirical observation that, in real rivers, inlet discharge is the dominant
cause of river elevations at different stations. This fact supports the idea that, given a spatial posi-
tion x, the elevation z(x, t) can be well approximated by a low-order polynomial P (Qmin(t)). We will
see that third-order polynomials are the more appropriate for this purpose. In order to recover eleva-
tions at stations x that are not represented in the data we analyse the employment of two-dimensional
polynomials in the variables x and Qmin(t). However, the need to preserve the accuracy of the one-
dimensional fits leads us to propose a different strategy based on the concept of “virtual stations”.
This paper proposes an algorithm for selecting suitable virtual stations and demonstrates its reliability
through detailed numerical experiments.

This research is conducted within CRIAB, a Latin-American academic group that involves col-
laborators of several countries. The group is dedicated to analyzing, comprehending and mitigating
dam-breaking and related accidents. River modelling is one of the techniques that must be mastered
in the broader landscape of modelling embankments and basins. Optimization regression techniques
are among the tools used for this purpose.

This paper is organized as follows. Section 2 analyses the compatibility of one-dimensional regres-
sion with two-variable polynomial fitting. Section 3 introduces the method of virtual stations and
describes the algorithm that will be used in the experiments. Section 4 describe the generation of syn-
thetic data. Numerical experiments are reported in Section 5, while conclusions and future research
directions are presented in Section 6.

Notation. #A will denote the number of elements of the set A. If A and B are sets, A \ B denotes
the set of elements of A that do not belong to B.

2 Two-variable polynomial fitting

Consider an arbitrary one-dimensional flow where the spatial (length) coordinate x goes from xmin

to xmax. The surface elevation for space coordinate x and time coordinate t will be denoted z(x, t).
Assume that at p different stations x1, . . . , xp ∈ [xmin, xmax] we have observations of surface elevations
at different times. The inlet discharge (flow-rate at x = xmin) at time t ∈ [tmin, tmax] is denoted
Qmin(t). For simplicity, if confusion is not possible, we omit the dependence of t in this notation
(denoting Qmin = Qmin(t)). Assume that, at each station xj , we fit a polynomial Pj(Qmin) with
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degree q, in the least-squares sense, in order to minimize the deviations with respect to measured
elevations.

We may consider the model

z(x, t) ≈W1(x)P1(Qmin(t)) + · · ·+Wp(x)Pp(Qmin(t)), (3)

where, for all j = 1, . . . , p, Wj(x) is a polynomial with degree p − 1 such that Wj(xj) = 1 and
Wj(xℓ) = 0 if ℓ ̸= j. Namely,

Wj(x) =

∏
i ̸=j(x− xj)∏
i ̸=j(xi − xj)

. (4)

The right-hand side of (3) is a sum of p(q+1) monomials of the form γi,jx
iQj

min for i = 0, 1, . . . , p− 1
and j = 0, 1, . . . , q.

This suggests the model

z(x, t) ≈
s∑

i=0

q∑
j=0

γi,jx
iQmin(t)

j . (5)

In (5), we postulate that the elevation at each point (x, t) is a two-variable polynomial with variables x
and Qmin(t), with degree s in the variable x and degree q in the variable Qmin. Note that in (3) we
have that s = p− 1.

The model (5) induces a linear least-squares problem, in which the coefficients γi,j are the unknowns
and observations are available at different stations and times. We wonder whether, if observations are
given at a finite number of stations x1, . . . xp, the solution of the least-squares problem comes from
addressing p separate least squares problems, one corresponding to each station. In this case, we could
compute the best polynomial of degree q with respect to measurements at the considered station and
the predicted values at arbitrary points (x, t) would come from interpolation according to (3) and (4).

The following theorem gives an answer to this question.

Theorem 2.1 Assume that elevations zk,ℓ are given at p stations xk, k = 1, . . . , p, and time instants
tℓ, ℓ = 1, . . . , rk. Assume, moreover, that for each observed zk,ℓ the inlet flow Qmin(tℓ) (in short Qℓ)
is known. Consider the linear least-squares problems

Minimize

p∑
k=1

rk∑
ℓ=1

 q∑
j=0

s∑
i=0

γi,jx
i
kQ

j
ℓ − zk,ℓ

2

(6)

and

Minimize

p∑
k=1

rk∑
ℓ=1

 q∑
j=0

βk,jQ
j
ℓ − zk,ℓ

2

. (7)

Then, the objective function value at the solution of (7) is less than or equal to the objective function
value at the solution of (6). Moreover, if s ≥ p− 1 both objective functions are identical at respective
solutions.

Proof: Problem (6) is equivalent to

Minimize

p∑
k=1

rk∑
ℓ=1

 q∑
j=0

βk,jQ
j
ℓ − zk,ℓ

2

(8)
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subject to

βk,j =
s∑

i=0

γi,jx
i
k for all k = 1, . . . , p, j = 0, 1, . . . , q. (9)

Therefore, problem (6) is equivalent to problem (7) with the additional constraints (9). So, the feasible
region of (7) contains the feasible region of (8,9). This implies that the objective function of (7) at
its solution is smaller than or equal to the objective function of (8,9) at its solution. Both objective
function values are identical if the feasible region of (7) is the same as the feasible region of (8,9), that
is, if for all βk,j ∈ R there exist γi,j such that the identity (9) holds. This would mean that the linear
system (9) (with unknowns γi,j) and independent term given by βk,j) is compatible.

By (9), for j = 0, 1, . . . , q, we have

β1,j = γ0,jx
0
1 + γ1,jx

1
1 + · · ·+ γs,jx

s
1, (10)

β2,j = γ0,jx
0
2 + γ1,jx

1
2 + · · ·+ γs,jx

s
2, (11)

· · ·

βp,j = γ0,jx
0
p + γ1,jx

1
2 + · · ·+ γs,jx

s
p. (12)

If s < p− 1 the systems (10)–(12) are overdetermined and the solution set may be empty. In that
case, the objective function value at the solution of (6) could be bigger than the objective function
value at the solution of (7). If s = p− 1, for each j = 0, 1, . . . , q, the equations (10)–(12) define a p× p
Vandermonde system. See [10, pp.203-207]. So, the q + 1 systems (10–(12) are compatible and the
unknowns γ0,j , . . . , γp−1,j are (uniquely) determined by the constraints (9). If s > p − 1 the systems
(10)–(12 are underdetermined and particular solutions come from completing the solutions of the case
s = p − 1 with γp,j = . . . , γs = 0. Therefore, when s ≥ p − 1, the constraints (9) do not impose any
constraint at all to the solution of (8). Thus, the problems (6) and (7) are equivalent when s ≥ p− 1.
This completes the proof. □

However, if observations zobs(xk, tk) are available at different times and stations (xk, tk), k ∈ Kobs,
we must rely directly on the least squares problems induced by (5). Namely,

Minimize
∑

k∈Kobs

 s∑
i=0

q∑
j=0

γi,jx
i
kQmin(tk)

j − zobs(xk, tk)

2

. (13)

Note that problems of the form (6) are of the form (13) but the reciprocal is not true. Observe,
moreover, that the number of parameters γij that are estimated when we use (13) is (s + 1)(q + 1),
where s is the degree of the polynomial with respect to the variable x and q is the degree of the
polynomial with respect to the variable Qmin.

3 Method of virtual stations

Assume that we have p observation stations with spatial coordinates x1, . . . , xp and that, for all
i = 1, . . . , p, Ni elevation observations are available for Ni different temporal coordinates. It is
plausible that, as suggested in Section 1, and as will be confirmed by forthcoming experiments, the
best model for the predicted elevations at any given station should come from a least-squares fitting
of a suitable polynomial using the observed associated elevations. If the degree of each polynomial
is q, the number of coefficients of this model is p(q + 1). It is disappointing that this number is, in
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general, bigger than (s+1)(q+1), which is the number of coefficients associated with the two-variable
polynomial model discussed in Section 2. Therefore, solving (13) does not lead to the likely optimal
elevation prediction, given the data availability mentioned in this paragraph.

On the other hand, the procedure based on (13) seems to be suitable for the case where one has
observations at different space-time positions, not necessarily concentrated at fixed stations. In this
section we will assume that available elevation data zobs(xk, tk) are given at ndat space-time points
(xk, tk) for k = 1, . . . , ndat. We also assume that inlet dischargeQmin(t) is available whenever necessary.

We consider that xmin ≤ x̄1 < x̄2 < · · · < x̄nstat ≤ xmax. Each spatial position x̄j will be
called “virtual station”. The unknowns of our problem will be the coefficients c0,j , c1,j , c2,j , c3,j for all
j = 1, . . . nstat. Note that our fitting problem has 4nstat unknowns. The objective function f will be
a sum of squared errors, each error corresponding to an elevation observation. Namely,

f(c) =

ndat∑
k=1

[zcal(xk, tk, c)− zobs(xk, tk)]
2 , (14)

where c is the vector of estimated coefficients cij stored columnwise and zcal(xk, tk, c) is the elevation
computed by the model at the point (xk, tk) when the model coefficients are given by the vector c.

Let us describe how zcal(xk, tk, c) is computed. Given k ∈ {1, . . . , ndat} we define xleft(k) as the
biggest x̄j such that x̄j ≤ xk and we define xright(k) as the smallest x̄j such that xk < x̄j , except in the
cases that xk < x̄1 or xk > x̄nstat . If xk < x̄1 we define xleft(k) = x̄1 and xright(k) = x̄2. If xk > x̄nstat

we define xleft(k) = x̄nstat−1 and x̄right(k) = xnstat . The coefficients c0,left(k), c1,left(k), c2,left(k), c3,left(k)
and c0,right(k), c1,right(k), c2,right(k), c3,right(k) will be the only coefficients that appear in the definition of
zcal(xk, tk, c).

We define

wleft(k) = c0,left(k) + c1,left(k)Qmin(tk) + c2,left(k)Qmin(tk)
2 + c3,left(k)Qmin(tk)

3 (15)

and
wright(k) = c0,right(k) + c1,right(k)Qmin(tk) + c2,right(k)Qmin(tk)

2 + c3,right(k)Qmin(tk)
3. (16)

Finally,

zcal(xk, tk, c) =
xk − xright(k)

xleft(k) − xright(k)
wleft(k) +

xk − xleft(k)

xright(k) − xleft(k)
wright(k). (17)

According to (15), (16), and (17), zcal(xk, tk, c) depends linearly on the unknown coefficients c.
Therefore, the minimization of (14) is a linear least-squares problem. This problem has ndat equations
and 4nstat unknowns. Note that the number of virtual stations and their positions are arbitrary and
should be chosen taken into account the coordinates of the available data.

3.1 Choosing virtual stations

The positions of the virtual stations x̄1, . . . , x̄nstat ∈ [xmin, xmax] are “hyper-parameters” of the model
presented in Section 3. The objective function in the model “with variable virtual stations” is given
by (14) and each zcal(xk, tk, c) is defined by (17), but xright(k) and xleft(k) are now variables of the
problem that may change in order to obtain better values of the objective function. Therefore, a more
precise definition of the objective function is

f(c, x̄) =

ndat∑
k=1

[zcal(xk, tk, c)− zobs(xk, tk)]
2 , (18)

8



where the coordinates of x̄ are x̄1, . . . , x̄nstat and, for all k = 1, . . . , ndat,

zcal(xk, tk, x̄, c) =
xk − xright(k)

xleft(k) − xright(k)
wleft(k) +

xk − xleft(k)

xright(k) − xleft(k)
wright(k). (19)

Let us define now an algorithm that we effectively use for choosing the coordinates of stations
x̄1, . . . , x̄nstat . Let us initialize the set O in the following way:

O = {x ∈ [xmin, xmax] such that there exists k ∈ {1, . . . , ndat} with x = xk}. (20)

Note that we could define
O = {x1, . . . , xndat

},

but this definition should be ambiguous, inducing that the number of elements of O is ndat. This is
not the case, because x-coordinates may be repeated in the set of observations. In fact, the number of
elements of O is less than or equal to ndat. From now on, we will assume that the cardinality of O is
not smaller than 2. Therefore, one has at least two values of spatial coordinates x for which we have
at least one observation. Note that the number of elements of O is between 2 and ndat and that this
number may be strictly smaller than ndat. The set of positions of the virtual stations will be called
S. It will be defined recursively in the following way:

Algorithm 3.1.1. Initialize S ← ∅.

Step 1. If #S ≥ nstat or O = ∅, stop.

Step 2. Compute a solution x̂ of the problem

Maximize
x∈O

min {#L(x),#R(x)} (21)

where

L(x) := {k ∈ {1, . . . , ndat} | xleft(k) = x} and R(x) := {k ∈ {1, . . . , ndat} | xright(k) = x}.

Step 3. Update S ← S ∪ {x̂} and O ← O \ {x̂} and go to Step 1.

At each iteration, the algorithm chooses the virtual station that maximizes the minimum number
of available observations to determine each of the nstat station cubic polynomial by means of least-
square calculations. It is clear that, after a finite number of steps we have that the number of elements
of S is nstat or that O is empty and the algorithm stops.

4 Generation of synthetic data

In order to evaluate the effectiveness of different regression models for river predictions, we need to
rely on synthetic experiments. In our present research we decided to generate synthetic data by means
of integration of the Saint-Venant equations [20], which are given by

∂A

∂t
+

∂Q

∂x
= 0 (22)

and
∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

∂z

∂x
+

n2
gQ|Q|
AR4/3

= 0 (23)
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for x ∈ [xmin, xmax] and t ∈ [tmin, tmax], where h(x, t) = z(x, t) − zb(x) is the depth of the river at
(x, t), A(x, t) = h(x, t)w(x) is the cross wetted area at (x, t), P (x, t) = w(x) + 2h(x, t) is the wetted
perimeter at (x, t), R(x, t) = A(x, t)/P (x, t) is the hydraulics radius at (x, t), V (x, t) = Q(x, t)/A(x, t)
is the speed of the fluid at (x, t), and g is the acceleration of gravity taken as 9.81m/s2. Equation (22)
describes mass conservation and equation (23) represents conservation of the linear momentum. The
coefficient ng is known as Manning roughness coefficient. It is unclear in which way this coefficient
depends on x or t. On the one hand, the roughness coefficient depends on x due to the morphological
differences of the river along its course. On the other hand, sediment deposition can also affect the
roughness coefficients over time. In (23), ng has units m1/6.

The Saint-Venant equations were solved approximately by means of an explicit diffusive finite-
difference method [13, 19] with the following specifications:

• xmin = 0 and xmax = 3000 (meters).

• tmin = 0 and tmax = 29 + 23
24 (days) or, equivalently, 719 hours or 2,588,400 seconds.

• Initial conditions z(x, tmin) given in Figure 3 and Q(x, tmin) = 3.9m3/s for all x ∈ [xmin, xmax].

• Boundary condition Q(xmin, t) given in Figure 4.

• Manning coefficient ng(x) = 0.078 for all x ∈ [xmin, xmax].

• Time step ∆t = 1 second, spatial step ∆x = 30, and diffusion coefficient 0.99.

Note that, according to the considered discretization, the finite difference method computes the values
of z(x, t) and Q(x, t) at 101 × 2588401 points. We store only the values of z(x, t) and Q(x, t) for
x = 0, 30, 60, . . . , 3000 meters and for t = 0, 1, 2, . . . , 719 hours. In other words, the “observed”
elevations are given by a matrix of 101× 720 positions. The level sets defined by this matrix is given
in Figure 5.

5 Numerical Experiments

The data used in the numerical experiments are generated as described in Section 4. The employment
of synthetic data allows us to test regression models in situations in which real data are not available.

5.1 Single-station one-dimensional models

In this short subsection, using synthetic data, we perform the same one-dimensional models experiment
described in Section 1. In this case we use the stations defined by x = 720m and x = 3000m. We wish
to verify whether the performance of the polynomial one-dimensional models for reproducing synthetic
data is similar to the performance reported for real data in Section 1. Figures 6 and 7 and Tables 3
and 4 show the results. Clearly, in terms of quality of fitting and predictions, the performance of the
polynomial models using synthetic data is similar to the one that has been reported in Section 1 for
data of the real Fork River.

5.2 Experiments using observations on a mesh

In this subsection we consider as observations data between days t = 3 and t = 1010, every 12 hours,
at 26 equally spaced stations between xmin = 0 and xmax = 3000 meters. The objective is, with these
meshed data, to predict the elevation z(x, t) at 26 the equally spaced stations between xmin = 0 and
xmax = 3000 meters and t ∈ {11, 12, . . . 29}. We consider six different ways of prediction by combining
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Figure 3: Initial condition for z used in the generation of synthetic data.
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Figure 4: Q boundary condition used in the generation of synthetic data.

two types of polynomials (interpolating and least squares) and three possible degrees (linear, quadratic
and cubic). Specifically, each of the six experiments consists of:
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Figure 5: Synthetic Elevations.

Station Polynomial RMSD c0 c1 c2 c3

72
0
m linear 1.68217006E-02 7.36053069 3.42611821E-02 −− −−

quadratic 3.84570654E-03 7.30939110 4.29580343E-02 -2.70630819E-04 −−
cubic 2.59511479E-03 7.29329906 4.73743343E-02 -5.86479099E-04 6.35214794E-06

30
00

m linear 4.19519692E-02 5.81624209 2.58508659E-02 −− −−
quadratic 1.30136586E-02 5.69169716 4.70311095E-02 -6.59092116E-04 −−
cubic 5.98388456E-03 5.62617288 6.50135886E-02 -1.94517664E-03 2.58649476E-05

Table 3: Section 5.1. Fitted polynomials, their coefficients and the corresponding RMSD using syn-
thetic data. Observations up to 30 days.

Station Polynomial
RMSD

c0 c1 c2 c3training testing

72
0
m linear 1.16720184E-02 1.94601125E-02 7.35751723 3.46560681E-02 −− −−

quadratic 2.20001211E-03 5.41537380E-03 7.30850076 4.32306214E-02 - 2.86981705E-04 −−
cubic 1.67445669E-03 3.33740105E-03 7.29464777 4.71442613E-02 - 5.87655387E-04 6.73839556E-06

30
00

m linear 3.07334766E-02 4.72819963E-02 5.81094708 2.65408393E-02 −− −−
quadratic 7.34536455E-03 2.00261102E-02 5.68333537 4.88642187E-02 - 7.47141135E-04 −−
cubic 3.07346962E-03 1.08396889E-02 5.61856923 6.71614492E-02 - 2.15286467E-03 3.15036593E-05

Table 4: Section 5.1. Fitting polynomials, their coefficients, and the corresponding RMSD using
synthetic data. In this case, observations of the first 10 days were used as training data to fit the
polynomials. Observations of the remaining 20 days were considered unknown in the fitting phase and
then they were used to test predictions given by the fitted polynomials.

Experiment 1: We assume that observed elevations correspond to instants t1 = 9.5 and t2 = 10 days

12
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Figure 6: Section 5.1. Synthetic observed elevations at a given station and their approximations as
(linear, quadratic, and cubic) polynomials of the inlet discharge. Observations up to 30 days were
used to fit the polynomials

and 26 equally spaced stations between xmin = 0 and xmax = 3000 meters. We consider that
the inlet discharge Qmin(t) at times t1 and t2 are also observed. We employ the model (5) with
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Figure 7: Section 5.1. Synthetic observed elevations at a given station and their approximation as a
(linear, quadratic, and cubic) polynomial of the inlet discharge. In this case, observations of the first
10 days were used as training data to fit the polynomials. Observations of the remaining 20 days were
considered unknown in the fitting phase and, then, they were used to test predictions produced by
the fitted polynomials.
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q = 1 and s = p − 1 = 25. Note that, due to Theorem 2.1, it is not necessary to fit explicitly
a polynomial with degree 25 in order to obtain predictions for the future at the given stations.
Using this fitting, and considering suitable forecasts for the inlet discharges, we can predict
elevations for days 11, 12, 13, . . . , 29 for 101 values of x equally spaced between xmin and xmax

and we can compare these predictions with the observed elevations. Note that, in this case,
the RMSD-error corresponding to the training set is necessarily equal to 0. The result of this
experiment is given in Table 9.

Experiment 2: Observed elevations correspond to instants t1 = 9, t2 = 9.5, and t3 = 10 days.
Elevation data correspond to these instances and the model (5) uses q = 2 and p− 1 = 25. So,
the elevation at each station is modelled by a quadratic interpolating polynomial. The result of
this experiment is given in Table 10.

Experiment 3: Observed elevations correspond to instants t1 = 8.5, t2 = 9, t3 = 9.5, and t4 = 10
days. Elevation data correspond to these instances and the model (5) uses q = 3 and p−1 = 25.
So, the elevation at each station is modelled by a cubic interpolating polynomial. The result of
this experiment is given in Table 11.

Experiment 4: Observed elevations correspond to instants t ∈ {3.5, 4, 4.5, . . . , 10} days. Elevation
data correspond to these instances and the model (5) is a line that fits the observed elevations
at those instants in the least-squares sense. The result of this experiment is given in Table 12.

Experiment 5: Observed elevations correspond to instants t ∈ {3.5, 4, 4.5, . . . , 10} days. Elevation
data correspond to these instances and the model (5) is a quadratic polynomial that fits the
observed elevations at those instants in the least-squares sense. The result of this experiment is
given in Table 13.

Experiment 6: Observed elevations correspond to instants t ∈ {3.5, 4, 4.5, . . . , 10} days. Elevation
data correspond to these instances and the model (5) is a cubic polynomial that fits the observed
elevations at those instants in the least-squares sense. The result of this experiment is given in
Table 14.

Tables 9–14 in the Appendix show the results. Figures 8 and 9 give a graphical representation of
the predictions’ RMSD as a function of t ∈ {11, 12, . . . , 29}. For each t, the RMSD of the 26 equally
spaced x ∈ [0, 3000]meters is shown. The experiment shows that polynomial interpolators of past
data are bad at extrapolating to predict the future. One reason may be that they are based on little
data and focus on capturing local behavior. Thus, the linear and quadratic options are less bad than
the cubic, which quickly goes to infinity under the influence of local behavior. On the other hand,
least squares polynomials computed with more data better capture the trend implicit in the data and
thus better predict the future. Of the three options (linear, quadratic, and cubic), the cubic provides
the best predictions.

5.3 Next-day predictions using observations on a mesh

In this experiment, we evaluate the six approaches considered in the previous subsection to predict
the “elevation of the next day”. We consider ttoday ∈ {2, 3, . . . , 28} days and ttomorrow = ttoday + 1.
Available data of z(x, t) with t multiple of half day and t ≤ ttoday was used as training data. For the
interpolating polinomials, only the most recent information was considered, while for least squares,
all available data was considered. For each of the 26 equally spaced stations x between xmin = 0 and
xmax = 3000 meters, the six approaches were used to predict the elevation z(x, ttomorrow). Table 5
shows the details. As seen in previous experiments, least squares polynomials gave very reasonable
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Figure 8: Section 5.2. RMSD of predictions of z(x, t) for t ∈ {10, 11, . . . , 29} when predictions are
given by interpolating polinomials (linear, quadratic, and cubic) computed using training data with
t < 10. For each t, the RMSD of the 26 equidistant x ∈ [0, 3000]meters is being displayed.

predictions (with an average error of 1 centimeter in the case of the cubic polynomial) and performed
better than interpolating polynomials. As expected, the cubic was better than the quadratic, which
was better than the linear. Unlike previous experiments, interpolating polynomials were also useful
in many cases, because in the present experiments we are dealing with next-day predictions, i.e.
interpolating polynomials are used to extrapolate only a little outside the interpolating range.

5.4 Next-day predictions using irregularly distributed data

In the experiments of the previous subsection, we considered observations every 12 hours between
day t = 3 and day t = 10 (15 time instants) at 26 stations equidistant between 0 and 3000 me-
ters, totalizing 390 observations. However, considering our synthetic data, in that same domain of
space (x, t) we have available data from hour to hour and at 101 equidistant stations, amounting to
101×169 = 17069 available data. With the intuition of using random subsets of data with uniform dis-
tribution, in the next experiment we draw the observations among the available data with probability
390/17069

ν ≈ 0.0288
ν , with ν ∈ {1, 2, 4}. With this way of determining the observations, we constituted

training data sets with 394, 195, and 95 elevation observations.
The experiment consists of (a) positioning nstat stations using Algorithm 4.1, (b) with the stations

already positioned solve the linear least squares problem (18) that computes the cubic polynomial of
each station, and (c) use those polynomials to predict the elevation of the “next day”, that is, the day
ttomorrow = 11 at 101 equidistant points between 0 and 3000 meters. We wish to understand how the
predictions behave for different values of nstat.

Table 6 shows the results when 394 observations are available with the number of virtual stations
varying from 2 to 100. The first column shows the number of stations. The second column reports
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Figure 9: Section 5.2. RMSD of predictions of z(x, t) for t ∈ {10, 11, . . . , 29} when predictions are
given by best fitting polinomials (linear, quadratic, and cubic) computed by solving a linear least
squares problem using training data with t ∈ {3.5, 4, 4.5, . . . , 9.5}. For each t, the RMSD of the 26
equidistant x ∈ [0, 3000]meters is being displayed.

“minobs”, the minimum number of observations that were used, given the positions of the virtual
stations, to determine each of the nstat cubic polynomials by means of least-square calculations. The
third column shows the RMSD of the training data. The last column shows the RMSD of the next-day
prediction at the 101 points equidistant between 0 and 3000 meters. It is clear from the figures in the
table that the RMSD of the training data decreases monotonically as the number of stations increases.
On the other hand, the RMSD of the next-day prediction remains more or less constant (between 3
and 6 centimeters) when the number of virtual stations is between 2 and 49 and deteriorates rapidly
when this number is 50 or more. In fact, the optimal number of virtual stations is, in this case, 19.
For completeness, in this case we report the results up to 100 virtual stations.

In Table 7 and Table 8 we report the same type of results when the number of available observations
is 185 and 95, respectively. In the first case, the number of virtual stations goes from 2 to 37 and in
the second case it goes from 2 to 19 because larger numbers of virtual stations yield prediction errors
that are bigger than 1 meter. Again, the error in the training set decreases with the number of virtual
stations, as the number of free parameters is increased.

6 Conclusions

This paper discusses the potential of methods based on surface elevation data alone for predicting
river levels, provided that reliable inlet discharge forecasts Q(xmin, t) are available. We have focused
on low-degree polynomial models because they are simple and economical in terms of the number of
unknown parameters. The various alternatives presented in this paper can be considered successful
in the sense that they provide results that are accurate enough for predicting the levels of real rivers.
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ttoday

Interpolating Fitting
polynomial of degree: polynomial of degree:
1 2 3 1 2 3

2 0.0062 0.0069 0.0199 0.0141 0.0021 0.0199
3 0.0130 0.0679 0.4752 0.0421 0.0219 0.0426
4 0.0051 0.0011 0.0033 0.0302 0.0108 0.0057
5 0.0014 0.0154 0.0348 0.0329 0.0142 0.0043
6 0.0086 0.0120 0.0150 0.0248 0.0094 0.0022
7 0.0071 0.0071 0.0071 0.0266 0.0105 0.0052
8 0.0021 0.0005 0.0141 0.0176 0.0028 0.0047
9 0.0035 0.0038 0.0041 0.0303 0.0075 0.0030
10 0.0163 0.0295 0.5743 0.0461 0.0225 0.0055
11 0.0083 0.0018 0.0056 0.0035 0.0024 0.0056
12 0.0008 0.0030 0.0034 0.0133 0.0013 0.0037
13 0.0905 0.0246 1.1340 0.0357 0.0131 0.0053
14 0.0199 0.0089 0.0180 0.0043 0.0113 0.0081
15 0.0162 0.0038 0.0069 0.0484 0.0079 0.0010
16 0.0063 0.0122 0.0163 0.0600 0.0165 0.0059
17 3.7608 1.0794 0.2602 0.0075 0.0045 0.0021
18 0.0290 0.0174 3.9772 0.0297 0.0090 0.0008
19 0.0168 0.0198 0.0503 0.0391 0.0057 0.0012
20 0.0104 0.0121 0.0124 0.0405 0.0046 0.0021
21 0.0281 0.0142 0.3077 0.0299 0.0129 0.0055
22 0.0353 0.0331 0.0751 0.0174 0.0052 0.0060
23 0.0173 0.0048 0.0022 0.0656 0.0194 0.0076
24 0.0018 0.0015 0.0014 0.0635 0.0199 0.0094
25 0.0126 0.7339 3.3581 0.0019 0.0079 0.0043
26 0.0806 0.1488 0.2467 0.0230 0.0113 0.0035
27 0.0224 0.0517 0.3592 0.0396 0.0099 0.0030
28 0.0075 0.0044 0.0029 0.0430 0.0107 0.0054

0.7243 0.2537 1.0417 0.0353 0.0118 0.0102

Table 5: Section 5.3. For a given day ttoday and a given experiment (interpolating or fitting polynomial
of degree 1, 2, or 3) the table shows the RMSD of the next-day predicted elevation of all 26 stations.
The last row shows the overall RMSD of each approach.

In particular, the strategy of virtual stations presented in this paper seems to be useful in the case
where observations are irregularly distributed. Moreover, this strategy preserves the best third-order
polynomial approximations in the regularly distributed case.

It is interesting to consider the problem of predicting flow-rates Q(x, t) from elevation observations
z(x, t) only. From the mass-conservation equation we have that

∂A

∂t
+

∂Q

∂x
= 0.

Therefore,

Q(x, t) = Q(xmin, t)−
∫ x

xmin

∂A

∂t
(ξ, t)dξ.
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Virtual stations minobs RMSD training RMSD testing Virtual stations minobs RMSD training RMSD testing

2 394 5.3283820057185995E-002 6.1583164478249554E-002 52 10 8.0329354317997658E-003 0.12968356044883630
3 194 3.2648300820944318E-002 4.3726318071762964E-002 53 10 8.0306312766861461E-003 0.12972255677477529
4 101 3.2573813718738569E-002 4.5187290605368642E-002 54 10 8.0187525830073773E-003 0.12981398947867417
5 96 3.2349694130166182E-002 4.6027937601361361E-002 55 9 8.0179333149921674E-003 0.12982155115549487
6 96 3.1639597470529801E-002 4.8685500605615238E-002 56 9 8.0079086981791198E-003 0.12997349516966566
7 96 2.2853081231014000E-002 3.5410636986479435E-002 57 9 7.9116879215693353E-003 0.13080885606219347
8 47 2.2333106995790799E-002 3.4395169668978959E-002 58 9 7.1120982718531822E-003 0.12975686606923589
9 47 2.2005150036587609E-002 3.5766673494248759E-002 59 9 7.0527831979785103E-003 0.12960764964637364
10 47 1.9266463631366117E-002 3.4100377670761683E-002 60 9 6.8200629596160949E-003 0.12970197134584049
11 47 1.8330036730951786E-002 3.8099252360178991E-002 61 9 6.8099002730974117E-003 0.13443085010705041
12 47 1.8247387283753448E-002 3.9287689605826834E-002 62 9 6.7569652637862266E-003 0.13432463882639850
13 47 1.6544563006014871E-002 3.6201727385641792E-002 63 8 6.7551245197326791E-003 0.13450127671524303
14 46 1.6109150476189795E-002 3.4048905093485481E-002 64 8 6.7356313704111668E-003 0.14227538180090210
15 46 1.5513927451101283E-002 3.2651624306286674E-002 65 8 6.7297367192108533E-003 0.15228129547423630
16 26 1.5337223488082084E-002 3.2449894571859761E-002 66 8 6.7266867935987414E-003 0.71829333520509586
17 26 1.5158717471376091E-002 3.2345999462907726E-002 67 3 6.7264323627948203E-003 0.71833153306163988
18 13 1.5156034949535248E-002 3.2305120343670203E-002 68 3 4.7223533876023351E-003 0.71808112648009770
19 13 1.5034755623023519E-002 3.1751814157051458E-002 69 3 4.6359280777656803E-003 0.80170172105254001
20 13 1.5018746780348795E-002 3.2280097922278560E-002 70 3 4.6330920332480260E-003 0.84002240218473490
21 13 1.4923539265815706E-002 3.3525846097928733E-002 71 3 4.6122345451842994E-003 0.83973278380279726
22 13 1.4859547396657539E-002 3.4453557117947238E-002 72 3 4.6102751068605808E-003 1.5559016307267453
23 13 1.3691065318011980E-002 5.3843426618723260E-002 73 3 4.5875787632858409E-003 1.5560072582416900
24 13 1.3659881827357711E-002 5.4143100409803191E-002 74 3 4.4777490065165777E-003 1.5562018595829066
25 13 1.3263279056685832E-002 5.3164207679156618E-002 75 3 4.4755600778543063E-003 1.6023004097916536
26 13 1.3175509007241182E-002 5.2752211202618811E-002 76 3 4.3307476396778153E-003 1.6026236880641358
27 13 1.2893886036635917E-002 5.3294152115026458E-002 77 3 3.9620225228191950E-003 1.6027498818868846
28 13 1.2272901759381408E-002 5.3934282047854318E-002 78 3 2.8886317493116574E-003 1.6104032246579405
29 13 1.2090872110758055E-002 5.5372017107663166E-002 79 3 2.8869280012161587E-003 1.6211332816669319
30 13 1.2043880504159150E-002 5.6348350230236106E-002 80 3 2.8599432980772987E-003 1.8984411394933036
31 13 1.1923895103591405E-002 5.6647214439744825E-002 81 3 2.7391034801038162E-003 1.8988767221527962
32 13 1.1864076693219016E-002 5.6304646204128742E-002 82 3 2.5652606094846665E-003 1.9160614771120590
33 13 1.1682392020077523E-002 5.7208920168502021E-002 83 3 2.5267865337923233E-003 1.9168010751012954
34 13 1.1670097881090850E-002 5.6984529825676034E-002 84 3 2.3775396132823608E-003 2.3251907404973591
35 13 1.1628659265365073E-002 5.5947727821659403E-002 85 3 2.3001696336729283E-003 2.3255810361822524
36 13 1.0416666600669637E-002 3.7676481978826011E-002 86 3 2.2706294451196921E-003 2.3784129971256784
37 13 1.0399791281676873E-002 3.7889247768345305E-002 87 3 2.1418982774388468E-003 2.3898547222289541
38 13 1.0383501483021772E-002 3.7653477041362522E-002 88 3 2.1403856079314533E-003 2.3907039892197419
39 13 9.9227025361913641E-003 3.8432530450767118E-002 89 3 2.1403856079314563E-003 2.4025492211247181
40 13 9.8817703068327638E-003 3.7475166481987364E-002 90 3 2.1403856079314503E-003 2.4257624451134867
41 12 9.5545957721222922E-003 3.8662642310044168E-002 91 3 1.2241141853634287E-003 2.7471502163021850
42 12 9.5259047134240975E-003 3.8864212195983724E-002 92 3 1.1935575705138712E-003 2.7739273204290273
43 12 9.5068693663715384E-003 3.9334825174204911E-002 93 3 1.1935575705138105E-003 2.7914574146435789
44 12 9.4031730453848442E-003 4.0138579708408451E-002 94 3 1.1935575705138755E-003 10.769455041417071
45 11 9.3878986230084352E-003 4.0381481232975115E-002 95 3 1.1935575705138961E-003 13.194184220825461
46 11 9.2827157053270003E-003 4.1040039457329369E-002 96 3 1.1919087363459152E-003 15.209373170340974
47 11 9.1301445568780712E-003 4.3543218230213378E-002 97 3 1.0625333177912046E-003 16.484479467068468
48 11 8.4370965844998008E-003 4.3316691550977185E-002 98 3 1.0625333177911834E-003 18.255510661328792
49 11 8.4166324951854554E-003 4.3061145849278733E-002 99 3 1.0625333177911502E-003 18.414545717188812
50 11 8.2245582976612011E-003 0.12923190100341689 100 3 1.0625333177912118E-003 18.510711323780274
51 10 8.2013285286650847E-003 0.12971323080775976

Table 6: Section 5.4. 394 random observations in the first 10 days. Effect of increasing the number of
virtual stations. Reporting training and test.

So, if we have a good approximation for A(x, t), then we can obtain, in principle, a good approximation
of Q(x, t) [6]. Moreover, according to the results of the present paper, a good approximation of z(x, t)
can be obtained using elevation observations and Qmin forecasts. Unfortunately, the cross wetted area
A(x, t) can be obtained from z(x, t) only if we already know the bed elevation zb(x) and the geometric
characteristics of the channel. This is the information that we have considered uncertain, and whose
use we have tried to avoid above under the “only elevation” approach of the present paper. Therefore,
predicting flow rates from data alone is more problematic than predicting surface elevations, and this
issue deserves future study.
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Virtual stations minobs RMSD training RMSD testing

2 185 5.1248811463696108E-002 7.4089510567510924E-002
3 91 3.2529197002708163E-002 3.5519815707586833E-002
4 47 3.1284750173733118E-002 4.3991827708239235E-002
5 46 2.9878458008594868E-002 8.3143696581750387E-002
6 46 2.2450370975549642E-002 6.8068533438989373E-002
7 22 2.1764814785424559E-002 6.5415859677875707E-002
8 22 2.0766831805240742E-002 6.7534463202462633E-002
9 22 2.0573231136337876E-002 6.6790025825457275E-002
10 22 2.0104363353167974E-002 6.3158699486610168E-002
11 22 1.8826320026367610E-002 7.3860255266057703E-002
12 22 1.8270195922934992E-002 9.1669436715929684E-002
13 22 1.5006593710845378E-002 7.7134955384989309E-002
14 10 1.4856901876581540E-002 7.7603153454404841E-002
15 10 1.4558586705511977E-002 7.0383131196731591E-002
16 10 1.4367127212092557E-002 7.2430701225312186E-002
17 10 1.4056078954309907E-002 7.6150540705157130E-002
18 10 1.3944065662380992E-002 7.3380393469394803E-002
19 10 1.2663706268095641E-002 9.2371846936037255E-002
20 10 1.2527967989703639E-002 9.3799256133081668E-002
21 10 1.2452824633423691E-002 9.2679586134847808E-002
22 10 1.2430540420894570E-002 9.2397760084283950E-002
23 8 1.2308000711774588E-002 0.10149722107077552
24 8 1.2170734928201659E-002 0.10745970660633239
25 8 1.0773903953212724E-002 0.11569597875671561
26 8 1.0703768079820394E-002 0.12342432166878507
27 8 8.0880895546961377E-003 0.13473581683984887
28 5 8.0856468697171491E-003 0.13471641725588770
29 5 8.0624368937640255E-003 0.13730815995101689
30 5 7.5576773867298457E-003 0.14055458227230450
31 5 7.4451793362722103E-003 0.14283338653559183
32 5 7.3306658105015731E-003 0.15803100201596343
33 5 6.9433436122286933E-003 0.20812431672514720
34 5 6.7419124067725706E-003 0.84362496442554258
35 5 6.7171350118954724E-003 0.84673106438894241
36 5 5.1430668400310421E-003 0.89984696571610800
37 5 2.7526193304603067E-003 1.5797211827586006

Table 7: Section 5.4. 185 random observations in the first 10 days. Effect of increasing the number of
virtual stations. Reporting training and test RMSD.
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[19] R. M. Porto, Hidráulica Básica, EESC-USP, São Paulo, 2000.
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Table 9: Section 5.2. For each value of x in the first column, predictions for t > 10 days use data
observed at t1 = 9.5 and t2 = 10 days. Observed data correspond to z(x, t1) and z(x, t2) and the
prediction is given by the linear polynomial in Qmin(t) that interpolates the data. Each cell of the
table shows |zpred(x, t)− z(x, t)|, where values of z(x, t) correspond to synthetic data that is not used
in the prediction. The last line in the table shows the RMSD for each t.
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Table 10: Section 5.2. For each value of x in the first column, predictions for t > 10 days use data
observed at t1 = 9, t2 = 9.5, and t3 = 10 days. Observed data correspond to z(x, t1), z(x, t2), and
z(x, t3) and the prediction is given by the quadratic polynomial in Qmin(t) that interpolates the data.
Each cell of the table shows |zpred(x, t)− z(x, t)|, where values of z(x, t) correspond to synthetic data
that is not used in the prediction. The last line in the table shows the RMSD for each t.
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Table 11: Section 5.2. For each value of x in the first column, predictions for t > 10 days use data
observed at t1 = 8.5, t2 = 9, t3 = 9.5, and t4 = 10 days. Observed data correspond to z(x, t1), z(x, t2),
z(x, t3), and z(x, t4) and the prediction is given by the cubic polynomial in Qmin(t) that interpolates the
data. Each cell of the table shows |zpred(x, t)− z(x, t)|, where values of z(x, t) correspond to synthetic
data that is not used in the prediction. The last line in the table shows the RMSD for each t.
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Table 12: Section 5.2. For each value of x in the first column, predictions for t > 10 days use data
observed at t ∈ {3.5, 4, 4.5, . . . , 10} days. Observed data correspond to z(x, t) and the prediction is
given by the best fitting linear polynomial (solution of a linear least squares problem). Each cell of
the table shows |zpred(x, t)− z(x, t)|. In the left-hand part of the table, values of z(x, t) correspond to
synthetic trainind data (used in the fitting), while in the right-hand part of the table z(x, t) correspond
to synthetic (testing) data that is not being used in the fitting. The last line in the table shows the
RMSD for each t.
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Table 13: Section 5.2. For each value of x in the first column, predictions for t > 10 days use data
observed at t ∈ {3.5, 4, 4.5, . . . , 10} days. Observed data correspond to z(x, t) and the prediction is
given by the best fitting quadratic polynomial (solution of a linear least squares problem). Each cell of
the table shows |zpred(x, t)− z(x, t)|. In the left-hand part of the table, values of z(x, t) correspond to
synthetic trainind data (used in the fitting), while in the right-hand part of the table z(x, t) correspond
to synthetic (testing) data that is not being used in the fitting. The last line in the table shows the
RMSD for each t.
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0.
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0
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9

0
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0
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0
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0
.0
1
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0
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0
1
1

0
.0
3
1
9

0
.0
3
7
5

0
.0
0
2
6

0
.0
0
5
3

0
.0
0
9
6

0
.0
1
2
7
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00

0.
00
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0.
00
50

0.
00
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0.
00
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0.
00
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0.
01
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0.
02
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0.
00
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0.
0
02
5

0
.0
0
33

0.
0
04
7

0
.0
0
86

0
.0
0
1
5

0
.0
2
9
6

0
.0
3
4
5

0
.0
0
2
7

0
.0
0
4
6

0
.0
0
8
0

0
.0
1
0
4

0.
00
96

0.
00
60

0.
00
63

0.
00
61

0.
00
43

0.
01
06

0.
01
88

0.
00
41

0.
0
01
9

0
.0
0
30

0.
0
04
7

0
.0
0
70

0
.0
0
3
4

0
.0
2
2
8

0
.0
2
6
0

0
.0
0
2
7

0
.0
0
3
6

0
.0
0
6
8

0
.0
0
9
2

Table 14: Section 5.2. For each value of x in the first column, predictions for t > 10 days use data
observed at t ∈ {3.5, 4, 4.5, . . . , 10} days. Observed data correspond to z(x, t) and the prediction is
given by the best fitting cubic polynomial (solution of a linear least squares problem). Each cell of the
table shows |zpred(x, t) − z(x, t)|. In the left-hand part of the table, values of z(x, t) correspond to
synthetic trainind data (used in the fitting), while in the right-hand part of the table z(x, t) correspond
to synthetic (testing) data that is not being used in the fitting. The last line in the table shows the
RMSD for each t.
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