On polynomial predictions for river flows*

E. G. Birgin ${ }^{\dagger}$ J. M. Martínez ${ }^{\ddagger}$

December 18, 2023

Abstract

This paper deals with the prediction of river levels by means of polynomial regression models using only elevation data and inflow forecasts. Different models for this purpose are examined and a new approach based on the concept of virtual stations is presented. Detailed numerical experiments show that this proposal may be useful as a tool for making predictions when the physical characteristics of the river are uncertain.

Key words: Flow predictions, natural rivers, Saint-Venant equations, parameter estimation.

1 Introduction

River flow modelling is an important tool for analysing and predicting dam failures and their consequences. The main mathematical procedure for this task is based on the solution of partial differential equations (PDE). The equations of Saint Venant [20] are the best known equations for this purpose. Their numerical solution requires initial and boundary conditions in terms of river wetted cross-sections and flow-rates. In addition, geometric descriptions of the cross sections and bed elevations are required. Finally, Manning roughness coefficients, which may be spatially and temporally dependent, must be determined. See [1, 2, 3, 5, [4, 6, 7, 8, 11, 12, 13, 14, 17, 18, 19, 20, 21].

Typically, partial observations of river surface elevations at different spatial and temporal coordinates are available. These observations make it possible the estimation of the unknown characteristics of the river, which are necessary for the numerical integration of the partial differential equations. The resulting PDE-constrained parameter estimation problem can be difficult to solve, requires integration of the PDE's for different instances, and is subject to instability and lack of reliability of results. However, this problem has been the subject of valuable research over many years. See [1, 2, 3, 5, 6, 7, 8, 11, 14, 15, 17, 18].

The PDE approach obtains predictions by means of the estimation of unknown physical characteristics and associated PDE integration. Moreover, the estimation of unknown physical characteristics is based on fitting the direct solution of the PDE's to available observations. This suggests the possibility of obtaining river predictions directly from available data without the need to estimate the physical characteristics of the river. The obvious drawback of this approach relies on the fact that

[^0]we do not have reliable physical models that directly link observations to predictions. For this reason we believe that data-based predictions should generally be considered in conjunction with PDE predictions, although the specific form of this relation is highly problem-dependent [6].

Reliable data-based approaches should start with a reliable identification of cause-effect relationships. For example, in the case of river flow phenomena, a high correlation may be found between upstream discharge and downstream elevations. Obviously, upstream discharges are the cause of downstream elevations and not the other way round. If a cause-effect relationship is established, the next step could be to propose an appropriate form of dependence relationship, the specific form of which should be based on previous data analysis.

Let us consider an example that is well suited to introduce and motivate the rest of this paper. It has been widely observed that water elevation at an arbitrary fixed station of a natural river is a smooth function of the upstream (inlet) flow-rate. See [12] and [2, Fig.12b]. In Figure 1, we consider data for the Fork River published in [9]. Figure 1a shows observations of the elevation z corresponding to the section $x=751 \mathrm{~m}$, together with linear, quadratic and cubic polynomials representing elevation as a function of the inflow rate $Q_{\text {min }}\left(\right.$ in $\left.m^{3} / s\right)$. The polynomials were fitted using simple least squares. Figure 1 b shows the same information but related to the section $x=3256 \mathrm{~m}$. The observations are taken every 12 hours starting at zero hours on day 3 . The polynomial coefficients and the corresponding root mean square deviation (RMSD) are given in Table 1 .

Station	Polynomial	RMSD	c_{0}	c_{1}	c_{2}	c_{3}
就	linear quadratic cubic	8.69579603E-02	7.35113673	$3.75568519 \mathrm{E}-02$	--	--
		$2.69668513 \mathrm{E}-02$	7.08338033	8.19336547E-02	-1.36086954E-03	--
		$2.42162234 \mathrm{E}-02$	7.01642805	$9.97412870 \mathrm{E}-02$	-2.60953038E-03	$2.47226020 \mathrm{E}-05$
E000	linear quadratic cubic	$6.02123240 \mathrm{E}-02$	5.44084782	$3.91356263 \mathrm{E}-02$	--	
		$3.13462816 \mathrm{E}-02$	5.28175904	$6.62052107 \mathrm{E}-02$	-8.39381211E-04	--
		$3.07813747 \mathrm{E}-02$	5.24970397	$7.49278445 \mathrm{E}-02$	-1.45802975E-03	$1.23271897 \mathrm{E}-05$

Table 1: Fork river: fitting polynomials, their coefficients, and the corresponding RMSD (in meters).
It is interesting to fit the data of, say, the first 10 days and observe if the approximating curves fit well the data for the remaining days. Figure 2 and Table 2 show the results. Throughout this paper surface elevations and the corresponding RMSD errors are expressed in meters. So, for example, the testing error of the cubic polynomial for $x=751 \mathrm{~m}$ meters is 4.80 cm according to Table 2. This error is quite small for practical prediction purposes regarding a real river.

Station	Polynomial	RMSD		c_{0}	c_{1}	c_{2}	c_{3}
		training	testing				
ઘ	linear	$4.36362260 \mathrm{E}-02$	$2.24297179 \mathrm{E}-01$	7.66210301	$2.34403945 \mathrm{E}-02$	--	--
$\stackrel{12}{20}$	quadratic	$1.97586581 \mathrm{E}-02$	$1.11828660 \mathrm{E}-01$	7.33545084	$5.90878962 \mathrm{E}-02$	-8.67373515E-04	--
へ	cubic	$1.06148710 \mathrm{E}-02$	$4.79787043 \mathrm{E}-02$	6.94435497	$1.24958948 \mathrm{E}-01$	$-4.23241309 \mathrm{E}-03$	$5.33788086 \mathrm{E}-05$
\ddagger	linear	$4.41380828 \mathrm{E}-02$	$1.67298488 \mathrm{E}-01$	5.67319985	$2.89537322 \mathrm{E}-02$	-	-
-	quadratic	$3.43615061 \mathrm{E}-02$	$8.69890046 \mathrm{E}-02$	5.44061014	$5.43362118 \mathrm{E}-02$	-6.17605427E-04	-
\bigcirc	cubic	$2.73302025 \mathrm{E}-02$	$7.05794611 \mathrm{E}-02$	4.95184090	$1.36658084 \mathrm{E}-01$	-4.82303941E-03	$6.67097817 \mathrm{E}-05$

Table 2: Fork river: Fitting polynomials, their coefficients, and the corresponding RMSD. In this case, observations of the first 10 days were used as training data to fit the polynomials. The remaining observations (20 or 21 days for Sections $x=751 \mathrm{~m}$ and Section $x=3256 \mathrm{~m}$, respectively) were not used in the fitting (training) phase and, then, were used to test the predictions provided by the fitted polynomials.

Figure 1: Fork river: Observed elevations at a given station and their approximation as a (linear, quadratic and cubic) fitting polynomial of the inlet discharge.

These results suggest that, for predicting elevations at a fixed station x in "future days" under suitable forecast on the inlet discharge, it is enough to fit the curve of the surface elevation $z(x, t)$ versus $Q_{\min }(t)$ using available data at station x, with the reasonable belief that, in the next days, this

Figure 2: Fork river: Observed elevations at a given station and their approximation as a (linear, quadratic and cubic) fitting polynomial of the inlet discharge. In this case, observations of the first 10 days were used as training data to fit the polynomials. The remaining observations (20 or 21 days for Sections $x=751 \mathrm{~m}$ and Section $x=3256 \mathrm{~m}$, respectively) were not used in the fitting (training) phase and, then, were used to test the predictions provided by the fitted polynomials.
curve will provide reasonable elevation estimates, provided that inlet discharge forecasts are reliable. In fact, this should be the case if one has data for a suitable number of days before "today" and for all the relevant stations along the river. Unfortunately both situations are unlike to occur. Usually, one needs previsions for the future employing a possibly moderate number of past data at a possibly moderate number of stations x.

For example, according to Table 1, for $x=751 \mathrm{~m}$, the best third-order polynomial that represents $z(x, t)$ as a function of $Q_{\min }(t)$ is given by

$$
\begin{equation*}
z(751, t) \approx 7.02+9.97 \times 10^{-2} Q_{\min }(t)-2.61 \times 10^{-3} Q_{\min }(t)^{2}+2.47 \times 10^{-5} Q_{\min }(t)^{3}, \tag{1}
\end{equation*}
$$

while, for $x=3256 \mathrm{~m}$, the best third-order polynomial that represents $z(x, t)$ as a function of $Q_{\text {min }}(t)$ is given by

$$
\begin{equation*}
z(3256, t) \approx 5.25+7.49 \times 10^{-2} Q_{\min }(t)-1.46 \times 10^{-3} Q_{\min }(t)^{2}+1.23 \times 10^{-5} Q_{\min }(t)^{3} . \tag{2}
\end{equation*}
$$

However, if $x \notin\{751,3256\}$, we do not know, for example, which is the best third-order polynomial that fits the elevations $z(x, t)$ at Section $x=555 \mathrm{~m}$ as a function of $Q_{\min }(t)$. This question is addressed in the present paper.

We will start from the empirical observation that, in real rivers, inlet discharge is the dominant cause of river elevations at different stations. This fact supports the idea that, given a spatial position x, the elevation $z(x, t)$ can be well approximated by a low-order polynomial $P\left(Q_{\min }(t)\right)$. We will see that third-order polynomials are the more appropriate for this purpose. In order to recover elevations at stations x that are not represented in the data we analyse the employment of two-dimensional polynomials in the variables x and $Q_{\min }(t)$. However, the need to preserve the accuracy of the onedimensional fits leads us to propose a different strategy based on the concept of "virtual stations". This paper proposes an algorithm for selecting suitable virtual stations and demonstrates its reliability through detailed numerical experiments.

This research is conducted within CRIAB, a Latin-American academic group that involves collaborators of several countries. The group is dedicated to analyzing, comprehending and mitigating dam-breaking and related accidents. River modelling is one of the techniques that must be mastered in the broader landscape of modelling embankments and basins. Optimization regression techniques are among the tools used for this purpose.

This paper is organized as follows. Section 2 analyses the compatibility of one-dimensional regression with two-variable polynomial fitting. Section 3 introduces the method of virtual stations and describes the algorithm that will be used in the experiments. Section 4 describe the generation of synthetic data. Numerical experiments are reported in Section 5, while conclusions and future research directions are presented in Section 6.

Notation. \#A will denote the number of elements of the set A. If A and B are sets, $A \backslash B$ denotes the set of elements of A that do not belong to B.

2 Two-variable polynomial fitting

Consider an arbitrary one-dimensional flow where the spatial (length) coordinate x goes from $x_{\text {min }}$ to $x_{\max }$. The surface elevation for space coordinate x and time coordinate t will be denoted $z(x, t)$. Assume that at p different stations $x_{1}, \ldots, x_{p} \in\left[x_{\min }, x_{\max }\right]$ we have observations of surface elevations at different times. The inlet discharge (flow-rate at $x=x_{\min }$) at time $t \in\left[t_{\min }, t_{\max }\right]$ is denoted $Q_{\min }(t)$. For simplicity, if confusion is not possible, we omit the dependence of t in this notation (denoting $\left.Q_{\min }=Q_{\min }(t)\right)$. Assume that, at each station x_{j}, we fit a polynomial $P_{j}\left(Q_{\min }\right)$ with
degree q, in the least-squares sense, in order to minimize the deviations with respect to measured elevations.

We may consider the model

$$
\begin{equation*}
z(x, t) \approx W_{1}(x) P_{1}\left(Q_{\min }(t)\right)+\cdots+W_{p}(x) P_{p}\left(Q_{\min }(t)\right) \tag{3}
\end{equation*}
$$

where, for all $j=1, \ldots, p, W_{j}(x)$ is a polynomial with degree $p-1$ such that $W_{j}\left(x_{j}\right)=1$ and $W_{j}\left(x_{\ell}\right)=0$ if $\ell \neq j$. Namely,

$$
\begin{equation*}
W_{j}(x)=\frac{\prod_{i \neq j}\left(x-x_{j}\right)}{\prod_{i \neq j}\left(x_{i}-x_{j}\right)} . \tag{4}
\end{equation*}
$$

The right-hand side of (3) is a sum of $p(q+1)$ monomials of the form $\gamma_{i, j} x^{i} Q_{\text {min }}^{j}$ for $i=0,1, \ldots, p-1$ and $j=0,1, \ldots, q$.

This suggests the model

$$
\begin{equation*}
z(x, t) \approx \sum_{i=0}^{s} \sum_{j=0}^{q} \gamma_{i, j} x^{i} Q_{\min }(t)^{j} \tag{5}
\end{equation*}
$$

In (5), we postulate that the elevation at each point (x, t) is a two-variable polynomial with variables x and $Q_{\min }(t)$, with degree s in the variable x and degree q in the variable $Q_{\text {min }}$. Note that in (3) we have that $s=p-1$.

The model (5) induces a linear least-squares problem, in which the coefficients $\gamma_{i, j}$ are the unknowns and observations are available at different stations and times. We wonder whether, if observations are given at a finite number of stations $x_{1}, \ldots x_{p}$, the solution of the least-squares problem comes from addressing p separate least squares problems, one corresponding to each station. In this case, we could compute the best polynomial of degree q with respect to measurements at the considered station and the predicted values at arbitrary points (x, t) would come from interpolation according to (3) and (4).

The following theorem gives an answer to this question.
Theorem 2.1 Assume that elevations $z_{k, \ell}$ are given at p stations $x_{k}, k=1, \ldots, p$, and time instants $t_{\ell}, \ell=1, \ldots, r_{k}$. Assume, moreover, that for each observed $z_{k, \ell}$ the inlet flow $Q_{\min }\left(t_{\ell}\right)$ (in short Q_{ℓ}) is known. Consider the linear least-squares problems

$$
\begin{equation*}
\text { Minimize } \sum_{k=1}^{p} \sum_{\ell=1}^{r_{k}}\left[\sum_{j=0}^{q} \sum_{i=0}^{s} \gamma_{i, j} x_{k}^{i} Q_{\ell}^{j}-z_{k, \ell}\right]^{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { Minimize } \sum_{k=1}^{p} \sum_{\ell=1}^{r_{k}}\left[\sum_{j=0}^{q} \beta_{k, j} Q_{\ell}^{j}-z_{k, \ell}\right]^{2} . \tag{7}
\end{equation*}
$$

Then, the objective function value at the solution of (7) is less than or equal to the objective function value at the solution of (6). Moreover, if $s \geq p-1$ both objective functions are identical at respective solutions.

Proof: Problem (6) is equivalent to

$$
\begin{equation*}
\operatorname{Minimize} \sum_{k=1}^{p} \sum_{\ell=1}^{r_{k}}\left[\sum_{j=0}^{q} \beta_{k, j} Q_{\ell}^{j}-z_{k, \ell}\right]^{2} \tag{8}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\beta_{k, j}=\sum_{i=0}^{s} \gamma_{i, j} x_{k}^{i} \text { for all } k=1, \ldots, p, j=0,1, \ldots, q \tag{9}
\end{equation*}
$$

Therefore, problem (6) is equivalent to problem (7) with the additional constraints (9). So, the feasible region of (7) contains the feasible region of (89). This implies that the objective function of (7) at its solution is smaller than or equal to the objective function of (89) at its solution. Both objective function values are identical if the feasible region of (7) is the same as the feasible region of (899), that is, if for all $\beta_{k, j} \in \mathbb{R}$ there exist $\gamma_{i, j}$ such that the identity (9) holds. This would mean that the linear system (9) (with unknowns $\gamma_{i, j}$) and independent term given by $\beta_{k, j}$) is compatible.

By (9), for $j=0,1, \ldots, q$, we have

$$
\begin{gather*}
\beta_{1, j}=\gamma_{0, j} x_{1}^{0}+\gamma_{1, j} x_{1}^{1}+\cdots+\gamma_{s, j} x_{1}^{s} \tag{10}\\
\beta_{2, j}=\gamma_{0, j} x_{2}^{0}+\gamma_{1, j} x_{2}^{1}+\cdots+\gamma_{s, j} x_{2}^{s} \tag{11}\\
\cdots \tag{12}\\
\beta_{p, j}=\gamma_{0, j} x_{p}^{0}+\gamma_{1, j} x_{2}^{1}+\cdots+\gamma_{s, j} x_{p}^{s}
\end{gather*}
$$

If $s<p-1$ the systems (10) are overdetermined and the solution set may be empty. In that case, the objective function value at the solution of (6) could be bigger than the objective function value at the solution of (7). If $s=p-1$, for each $j=0,1, \ldots, q$, the equations (10)-(12) define a $p \times p$ Vandermonde system. See [10, pp.203-207]. So, the $q+1$ systems (10-12) are compatible and the unknowns $\gamma_{0, j}, \ldots, \gamma_{p-1, j}$ are (uniquely) determined by the constraints (9). If $s>p-1$ the systems (10)- 12 are underdetermined and particular solutions come from completing the solutions of the case $s=p-1$ with $\gamma_{p, j}=\ldots, \gamma_{s}=0$. Therefore, when $s \geq p-1$, the constraints (9) do not impose any constraint at all to the solution of (8). Thus, the problems (6) and (7) are equivalent when $s \geq p-1$. This completes the proof.

However, if observations $z_{\mathrm{obs}}\left(x_{k}, t_{k}\right)$ are available at different times and stations $\left(x_{k}, t_{k}\right), k \in K_{\mathrm{obs}}$, we must rely directly on the least squares problems induced by (5). Namely,

$$
\begin{equation*}
\text { Minimize } \sum_{k \in K_{\mathrm{obs}}}\left[\sum_{i=0}^{s} \sum_{j=0}^{q} \gamma_{i, j} x_{k}^{i} Q_{\min }\left(t_{k}\right)^{j}-z_{\mathrm{obs}}\left(x_{k}, t_{k}\right)\right]^{2} . \tag{13}
\end{equation*}
$$

Note that problems of the form (6) are of the form (13) but the reciprocal is not true. Observe, moreover, that the number of parameters $\gamma_{i j}$ that are estimated when we use (13) is $(s+1)(q+1)$, where s is the degree of the polynomial with respect to the variable x and q is the degree of the polynomial with respect to the variable $Q_{\text {min }}$.

3 Method of virtual stations

Assume that we have p observation stations with spatial coordinates x_{1}, \ldots, x_{p} and that, for all $i=1, \ldots, p, N_{i}$ elevation observations are available for N_{i} different temporal coordinates. It is plausible that, as suggested in Section 1, and as will be confirmed by forthcoming experiments, the best model for the predicted elevations at any given station should come from a least-squares fitting of a suitable polynomial using the observed associated elevations. If the degree of each polynomial is q, the number of coefficients of this model is $p(q+1)$. It is disappointing that this number is, in
general, bigger than $(s+1)(q+1)$, which is the number of coefficients associated with the two-variable polynomial model discussed in Section 2 . Therefore, solving (13) does not lead to the likely optimal elevation prediction, given the data availability mentioned in this paragraph.

On the other hand, the procedure based on (13) seems to be suitable for the case where one has observations at different space-time positions, not necessarily concentrated at fixed stations. In this section we will assume that available elevation data $z_{\text {obs }}\left(x_{k}, t_{k}\right)$ are given at $n_{\text {dat }}$ space-time points $\left(x_{k}, t_{k}\right)$ for $k=1, \ldots, n_{\text {dat }}$. We also assume that inlet discharge $Q_{\min }(t)$ is available whenever necessary.

We consider that $x_{\min } \leq \bar{x}_{1}<\bar{x}_{2}<\cdots<\bar{x}_{n_{s t a t}} \leq x_{\max }$. Each spatial position \bar{x}_{j} will be called "virtual station". The unknowns of our problem will be the coefficients $c_{0, j}, c_{1, j}, c_{2, j}, c_{3, j}$ for all $j=1, \ldots n_{\text {stat }}$. Note that our fitting problem has $4 n_{\text {stat }}$ unknowns. The objective function f will be a sum of squared errors, each error corresponding to an elevation observation. Namely,

$$
\begin{equation*}
f(c)=\sum_{k=1}^{n_{\mathrm{dat}}}\left[z_{\mathrm{cal}}\left(x_{k}, t_{k}, c\right)-z_{\mathrm{obs}}\left(x_{k}, t_{k}\right)\right]^{2}, \tag{14}
\end{equation*}
$$

where c is the vector of estimated coefficients $c_{i j}$ stored columnwise and $z_{\text {cal }}\left(x_{k}, t_{k}, c\right)$ is the elevation computed by the model at the point $\left(x_{k}, t_{k}\right)$ when the model coefficients are given by the vector c.

Let us describe how $z_{\text {cal }}\left(x_{k}, t_{k}, c\right)$ is computed. Given $k \in\left\{1, \ldots, n_{\text {dat }}\right\}$ we define $x_{\text {left }(k)}$ as the biggest \bar{x}_{j} such that $\bar{x}_{j} \leq x_{k}$ and we define $x_{\text {right }(k)}$ as the smallest \bar{x}_{j} such that $x_{k}<\bar{x}_{j}$, except in the cases that $x_{k}<\bar{x}_{1}$ or $x_{k}>\bar{x}_{n_{\text {stat }}}$. If $x_{k}<\bar{x}_{1}$ we define $x_{\text {left }(k)}=\bar{x}_{1}$ and $x_{\text {right }(k)}=\bar{x}_{2}$. If $x_{k}>\bar{x}_{n_{\text {stat }}}$ we define $x_{\text {left }(k)}=\bar{x}_{n_{s t a t}-1}$ and $\bar{x}_{\text {right }(k)}=x_{n_{\text {stat }}}$. The coefficients $c_{0, \operatorname{left}(k)}, c_{1, \text { left }(k)}, c_{2, \text { left }(k)}, c_{3, \text { left }(k)}$ and $c_{0, \operatorname{right}(k)}, c_{1, \text { right }(k)}, c_{2, \operatorname{right}(k)}, c_{3, \operatorname{right}(k)}$ will be the only coefficients that appear in the definition of $z_{\text {cal }}\left(x_{k}, t_{k}, c\right)$.

We define

$$
\begin{equation*}
w_{\text {left }(k)}=c_{0, \operatorname{left}(k)}+c_{1, \text { left }(k)} Q_{\min }\left(t_{k}\right)+c_{2, \text { left }(k)} Q_{\min }\left(t_{k}\right)^{2}+c_{3, \text { left }(k)} Q_{\min }\left(t_{k}\right)^{3} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{\operatorname{right}(k)}=c_{0, \operatorname{right}(k)}+c_{1, \operatorname{right}(k)} Q_{\min }\left(t_{k}\right)+c_{2, \operatorname{right}(k)} Q_{\min }\left(t_{k}\right)^{2}+c_{3, \operatorname{right}(k)} Q_{\min }\left(t_{k}\right)^{3} . \tag{16}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
z_{\mathrm{cal}}\left(x_{k}, t_{k}, c\right)=\frac{x_{k}-x_{\operatorname{right}(k)}}{x_{\operatorname{left}(k)}-x_{\operatorname{right}(k)}} w_{\operatorname{left}(k)}+\frac{x_{k}-x_{\operatorname{left}(k)}}{x_{\operatorname{right}(k)}-x_{\operatorname{left}(k)}} w_{\operatorname{right}(k)} . \tag{17}
\end{equation*}
$$

According to (15), (16), and (17), $z_{\text {cal }}\left(x_{k}, t_{k}, c\right)$ depends linearly on the unknown coefficients c. Therefore, the minimization of (14) is a linear least-squares problem. This problem has $n_{\text {dat }}$ equations and $4 n_{\text {stat }}$ unknowns. Note that the number of virtual stations and their positions are arbitrary and should be chosen taken into account the coordinates of the available data.

3.1 Choosing virtual stations

The positions of the virtual stations $\bar{x}_{1}, \ldots, \bar{x}_{n_{s t a t}} \in\left[x_{\min }, x_{\max }\right]$ are "hyper-parameters" of the model presented in Section 3. The objective function in the model "with variable virtual stations" is given by (14) and each $z_{\text {cal }}\left(x_{k}, t_{k}, c\right)$ is defined by (17), but $x_{\text {right }(k)}$ and $x_{\text {left }(k)}$ are now variables of the problem that may change in order to obtain better values of the objective function. Therefore, a more precise definition of the objective function is

$$
\begin{equation*}
f(c, \bar{x})=\sum_{k=1}^{n_{\mathrm{dat}}}\left[z_{\mathrm{cal}}\left(x_{k}, t_{k}, c\right)-z_{\mathrm{obs}}\left(x_{k}, t_{k}\right)\right]^{2}, \tag{18}
\end{equation*}
$$

where the coordinates of \bar{x} are $\bar{x}_{1}, \ldots, \bar{x}_{n_{\text {stat }}}$ and, for all $k=1, \ldots, n_{\text {dat }}$,

$$
\begin{equation*}
z_{\text {cal }}\left(x_{k}, t_{k}, \bar{x}, c\right)=\frac{x_{k}-x_{\operatorname{right}(k)}}{x_{\operatorname{left}(k)}-x_{\operatorname{right}(k)}} w_{\operatorname{left}(k)}+\frac{x_{k}-x_{\operatorname{left}(k)}}{x_{\operatorname{right}(k)}-x_{\operatorname{left}(k)}} w_{\operatorname{right}(k)} . \tag{19}
\end{equation*}
$$

Let us define now an algorithm that we effectively use for choosing the coordinates of stations $\bar{x}_{1}, \ldots, \bar{x}_{n_{\text {stat }}}$. Let us initialize the set \mathcal{O} in the following way:

$$
\begin{equation*}
\mathcal{O}=\left\{x \in\left[x_{\min }, x_{\max }\right] \text { such that there exists } k \in\left\{1, \ldots, n_{\text {dat }}\right\} \text { with } x=x_{k}\right\} \tag{20}
\end{equation*}
$$

Note that we could define

$$
\mathcal{O}=\left\{x_{1}, \ldots, x_{n_{\mathrm{dat}}}\right\}
$$

but this definition should be ambiguous, inducing that the number of elements of \mathcal{O} is $n_{\text {dat }}$. This is not the case, because x-coordinates may be repeated in the set of observations. In fact, the number of elements of \mathcal{O} is less than or equal to $n_{\text {dat }}$. From now on, we will assume that the cardinality of \mathcal{O} is not smaller than 2. Therefore, one has at least two values of spatial coordinates x for which we have at least one observation. Note that the number of elements of \mathcal{O} is between 2 and $n_{\text {dat }}$ and that this number may be strictly smaller than $n_{\text {dat }}$. The set of positions of the virtual stations will be called \mathcal{S}. It will be defined recursively in the following way:

Algorithm 3.1.1. Initialize $\mathcal{S} \leftarrow \emptyset$.
Step 1. If $\# \mathcal{S} \geq n_{\text {stat }}$ or $\mathcal{O}=\emptyset$, stop.
Step 2. Compute a solution \widehat{x} of the problem

$$
\begin{equation*}
\underset{x \in \mathcal{O}}{\operatorname{Maximize}} \min \{\# \mathcal{L}(x), \# \mathcal{R}(x)\} \tag{21}
\end{equation*}
$$

where

$$
\mathcal{L}(x):=\left\{k \in\left\{1, \ldots, n_{\text {dat }}\right\} \mid x_{\text {left }(k)}=x\right\} \text { and } \mathcal{R}(x):=\left\{k \in\left\{1, \ldots, n_{\text {dat }}\right\} \mid x_{\text {right }(k)}=x\right\}
$$

Step 3. Update $\mathcal{S} \leftarrow \mathcal{S} \cup\{\widehat{x}\}$ and $\mathcal{O} \leftarrow \mathcal{O} \backslash\{\widehat{x}\}$ and go to Step 1 .
At each iteration, the algorithm chooses the virtual station that maximizes the minimum number of available observations to determine each of the $n_{\text {stat }}$ station cubic polynomial by means of leastsquare calculations. It is clear that, after a finite number of steps we have that the number of elements of \mathcal{S} is $n_{\text {stat }}$ or that \mathcal{O} is empty and the algorithm stops.

4 Generation of synthetic data

In order to evaluate the effectiveness of different regression models for river predictions, we need to rely on synthetic experiments. In our present research we decided to generate synthetic data by means of integration of the Saint-Venant equations [20], which are given by

$$
\begin{equation*}
\frac{\partial A}{\partial t}+\frac{\partial Q}{\partial x}=0 \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial Q}{\partial t}+\frac{\partial}{\partial x}\left(\frac{Q^{2}}{A}\right)+g A \frac{\partial z}{\partial x}+\frac{n_{g}^{2} Q|Q|}{A R^{4 / 3}}=0 \tag{23}
\end{equation*}
$$

for $x \in\left[x_{\min }, x_{\max }\right]$ and $t \in\left[t_{\min }, t_{\max }\right]$, where $h(x, t)=z(x, t)-z_{b}(x)$ is the depth of the river at $(x, t), A(x, t)=h(x, t) w(x)$ is the cross wetted area at $(x, t), P(x, t)=w(x)+2 h(x, t)$ is the wetted perimeter at $(x, t), R(x, t)=A(x, t) / P(x, t)$ is the hydraulics radius at $(x, t), V(x, t)=Q(x, t) / A(x, t)$ is the speed of the fluid at (x, t), and g is the acceleration of gravity taken as $9.81 \mathrm{~m} / \mathrm{s}^{2}$. Equation (22) describes mass conservation and equation (23) represents conservation of the linear momentum. The coefficient n_{g} is known as Manning roughness coefficient. It is unclear in which way this coefficient depends on x or t. On the one hand, the roughness coefficient depends on x due to the morphological differences of the river along its course. On the other hand, sediment deposition can also affect the roughness coefficients over time. In (23), n_{g} has units $m^{1 / 6}$.

The Saint-Venant equations were solved approximately by means of an explicit diffusive finitedifference method [13, 19] with the following specifications:

- $x_{\min }=0$ and $x_{\max }=3000$ (meters).
- $t_{\text {min }}=0$ and $t_{\max }=29+\frac{23}{24}$ (days) or, equivalently, 719 hours or $2,588,400$ seconds.
- Initial conditions $z\left(x, t_{\min }\right)$ given in Figure 3 and $Q\left(x, t_{\min }\right)=3.9 \mathrm{~m}^{3} / \mathrm{s}$ for all $x \in\left[x_{\min }, x_{\max }\right]$.
- Boundary condition $Q\left(x_{\min }, t\right)$ given in Figure 4 .
- Manning coefficient $n_{g}(x)=0.078$ for all $x \in\left[x_{\min }, x_{\max }\right]$.
- Time step $\Delta t=1$ second, spatial step $\Delta x=30$, and diffusion coefficient 0.99.

Note that, according to the considered discretization, the finite difference method computes the values of $z(x, t)$ and $Q(x, t)$ at 101×2588401 points. We store only the values of $z(x, t)$ and $Q(x, t)$ for $x=0,30,60, \ldots, 3000$ meters and for $t=0,1,2, \ldots, 719$ hours. In other words, the "observed" elevations are given by a matrix of 101×720 positions. The level sets defined by this matrix is given in Figure 5

5 Numerical Experiments

The data used in the numerical experiments are generated as described in Section 4 . The employment of synthetic data allows us to test regression models in situations in which real data are not available.

5.1 Single-station one-dimensional models

In this short subsection, using synthetic data, we perform the same one-dimensional models experiment described in Section 11. In this case we use the stations defined by $x=720 \mathrm{~m}$ and $x=3000 \mathrm{~m}$. We wish to verify whether the performance of the polynomial one-dimensional models for reproducing synthetic data is similar to the performance reported for real data in Section 1. Figures 6 and 7 and Tables 3 and 4 show the results. Clearly, in terms of quality of fitting and predictions, the performance of the polynomial models using synthetic data is similar to the one that has been reported in Section 1 for data of the real Fork River.

5.2 Experiments using observations on a mesh

In this subsection we consider as observations data between days $t=3$ and $t=1010$, every 12 hours, at 26 equally spaced stations between $x_{\min }=0$ and $x_{\max }=3000$ meters. The objective is, with these meshed data, to predict the elevation $z(x, t)$ at 26 the equally spaced stations between $x_{\text {min }}=0$ and $x_{\text {max }}=3000$ meters and $t \in\{11,12, \ldots 29\}$. We consider six different ways of prediction by combining

Figure 3: Initial condition for z used in the generation of synthetic data.

Figure 4: Q boundary condition used in the generation of synthetic data.
two types of polynomials (interpolating and least squares) and three possible degrees (linear, quadratic and cubic). Specifically, each of the six experiments consists of:

Figure 5: Synthetic Elevations.

Station	Polynomial	RMSD	c_{0}	c_{1}	c_{2}	c_{3}
$\underset{\text { N }}{\underset{N}{\text { In }}}$	linear quadratic cubic	$1.68217006 \mathrm{E}-02$	7.36053069	$3.42611821 \mathrm{E}-02$	--	--
		$3.84570654 \mathrm{E}-03$	7.30939110	$4.29580343 \mathrm{E}-02$	-2.70630819E-04	--
		$2.59511479 \mathrm{E}-03$	7.29329906	$4.73743343 \mathrm{E}-02$	-5.86479099E-04	$6.35214794 \mathrm{E}-06$
$\begin{aligned} & \text { g } \\ & \text { obe } \\ & \hline \text {. } \end{aligned}$	linearquadraticcubic	4.19519692E-02	5.81624209	$2.58508659 \mathrm{E}-02$	--	--
		$1.30136586 \mathrm{E}-02$	5.69169716	$4.70311095 \mathrm{E}-02$	-6.59092116E-04	--
		$5.98388456 \mathrm{E}-03$	5.62617288	$6.50135886 \mathrm{E}-02$	-1.94517664E-03	$2.58649476 \mathrm{E}-05$

Table 3: Section 5.1. Fitted polynomials, their coefficients and the corresponding RMSD using synthetic data. Observations up to 30 days.

Station	Polynomial	RMSD		c_{0}	c_{1}	c_{2}	c_{3}
		training	testing				
g	linear	$1.16720184 \mathrm{E}-02$	$1.94601125 \mathrm{E}-02$	7.35751723	$3.46560681 \mathrm{E}-02$	--	--
ค	quadratic	$2.20001211 \mathrm{E}-03$	$5.41537380 \mathrm{E}-03$	7.30850076	$4.32306214 \mathrm{E}-02$	-2.86981705E-04	--
-	cubic	$1.67445669 \mathrm{E}-03$	$3.33740105 \mathrm{E}-03$	7.29464777	$4.71442613 \mathrm{E}-02$	-5.87655387E-04	$6.73839556 \mathrm{E}-06$
g	linear	$3.07334766 \mathrm{E}-02$	$4.72819963 \mathrm{E}-02$	5.81094708	$2.65408393 \mathrm{E}-02$	--	--
8	quadratic	$7.34536455 \mathrm{E}-03$	$2.00261102 \mathrm{E}-02$	5.68333537	$4.88642187 \mathrm{E}-02$	-7.47141135E-04	-
\bigcirc	cubic	$3.07346962 \mathrm{E}-03$	$1.08396889 \mathrm{E}-02$	5.61856923	$6.71614492 \mathrm{E}-02$	- 2.15286467E-03	$3.15036593 \mathrm{E}-05$

Table 4: Section 5.1. Fitting polynomials, their coefficients, and the corresponding RMSD using synthetic data. In this case, observations of the first 10 days were used as training data to fit the polynomials. Observations of the remaining 20 days were considered unknown in the fitting phase and then they were used to test predictions given by the fitted polynomials.

Experiment 1: We assume that observed elevations correspond to instants $t_{1}=9.5$ and $t_{2}=10$ days

Figure 6: Section 5.1. Synthetic observed elevations at a given station and their approximations as (linear, quadratic, and cubic) polynomials of the inlet discharge. Observations up to 30 days were used to fit the polynomials
and 26 equally spaced stations between $x_{\min }=0$ and $x_{\max }=3000$ meters. We consider that the inlet discharge $Q_{\min }(t)$ at times t_{1} and t_{2} are also observed. We employ the model (5) with

Figure 7: Section 5.1. Synthetic observed elevations at a given station and their approximation as a (linear, quadratic, and cubic) polynomial of the inlet discharge. In this case, observations of the first 10 days were used as training data to fit the polynomials. Observations of the remaining 20 days were considered unknown in the fitting phase and, then, they were used to test predictions produced by the fitted polynomials.
$q=1$ and $s=p-1=25$. Note that, due to Theorem 2. 1 , it is not necessary to fit explicitly a polynomial with degree 25 in order to obtain predictions for the future at the given stations. Using this fitting, and considering suitable forecasts for the inlet discharges, we can predict elevations for days $11,12,13, \ldots, 29$ for 101 values of x equally spaced between $x_{\min }$ and $x_{\max }$ and we can compare these predictions with the observed elevations. Note that, in this case, the RMSD-error corresponding to the training set is necessarily equal to 0 . The result of this experiment is given in Table 9 .

Experiment 2: Observed elevations correspond to instants $t_{1}=9, t_{2}=9.5$, and $t_{3}=10$ days. Elevation data correspond to these instances and the model (5) uses $q=2$ and $p-1=25$. So, the elevation at each station is modelled by a quadratic interpolating polynomial. The result of this experiment is given in Table 10 .

Experiment 3: Observed elevations correspond to instants $t_{1}=8.5, t_{2}=9, t_{3}=9.5$, and $t_{4}=10$ days. Elevation data correspond to these instances and the model (5) uses $q=3$ and $p-1=25$. So, the elevation at each station is modelled by a cubic interpolating polynomial. The result of this experiment is given in Table 11 .

Experiment 4: Observed elevations correspond to instants $t \in\{3.5,4,4.5, \ldots, 10\}$ days. Elevation data correspond to these instances and the model (5) is a line that fits the observed elevations at those instants in the least-squares sense. The result of this experiment is given in Table 12 .

Experiment 5: Observed elevations correspond to instants $t \in\{3.5,4,4.5, \ldots, 10\}$ days. Elevation data correspond to these instances and the model (5) is a quadratic polynomial that fits the observed elevations at those instants in the least-squares sense. The result of this experiment is given in Table 13.

Experiment 6: Observed elevations correspond to instants $t \in\{3.5,4,4.5, \ldots, 10\}$ days. Elevation data correspond to these instances and the model (5) is a cubic polynomial that fits the observed elevations at those instants in the least-squares sense. The result of this experiment is given in Table 14.

Tables 9.14 in the Appendix show the results. Figures 8 and 9 give a graphical representation of the predictions' RMSD as a function of $t \in\{11,12, \ldots, 29\}$. For each t, the RMSD of the 26 equally spaced $x \in[0,3000]$ meters is shown. The experiment shows that polynomial interpolators of past data are bad at extrapolating to predict the future. One reason may be that they are based on little data and focus on capturing local behavior. Thus, the linear and quadratic options are less bad than the cubic, which quickly goes to infinity under the influence of local behavior. On the other hand, least squares polynomials computed with more data better capture the trend implicit in the data and thus better predict the future. Of the three options (linear, quadratic, and cubic), the cubic provides the best predictions.

5.3 Next-day predictions using observations on a mesh

In this experiment, we evaluate the six approaches considered in the previous subsection to predict the "elevation of the next day". We consider $t_{\text {today }} \in\{2,3, \ldots, 28\}$ days and $t_{\text {tomorrow }}=t_{\text {today }}+1$. Available data of $z(x, t)$ with t multiple of half day and $t \leq t_{\text {today }}$ was used as training data. For the interpolating polinomials, only the most recent information was considered, while for least squares, all available data was considered. For each of the 26 equally spaced stations x between $x_{\min }=0$ and $x_{\max }=3000$ meters, the six approaches were used to predict the elevation $z\left(x, t_{\text {tomorrow }}\right)$. Table 5 shows the details. As seen in previous experiments, least squares polynomials gave very reasonable

Figure 8: Section 5.2. RMSD of predictions of $z(x, t)$ for $t \in\{10,11, \ldots, 29\}$ when predictions are given by interpolating polinomials (linear, quadratic, and cubic) computed using training data with $t<10$. For each t, the RMSD of the 26 equidistant $x \in[0,3000]$ meters is being displayed.
predictions (with an average error of 1 centimeter in the case of the cubic polynomial) and performed better than interpolating polynomials. As expected, the cubic was better than the quadratic, which was better than the linear. Unlike previous experiments, interpolating polynomials were also useful in many cases, because in the present experiments we are dealing with next-day predictions, i.e. interpolating polynomials are used to extrapolate only a little outside the interpolating range.

5.4 Next-day predictions using irregularly distributed data

In the experiments of the previous subsection, we considered observations every 12 hours between day $t=3$ and day $t=10$ (15 time instants) at 26 stations equidistant between 0 and 3000 meters, totalizing 390 observations. However, considering our synthetic data, in that same domain of space (x, t) we have available data from hour to hour and at 101 equidistant stations, amounting to $101 \times 169=17069$ available data. With the intuition of using random subsets of data with uniform distribution, in the next experiment we draw the observations among the available data with probability $\frac{390 / 17069}{\nu} \approx \frac{0.0288}{\nu}$, with $\nu \in\{1,2,4\}$. With this way of determining the observations, we constituted training data sets with 394,195 , and 95 elevation observations.

The experiment consists of (a) positioning $n_{\text {stat }}$ stations using Algorithm 4. 1, (b) with the stations already positioned solve the linear least squares problem $\sqrt{18}$ that computes the cubic polynomial of each station, and (c) use those polynomials to predict the elevation of the "next day", that is, the day $t_{\text {tomorrow }}=11$ at 101 equidistant points between 0 and 3000 meters. We wish to understand how the predictions behave for different values of $n_{\text {stat }}$.

Table 6 shows the results when 394 observations are available with the number of virtual stations varying from 2 to 100. The first column shows the number of stations. The second column reports

Figure 9: Section 5.2. RMSD of predictions of $z(x, t)$ for $t \in\{10,11, \ldots, 29\}$ when predictions are given by best fitting polinomials (linear, quadratic, and cubic) computed by solving a linear least squares problem using training data with $t \in\{3.5,4,4.5, \ldots, 9.5\}$. For each t, the RMSD of the 26 equidistant $x \in[0,3000]$ meters is being displayed.
"minobs", the minimum number of observations that were used, given the positions of the virtual stations, to determine each of the $n_{\text {stat }}$ cubic polynomials by means of least-square calculations. The third column shows the RMSD of the training data. The last column shows the RMSD of the next-day prediction at the 101 points equidistant between 0 and 3000 meters. It is clear from the figures in the table that the RMSD of the training data decreases monotonically as the number of stations increases. On the other hand, the RMSD of the next-day prediction remains more or less constant (between 3 and 6 centimeters) when the number of virtual stations is between 2 and 49 and deteriorates rapidly when this number is 50 or more. In fact, the optimal number of virtual stations is, in this case, 19. For completeness, in this case we report the results up to 100 virtual stations.

In Table 7 and Table 8 we report the same type of results when the number of available observations is 185 and 95 , respectively. In the first case, the number of virtual stations goes from 2 to 37 and in the second case it goes from 2 to 19 because larger numbers of virtual stations yield prediction errors that are bigger than 1 meter. Again, the error in the training set decreases with the number of virtual stations, as the number of free parameters is increased.

6 Conclusions

This paper discusses the potential of methods based on surface elevation data alone for predicting river levels, provided that reliable inlet discharge forecasts $Q\left(x_{\min }, t\right)$ are available. We have focused on low-degree polynomial models because they are simple and economical in terms of the number of unknown parameters. The various alternatives presented in this paper can be considered successful in the sense that they provide results that are accurate enough for predicting the levels of real rivers.

	Interpolating			Fitting		
$t_{\text {today }}$	polynomial of degree:		polynomial of degree:			
	1	2	3	1	2	3
2	0.0062	0.0069	0.0199	0.0141	0.0021	0.0199
3	0.0130	0.0679	0.4752	0.0421	0.0219	0.0426
4	0.0051	0.0011	0.0033	0.0302	0.0108	0.0057
5	0.0014	0.0154	0.0348	0.0329	0.0142	0.0043
6	0.0086	0.0120	0.0150	0.0248	0.0094	0.0022
7	0.0071	0.0071	0.0071	0.0266	0.0105	0.0052
8	0.0021	0.0005	0.0141	0.0176	0.0028	0.0047
9	0.0035	0.0038	0.0041	0.0303	0.0075	0.0030
10	0.0163	0.0295	0.5743	0.0461	0.0225	0.0055
11	0.0083	0.0018	0.0056	0.0035	0.0024	0.0056
12	0.0008	0.0030	0.0034	0.0133	0.0013	0.0037
13	0.0905	0.0246	1.1340	0.0357	0.0131	0.0053
14	0.0199	0.0089	0.0180	0.0043	0.0113	0.0081
15	0.0162	0.0038	0.0069	0.0484	0.0079	0.0010
16	0.0063	0.0122	0.0163	0.0600	0.0165	0.0059
17	3.7608	1.0794	0.2602	0.0075	0.0045	0.0021
18	0.0290	0.0174	3.9772	0.0297	0.0090	0.0008
19	0.0168	0.0198	0.0503	0.0391	0.0057	0.0012
20	0.0104	0.0121	0.0124	0.0405	0.0046	0.0021
21	0.0281	0.0142	0.3077	0.0299	0.0129	0.0055
22	0.0353	0.0331	0.0751	0.0174	0.0052	0.0060
23	0.0173	0.0048	0.0022	0.0656	0.0194	0.0076
24	0.0018	0.0015	0.0014	0.0635	0.0199	0.0094
25	0.0126	0.7339	3.3581	0.0019	0.0079	0.0043
26	0.0806	0.1488	0.2467	0.0230	0.0113	0.0035
27	0.0224	0.0517	0.3592	0.0396	0.0099	0.0030
28	0.0075	0.0044	0.0029	0.0430	0.0107	0.0054
	0.7243	0.2537	1.0417	0.0353	0.0118	0.0102

Table 5: Section 5.3. For a given day $t_{\text {today }}$ and a given experiment (interpolating or fitting polynomial of degree 1,2 , or 3) the table shows the RMSD of the next-day predicted elevation of all 26 stations. The last row shows the overall RMSD of each approach.

In particular, the strategy of virtual stations presented in this paper seems to be useful in the case where observations are irregularly distributed. Moreover, this strategy preserves the best third-order polynomial approximations in the regularly distributed case.

It is interesting to consider the problem of predicting flow-rates $Q(x, t)$ from elevation observations $z(x, t)$ only. From the mass-conservation equation we have that

$$
\frac{\partial A}{\partial t}+\frac{\partial Q}{\partial x}=0
$$

Therefore,

$$
Q(x, t)=Q\left(x_{\min }, t\right)-\int_{x_{\min }}^{x} \frac{\partial A}{\partial t}(\xi, t) d \xi .
$$

Virtual stations	minobs	RMSD training	RMSD testing	Virtual stations	minobs	RMSD training	RMSD testing
2	394	$5.3283820057185995 \mathrm{E}-002$	$6.1583164478249554 \mathrm{E}-002$	52	10	$8.0329354317997658 \mathrm{E}-003$	0.12968356044883630
3	194	$3.2648300820944318 \mathrm{E}-002$	$4.3726318071762964 \mathrm{E}-002$	53	10	$8.0306312766861461 \mathrm{E}-003$	0.12972255677477529
4	101	$3.2573813718738569 \mathrm{E}-002$	$4.5187290605368642 \mathrm{E}-002$	54	10	$8.0187525830073773 \mathrm{E}-003$	0.12981398947867417
5	96	$3.2349694130166182 \mathrm{E}-002$	$4.6027937601361361 \mathrm{E}-002$	55	9	$8.0179333149921674 \mathrm{E}-003$	0.12982155115549487
6	96	$3.1639597470529801 \mathrm{E}-002$	$4.8685500605615238 \mathrm{E}-002$	56	9	$8.0079086981791198 \mathrm{E}-003$	0.12997349516966566
7	96	$2.2853081231014000 \mathrm{E}-002$	$3.5410636986479435 \mathrm{E}-002$	57	9	$7.9116879215693353 \mathrm{E}-003$	0.13080885606219347
8	47	$2.2333106995790799 \mathrm{E}-002$	$3.4395169668978959 \mathrm{E}-002$	58	9	$7.1120982718531822 \mathrm{E}-003$	0.12975686606923589
9	47	$2.2005150036587609 \mathrm{E}-002$	$3.5766673494248759 \mathrm{E}-002$	59	9	$7.0527831979785103 \mathrm{E}-003$	0.12960764964637364
10	47	$1.9266463631366117 \mathrm{E}-002$	$3.4100377670761683 \mathrm{E}-002$	60	9	$6.8200629596160949 \mathrm{E}-003$	0.12970197134584049
11	47	$1.8330036730951786 \mathrm{E}-002$	$3.8099252360178991 \mathrm{E}-002$	61	9	$6.8099002730974117 \mathrm{E}-003$	0.13443085010705041
12	47	$1.8247387283753448 \mathrm{E}-002$	$3.9287689605826834 \mathrm{E}-002$	62	9	$6.7569652637862266 \mathrm{E}-003$	0.13432463882639850
13	47	$1.6544563006014871 \mathrm{E}-002$	$3.6201727385641792 \mathrm{E}-002$	63	8	$6.7551245197326791 \mathrm{E}-003$	0.13450127671524303
14	46	$1.6109150476189795 \mathrm{E}-002$	$3.4048905093485481 \mathrm{E}-002$	64	8	$6.7356313704111668 \mathrm{E}-003$	0.14227538180090210
15	46	$1.5513927451101283 \mathrm{E}-002$	$3.2651624306286674 \mathrm{E}-002$	65	8	$6.7297367192108533 \mathrm{E}-003$	0.15228129547423630
16	26	$1.5337223488082084 \mathrm{E}-002$	$3.2449894571859761 \mathrm{E}-002$	66	8	$6.7266867935987414 \mathrm{E}-003$	0.71829333520509586
17	26	$1.5158717471376091 \mathrm{E}-002$	$3.2345999462907726 \mathrm{E}-002$	67	3	$6.7264323627948203 \mathrm{E}-003$	0.71833153306163988
18	13	$1.5156034949535248 \mathrm{E}-002$	$3.2305120343670203 \mathrm{E}-002$	68	3	$4.7223533876023351 \mathrm{E}-003$	0.71808112648009770
19	13	$1.5034755623023519 \mathrm{E}-002$	$3.1751814157051458 \mathrm{E}-002$	69	3	$4.6359280777656803 \mathrm{E}-003$	0.80170172105254001
20	13	$1.5018746780348795 \mathrm{E}-002$	$3.2280097922278560 \mathrm{E}-002$	70	3	$4.6330920332480260 \mathrm{E}-003$	0.84002240218473490
21	13	$1.4923539265815706 \mathrm{E}-002$	$3.3525846097928733 \mathrm{E}-002$	71	3	$4.6122345451842994 \mathrm{E}-003$	0.83973278380279726
22	13	$1.4859547396657539 \mathrm{E}-002$	$3.4453557117947238 \mathrm{E}-002$	72	3	$4.6102751068605808 \mathrm{E}-003$	1.5559016307267453
23	13	$1.3691065318011980 \mathrm{E}-002$	$5.3843426618723260 \mathrm{E}-002$	73	3	$4.5875787632858409 \mathrm{E}-003$	1.5560072582416900
24	13	$1.3659881827357711 \mathrm{E}-002$	$5.4143100409803191 \mathrm{E}-002$	74	3	$4.4777490065165777 \mathrm{E}-003$	1.5562018595829066
25	13	$1.3263279056685832 \mathrm{E}-002$	$5.3164207679156618 \mathrm{E}-002$	75	3	$4.4755600778543063 \mathrm{E}-003$	1.6023004097916536
26	13	$1.3175509007241182 \mathrm{E}-002$	$5.2752211202618811 \mathrm{E}-002$	76	3	$4.3307476396778153 \mathrm{E}-003$	1.6026236880641358
27	13	$1.2893886036635917 \mathrm{E}-002$	$5.3294152115026458 \mathrm{E}-002$	77	3	$3.9620225228191950 \mathrm{E}-003$	1.6027498818868846
28	13	$1.2272901759381408 \mathrm{E}-002$	$5.3934282047854318 \mathrm{E}-002$	78	3	$2.8886317493116574 \mathrm{E}-003$	1.6104032246579405
29	13	$1.2090872110758055 \mathrm{E}-002$	$5.5372017107663166 \mathrm{E}-002$	79	3	$2.8869280012161587 \mathrm{E}-003$	1.6211332816669319
30	13	$1.2043880504159150 \mathrm{E}-002$	$5.6348350230236106 \mathrm{E}-002$	80	3	$2.8599432980772987 \mathrm{E}-003$	1.8984411394933036
31	13	$1.1923895103591405 \mathrm{E}-002$	$5.6647214439744825 \mathrm{E}-002$	81	3	$2.7391034801038162 \mathrm{E}-003$	1.8988767221527962
32	13	$1.1864076693219016 \mathrm{E}-002$	$5.6304646204128742 \mathrm{E}-002$	82	3	$2.5652606094846665 \mathrm{E}-003$	1.9160614771120590
33	13	$1.1682392020077523 \mathrm{E}-002$	$5.7208920168502021 \mathrm{E}-002$	83	3	$2.5267865337923233 \mathrm{E}-003$	1.9168010751012954
34	13	$1.1670097881090850 \mathrm{E}-002$	$5.6984529825676034 \mathrm{E}-002$	84	3	$2.3775396132823608 \mathrm{E}-003$	2.3251907404973591
35	13	$1.1628659265365073 \mathrm{E}-002$	$5.5947727821659403 \mathrm{E}-002$	85	3	$2.3001696336729283 \mathrm{E}-003$	2.3255810361822524
36	13	$1.0416666600669637 \mathrm{E}-002$	$3.7676481978826011 \mathrm{E}-002$	86	3	$2.2706294451196921 \mathrm{E}-003$	2.3784129971256784
37	13	$1.0399791281676873 \mathrm{E}-002$	$3.7889247768345305 \mathrm{E}-002$	87	3	$2.1418982774388468 \mathrm{E}-003$	2.3898547222289541
38	13	$1.0383501483021772 \mathrm{E}-002$	$3.7653477041362522 \mathrm{E}-002$	88	3	$2.1403856079314533 \mathrm{E}-003$	2.3907039892197419
39	13	$9.9227025361913641 \mathrm{E}-003$	$3.8432530450767118 \mathrm{E}-002$	89	3	$2.1403856079314563 \mathrm{E}-003$	2.4025492211247181
40	13	$9.8817703068327638 \mathrm{E}-003$	$3.7475166481987364 \mathrm{E}-002$	90	3	$2.1403856079314503 \mathrm{E}-003$	2.4257624451134867
41	12	$9.5545957721222922 \mathrm{E}-003$	$3.8662642310044168 \mathrm{E}-002$	91	3	$1.2241141853634287 \mathrm{E}-003$	2.7471502163021850
42	12	$9.5259047134240975 \mathrm{E}-003$	$3.8864212195983724 \mathrm{E}-002$	92	3	$1.1935575705138712 \mathrm{E}-003$	2.7739273204290273
43	12	$9.5068693663715384 \mathrm{E}-003$	$3.9334825174204911 \mathrm{E}-002$	93	3	$1.1935575705138105 \mathrm{E}-003$	2.7914574146435789
44	12	$9.4031730453848442 \mathrm{E}-003$	$4.0138579708408451 \mathrm{E}-002$	94	3	$1.1935575705138755 \mathrm{E}-003$	10.769455041417071
45	11	$9.3878986230084352 \mathrm{E}-003$	$4.0381481232975115 \mathrm{E}-002$	95	3	$1.1935575705138961 \mathrm{E}-003$	13.194184220825461
46	11	$9.2827157053270003 \mathrm{E}-003$	$4.1040039457329369 \mathrm{E}-002$	96	3	$1.1919087363459152 \mathrm{E}-003$	15.209373170340974
47	11	$9.1301445568780712 \mathrm{E}-003$	$4.3543218230213378 \mathrm{E}-002$	97	3	$1.0625333177912046 \mathrm{E}-003$	16.484479467068468
48	11	$8.4370965844998008 \mathrm{E}-003$	$4.3316691550977185 \mathrm{E}-002$	98	3	$1.0625333177911834 \mathrm{E}-003$	18.255510661328792
49	11	$8.4166324951854554 \mathrm{E}-003$	$4.3061145849278733 \mathrm{E}-002$	99	3	$1.0625333177911502 \mathrm{E}-003$	18.414545717188812
50	11	$8.2245582976612011 \mathrm{E}-003$	0.12923190100341689	100	3	$1.0625333177912118 \mathrm{E}-003$	18.510711323780274
51	10	$8.2013285286650847 \mathrm{E}-003$	0.12971323080775976				

Table 6: Section 5.4. 394 random observations in the first 10 days. Effect of increasing the number of virtual stations. Reporting training and test.

So, if we have a good approximation for $A(x, t)$, then we can obtain, in principle, a good approximation of $Q(x, t)$ [6]. Moreover, according to the results of the present paper, a good approximation of $z(x, t)$ can be obtained using elevation observations and $Q_{\text {min }}$ forecasts. Unfortunately, the cross wetted area $A(x, t)$ can be obtained from $z(x, t)$ only if we already know the bed elevation $z_{b}(x)$ and the geometric characteristics of the channel. This is the information that we have considered uncertain, and whose use we have tried to avoid above under the "only elevation" approach of the present paper. Therefore, predicting flow rates from data alone is more problematic than predicting surface elevations, and this issue deserves future study.

Virtual stations	minobs	RMSD training	RMSD testing
2	185	$5.1248811463696108 \mathrm{E}-002$	$7.4089510567510924 \mathrm{E}-002$
3	91	$3.2529197002708163 \mathrm{E}-002$	$3.5519815707586833 \mathrm{E}-002$
4	47	$3.1284750173733118 \mathrm{E}-002$	$4.3991827708239235 \mathrm{E}-002$
5	46	$2.9878458008594868 \mathrm{E}-002$	$8.3143696581750387 \mathrm{E}-002$
6	46	$2.2450370975549642 \mathrm{E}-002$	$6.8068533438989373 \mathrm{E}-002$
7	22	$2.1764814785424559 \mathrm{E}-002$	$6.5415859677875707 \mathrm{E}-002$
8	22	$2.0766831805240742 \mathrm{E}-002$	$6.7534463202462633 \mathrm{E}-002$
9	22	$2.0573231136337876 \mathrm{E}-002$	$6.6790025825457275 \mathrm{E}-002$
10	22	$2.0104363353167974 \mathrm{E}-002$	$6.3158699486610168 \mathrm{E}-002$
11	22	$1.8826320026367610 \mathrm{E}-002$	$7.3860255266057703 \mathrm{E}-002$
12	22	$1.8270195922934992 \mathrm{E}-002$	$9.1669436715929684 \mathrm{E}-002$
13	22	$1.5006593710845378 \mathrm{E}-002$	$7.7134955384989309 \mathrm{E}-002$
14	10	$1.4856901876581540 \mathrm{E}-002$	$7.7603153454404841 \mathrm{E}-002$
15	10	$1.4558586705511977 \mathrm{E}-002$	$7.0383131196731591 \mathrm{E}-002$
16	10	$1.4367127212092557 \mathrm{E}-002$	$7.2430701225312186 \mathrm{E}-002$
17	10	$1.4056078954309907 \mathrm{E}-002$	$7.6150540705157130 \mathrm{E}-002$
18	10	$1.3944065662380992 \mathrm{E}-002$	$7.3380393469394803 \mathrm{E}-002$
19	10	$1.2663706268095641 \mathrm{E}-002$	$9.2371846936037255 \mathrm{E}-002$
20	10	$1.2527967989703639 \mathrm{E}-002$	$9.3799256133081668 \mathrm{E}-002$
21	10	$1.2452824633423691 \mathrm{E}-002$	$9.2679586134847808 \mathrm{E}-002$
22	10	$1.2430540420894570 \mathrm{E}-002$	$9.2397760084283950 \mathrm{E}-002$
23	8	$1.2308000711774588 \mathrm{E}-002$	0.10149722107077552
24	8	$1.2170734928201659 \mathrm{E}-002$	0.10745970660633239
25	8	$1.0773903953212724 \mathrm{E}-002$	0.11569597875671561
26	8	$1.0703768079820394 \mathrm{E}-002$	0.12342432166878507
27	8	$8.0880895546961377 \mathrm{E}-003$	0.13473581683984887
28	5	$8.0856468697171491 \mathrm{E}-003$	0.13471641725588770
29	5	$8.0624368937640255 \mathrm{E}-003$	0.13730815995101689
30	5	$7.5576773867298457 \mathrm{E}-003$	0.14055458227230450
31	5	$7.4451793362722103 \mathrm{E}-003$	0.14283338653559183
32	5	$7.3306658105015731 \mathrm{E}-003$	0.15803100201596343
33	5	$6.9433436122286933 \mathrm{E}-003$	0.20812431672514720
34	5	$6.7419124067725706 \mathrm{E}-003$	0.84362496442554258
35	5	$6.7171350118954724 \mathrm{E}-003$	0.84673106438894241
36	5	$5.1430668400310421 \mathrm{E}-003$	0.89984696571610800
37	5	$2.7526193304603067 \mathrm{E}-003$	1.5797211827586006

Table 7: Section 5.4. 185 random observations in the first 10 days. Effect of increasing the number of virtual stations. Reporting training and test RMSD.

References

[1] A. Agresta, M. Baioletti, C. Biscarini, F. Caraffini, A. Milani, and V. Santucci, Using optimisation meta-heuristics for the roughness estimation problem in river flow analysis, Applied Sciences 11, 10575, 2021.

Virtual stations	minobs	RMSD training	RMSD testing
2	95	$5.1699965039000095 \mathrm{E}-002$	$6.3173540327799205 \mathrm{E}-002$
3	47	$3.1098552914075955 \mathrm{E}-002$	$3.7681240571308741 \mathrm{E}-002$
4	23	$3.0008346683687421 \mathrm{E}-002$	$5.4680180663268317 \mathrm{E}-002$
5	23	$2.7343428686985052 \mathrm{E}-002$	0.10084121692806179
6	13	$2.6263510371117418 \mathrm{E}-002$	0.12687890844372421
7	13	$2.5469694685872728 \mathrm{E}-002$	0.14131992067387011
8	11	$2.5009773875898412 \mathrm{E}-002$	0.14894525241456291
9	11	$1.8148205210940294 \mathrm{E}-002$	$9.3893818673443930 \mathrm{E}-002$
10	11	$1.7516836515265203 \mathrm{E}-002$	0.13792608105500823
11	11	$1.4868146929722386 \mathrm{E}-002$	0.14102668906719881
12	7	$1.4669480794577859 \mathrm{E}-002$	0.14028858123690985
13	7	$1.4344105609466579 \mathrm{E}-002$	0.15561454960887050
14	7	$1.3939622987893766 \mathrm{E}-002$	0.17476910376467428
15	5	$1.3899191317637099 \mathrm{E}-002$	0.17136513895286537
16	5	$1.3641822085803633 \mathrm{E}-002$	0.17664288679815060
17	5	$8.7311056846887617 \mathrm{E}-003$	0.55468488663305626
18	5	$8.4229878615030840 \mathrm{E}-003$	0.55920223834725657
19	5	$3.6141721204698040 \mathrm{E}-003$	2.0837223835016192

Table 8: Section 5.4 95 random observations in the first 10 days. Effect of increasing the number of virtual stations. Reporting training and test RMSD.
[2] M. T. Ayvaz, A linked simulation-optimization model for simultaneously estimating the Manning's surface roughness values and their parameter structures in shallow water flows, Journal of Hydrology 500, pp. 183-199, 2013.
[3] M. Kh. Askar and K. K. Al-jumaily, A nonlinear optimization model for estimating Manning's roughness coefficient, in Proceedings of the Twelfth International Water Technology Conference, IWTC12, Alexandria, Egypt, 2008, pp. 1299-1306.
[4] E. G. Birgin, M. R. Correa, V. A. González-López, J. M. Martínez, and D. S. Rodrigues, Randomly supported models for the prediction of flows in channels, Technical Report of CRIABMathematical Engineering, submitted.
[5] E. G. Birgin and J. M. Martínez, Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients, Computational Optimization and Applications pp. 689-715, 2022.
[6] E. G. Birgin and J. M. Martínez, A PDE-informed optimization algorithm for river flow predictions, Numerical Algorithms, to appear (DOI: 10.1007/s11075-023-01647-1).
[7] Y. Ding, Y. Jia, and S. S. Y. Wang, Identification of Manning's roughness coefficients in shallow water flows, Journal of Hydraulic Engineering, pp. 501-510, 2004.
[8] Y. Ding and S. S. Y. Wang, Identification of Manning's roughness coefficients in channel network using adjoint analysis, International Journal of Computational Fluid Dynamics 19, pp. 3-13, 2005.
[9] W. W. Emmett, W. W. Myrick, and R. H. Meade, Field data describing the movement and storage of sediment in the East Fork River, Wyoming, Part 1, River Hydraulics and Sediment Transport, Report No. 1, 1979.
[10] G. H. Golub and Ch. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, 2013.
[11] K. Guta and K. S. H. Prasad, Estimation of open channel flow parameters by using optimization techniques, International Journal of Science and Research 6, pp. 1295-1304, 2018.
[12] Y. Jia and S. S. y. Wang, 2001, CCHE2D: Two-dimensional Hydrodynamic and Sediment Transport Model for Unsteady Open Channel Flows Over Loose Bed, National Center for Computational Hydroscience and Engineering Technical Report No.: NCCHE-TR-2001-1, 2001.
[13] R. J. LeVeque, Numerical Methods for Conservation Laws, Lectures in Mathematics, ETH Zürich, Birkäuser, 1992.
[14] W. A. Marcus, K. Roberts, L. Harvey, and G. Tackman, An evaluation of methods for estimating Manning's n in small mountain streams, Mountain Research and Development 12, pp. 227-239, 1992.
[15] J. M. Martínez and L. T. Santos, Inexact-restoration modelling with monotone interpolation and parameter estimation, Optimization and Engineering, to appear (DOI: 10.1007/s11081-023-09861-5).
[16] R. H. Meade, W. W. Myrick, and W. W. Emmett, Field data describing the movement and storage of sediment in the East Fork River, Wyoming, Part 2, River Hydraulics and Sediment Transport, Report No. 2, 1979.
[17] F. Pappenberger, K. Beven, M. Horrit, and S.Blazkova, Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations, Journal of Hydrology 302, pp. 46-69, 2005.
[18] A. P. Piotrowski and J. J. Napiorkowski, Optimizing neural networks for river flow forecasting - Evolutionary Computation methods versus the Levenberg-Marquardt approach, Journal of Hydrology 407, pp. 12-27, 2011,
[19] R. M. Porto, Hidráulica Básica, EESC-USP, São Paulo, 2000.
[20] A. J. C. Saint-Venant, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivière at à l'introduction des marées dans leur lit, Comptes Rendus des Séances de Académie des Sciences 73, pp. 147-154, 1871.
[21] A. L. Simões, H. E. Schulz, and R. M. Porto, Métodos Computacionais em Hidráulica, Edufba, Bahia, 2017.

Appendix

Table 9: Section 5.2. For each value of x in the first column, predictions for $t>10$ days use data observed at $t_{1}=9.5$ and $t_{2}=10$ days. Observed data correspond to $z\left(x, t_{1}\right)$ and $z\left(x, t_{2}\right)$ and the prediction is given by the linear polynomial in $Q_{\min }(t)$ that interpolates the data. Each cell of the table shows $\left|z_{\text {pred }}(x, t)-z(x, t)\right|$, where values of $z(x, t)$ correspond to synthetic data that is not used in the prediction. The last line in the table shows the RMSD for each t.

Table 10: Section 5.2. For each value of x in the first column, predictions for $t>10$ days use data observed at $t_{1}=9, t_{2}=9.5$, and $t_{3}=10$ days. Observed data correspond to $z\left(x, t_{1}\right), z\left(x, t_{2}\right)$, and $z\left(x, t_{3}\right)$ and the prediction is given by the quadratic polynomial in $Q_{\min }(t)$ that interpolates the data. Each cell of the table shows $\left|z_{\text {pred }}(x, t)-z(x, t)\right|$, where values of $z(x, t)$ correspond to synthetic data that is not used in the prediction. The last line in the table shows the RMSD for each t.

Table 11: Section 5.2. For each value of x in the first column, predictions for $t>10$ days use data observed at $t_{1}=8.5, t_{2}=9, t_{3}=9.5$, and $t_{4}=10$ days. Observed data correspond to $z\left(x, t_{1}\right), z\left(x, t_{2}\right)$, $z\left(x, t_{3}\right)$, and $z\left(x, t_{4}\right)$ and the prediction is given by the cubic polynomial in $Q_{\min }(t)$ that interpolates the data. Each cell of the table shows $\left|z_{\text {pred }}(x, t)-z(x, t)\right|$, where values of $z(x, t)$ correspond to synthetic data that is not used in the prediction. The last line in the table shows the RMSD for each t.

Table 12: Section 5.2. For each value of x in the first column, predictions for $t>10$ days use data observed at $t \in\{3.5,4,4.5, \ldots, 10\}$ days. Observed data correspond to $z(x, t)$ and the prediction is given by the best fitting linear polynomial (solution of a linear least squares problem). Each cell of the table shows $\left|z_{\text {pred }}(x, t)-z(x, t)\right|$. In the left-hand part of the table, values of $z(x, t)$ correspond to synthetic trainind data (used in the fitting), while in the right-hand part of the table $z(x, t)$ correspond to synthetic (testing) data that is not being used in the fitting. The last line in the table shows the RMSD for each t.

	 \circ - 00000000000000000000000 O 00000000000000000000000000000 O.O.O.O.O.O.O.O.O.O.O
	s.əәәшu u! x

Table 13: Section 5.2. For each value of x in the first column, predictions for $t>10$ days use data observed at $t \in\{3.5,4,4.5, \ldots, 10\}$ days. Observed data correspond to $z(x, t)$ and the prediction is given by the best fitting quadratic polynomial (solution of a linear least squares problem). Each cell of the table shows $\left|z_{\text {pred }}(x, t)-z(x, t)\right|$. In the left-hand part of the table, values of $z(x, t)$ correspond to synthetic trainind data (used in the fitting), while in the right-hand part of the table $z(x, t)$ correspond to synthetic (testing) data that is not being used in the fitting. The last line in the table shows the RMSD for each t.

Table 14: Section 5.2. For each value of x in the first column, predictions for $t>10$ days use data observed at $t \in\{3.5,4,4.5, \ldots, 10\}$ days. Observed data correspond to $z(x, t)$ and the prediction is given by the best fitting cubic polynomial (solution of a linear least squares problem). Each cell of the table shows $\left|z_{\text {pred }}(x, t)-z(x, t)\right|$. In the left-hand part of the table, values of $z(x, t)$ correspond to synthetic trainind data (used in the fitting), while in the right-hand part of the table $z(x, t)$ correspond to synthetic (testing) data that is not being used in the fitting. The last line in the table shows the RMSD for each t.

[^0]: *This work was supported by FAPESP (grants 2013/07375-0, 2018/24293-0, and 2022/05803-3) and CNPq (grants 302538/2019-4 and 302682/2019-8).
 ${ }^{\dagger}$ Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010, Cidade Universitária, 05508-090, São Paulo, SP, Brazil. e-mail: egbirgin@ime.usp.br
 ${ }^{\ddagger}$ Department of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific Computing (IMECC), State University of Campinas, 13083-859 Campinas SP, Brazil. e-mail: martinez@ime.unicamp.br

