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Abstract

This paper deals with the prediction of river levels by means of polynomial regression models
using only elevation data and inflow forecasts. Different models for this purpose are examined and
a new approach based on the concept of virtual stations is presented. Detailed numerical experi-
ments show that this proposal may be useful as a tool for making predictions when the physical
characteristics of the river are uncertain.
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1 Introduction

River flow modelling is an important tool for analysing and predicting dam failures and their conse-
quences. The main mathematical procedure for this task is based on the solution of partial differential
equations (PDE). The equations of Saint Venant [20] are the best known equations for this purpose.
Their numerical solution requires initial and boundary conditions in terms of river wetted cross-sections
and flow-rates. In addition, geometric descriptions of the cross sections and bed elevations are required.
Finally, Manning roughness coefficients, which may be spatially and temporally dependent, must be
determined. See [II, 2], 3, 5, [4] 6l (7, 8, 1] 12} 13], 14, 17, 18] 19, 20, 21].

Typically, partial observations of river surface elevations at different spatial and temporal coordi-
nates are available. These observations make it possible the estimation of the unknown characteristics
of the river, which are necessary for the numerical integration of the partial differential equations.
The resulting PDE-constrained parameter estimation problem can be difficult to solve, requires in-
tegration of the PDE’s for different instances, and is subject to instability and lack of reliability
of results. However, this problem has been the subject of valuable research over many years. See
11, 2, 13, 5, 6l 7, [, [T, (14, 15 17, [18].

The PDE approach obtains predictions by means of the estimation of unknown physical character-
istics and associated PDE integration. Moreover, the estimation of unknown physical characteristics
is based on fitting the direct solution of the PDE’s to available observations. This suggests the pos-
sibility of obtaining river predictions directly from available data without the need to estimate the
physical characteristics of the river. The obvious drawback of this approach relies on the fact that
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we do not have reliable physical models that directly link observations to predictions. For this rea-
son we believe that data-based predictions should generally be considered in conjunction with PDE
predictions, although the specific form of this relation is highly problem-dependent [6].

Reliable data-based approaches should start with a reliable identification of cause-effect relation-
ships. For example, in the case of river flow phenomena, a high correlation may be found between
upstream discharge and downstream elevations. Obviously, upstream discharges are the cause of down-
stream elevations and not the other way round. If a cause-effect relationship is established, the next
step could be to propose an appropriate form of dependence relationship, the specific form of which
should be based on previous data analysis.

Let us consider an example that is well suited to introduce and motivate the rest of this paper.
It has been widely observed that water elevation at an arbitrary fixed station of a natural river is a
smooth function of the upstream (inlet) flow-rate. See [12] and [2, Fig.12b]. In Figure [, we consider
data for the Fork River published in [9]. Figure [lp shows observations of the elevation z corresponding
to the section z = 751 m, together with linear, quadratic and cubic polynomials representing elevation
as a function of the inflow rate Quin (in m?/s). The polynomials were fitted using simple least squares.
Figure [1b shows the same information but related to the section x = 3256 m. The observations are
taken every 12 hours starting at zero hours on day 3. The polynomial coefficients and the corresponding
root mean square deviation (RMSD) are given in Table

‘ Station ‘ Polynomial ‘ RMSD ‘ co c1 &) cs3 ‘

g linear 8.69579603E-02 | 7.35113673 3.75568519E-02 —— ——
= quadratic | 2.69668513E-02 | 7.08338033 8.19336547E-02 -1.36086954E-03 -
= cubic 2.42162234E-02 | 7.01642805 9.97412870E-02 -2.60953038E-03 2.47226020E-05
= linear 6.02123240E-02 | 5.44084782 3.91356263E-02 —— ——
§ quadratic | 3.13462816E-02 | 5.28175904 6.62052107E-02 -8.39381211E-04 ——
o cubic 3.07813747E-02 | 5.24970397 7.49278445E-02 -1.45802975E-03 1.23271897E-05

Table 1: Fork river: fitting polynomials, their coefficients, and the corresponding RMSD (in meters).

It is interesting to fit the data of, say, the first 10 days and observe if the approximating curves fit
well the data for the remaining days. Figure [2| and Table [2] show the results. Throughout this paper
surface elevations and the corresponding RMSD errors are expressed in meters. So, for example, the
testing error of the cubic polynomial for x = 751 m meters is 4.80 cm according to Table [2l This error
is quite small for practical prediction purposes regarding a real river.

. . RMSD
Station | Polynomial training festing co 1 o c3
g linear 4.36362260E-02 2.24297179E-01 | 7.66210301 2.34403945E-02 —— ——
= quadratic | 1.97586581E-02 1.11828660E-01 | 7.33545084 5.90878962E-02 -8.67373515E-04 ——
= cubic 1.06148710E-02 4.79787043E-02 | 6.94435497 1.24958948E-01 -4.23241309E-03 5.33788086E-05
= linear 4.41380828E-02 1.67298488E-01 | 5.67319985 2.89537322E-02 —— ——
§ quadratic | 3.43615061E-02 8.69890046E-02 | 5.44061014 5.43362118E-02 -6.17605427E-04 ——
e cubic 2.73302025E-02  7.05794611E-02 | 4.95184090 1.36658084E-01 -4.82303941E-03 6.67097817E-05

Table 2: Fork river: Fitting polynomials, their coefficients, and the corresponding RMSD. In this case,
observations of the first 10 days were used as training data to fit the polynomials. The remaining
observations (20 or 21 days for Sections x = 751 m and Section z = 3256 m, respectively) were not
used in the fitting (training) phase and, then, were used to test the predictions provided by the fitted
polynomials.
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(b) Section 2 = 3256 m.

Figure 1: Fork river: Observed elevations at a given station and their approximation as a (linear,
quadratic and cubic) fitting polynomial of the inlet discharge.

These results suggest that, for predicting elevations at a fixed station x in “future days” under
suitable forecast on the inlet discharge, it is enough to fit the curve of the surface elevation z(z,t)
versus Qmin (t) using available data at station z, with the reasonable belief that, in the next days, this
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(b) Section z = 3256 m.

Figure 2: Fork river: Observed elevations at a given station and their approximation as a (linear,
quadratic and cubic) fitting polynomial of the inlet discharge. In this case, observations of the first
10 days were used as training data to fit the polynomials. The remaining observations (20 or 21 days
for Sections z = 751 m and Section x = 3256 m, respectively) were not used in the fitting (training)
phase and, then, were used to test the predictions provided by the fitted polynomials.



curve will provide reasonable elevation estimates, provided that inlet discharge forecasts are reliable.
In fact, this should be the case if one has data for a suitable number of days before “today” and for
all the relevant stations along the river. Unfortunately both situations are unlike to occur. Usually,
one needs previsions for the future employing a possibly moderate number of past data at a possibly
moderate number of stations x.

For example, according to Table [l for z = 751 m, the best third-order polynomial that represents
z(x,t) as a function of Quin(t) is given by

2(751,t) = 7.02 4+ 9.97 X 10 2Qumin(t) — 2.61 X 103 Q i (t)? + 2.47 x 107°Qmin(t)?, (1)

while, for z = 3256 m, the best third-order polynomial that represents z(x,t) as a function of Quin(t)
is given by

2(3256,t) ~ 5.25 + 7.49 X 107 2Qmin(t) — 1.46 x 1073Qumin ()% + 1.23 X 1072 Qunin (t)>. (2)

However, if = ¢ {751,3256}, we do not know, for example, which is the best third-order polynomial
that fits the elevations z(x,t) at Section x = 555 m as a function of Quin(t). This question is addressed
in the present paper.

We will start from the empirical observation that, in real rivers, inlet discharge is the dominant
cause of river elevations at different stations. This fact supports the idea that, given a spatial posi-
tion z, the elevation z(x,t) can be well approximated by a low-order polynomial P(Qmin(t)). We will
see that third-order polynomials are the more appropriate for this purpose. In order to recover eleva-
tions at stations x that are not represented in the data we analyse the employment of two-dimensional
polynomials in the variables = and Quin(t). However, the need to preserve the accuracy of the one-
dimensional fits leads us to propose a different strategy based on the concept of “virtual stations”.
This paper proposes an algorithm for selecting suitable virtual stations and demonstrates its reliability
through detailed numerical experiments.

This research is conducted within CRIAB, a Latin-American academic group that involves col-
laborators of several countries. The group is dedicated to analyzing, comprehending and mitigating
dam-breaking and related accidents. River modelling is one of the techniques that must be mastered
in the broader landscape of modelling embankments and basins. Optimization regression techniques
are among the tools used for this purpose.

This paper is organized as follows. Section [2] analyses the compatibility of one-dimensional regres-
sion with two-variable polynomial fitting. Section [3| introduces the method of virtual stations and
describes the algorithm that will be used in the experiments. Section [4] describe the generation of syn-
thetic data. Numerical experiments are reported in Section [5 while conclusions and future research
directions are presented in Section [6

Notation. #A will denote the number of elements of the set A. If A and B are sets, A\ B denotes
the set of elements of A that do not belong to B.

2 Two-variable polynomial fitting

Consider an arbitrary one-dimensional flow where the spatial (length) coordinate x goes from zpin
t0 Tmax- The surface elevation for space coordinate x and time coordinate ¢ will be denoted z(z,t).
Assume that at p different stations z1,..., 2, € [Z1min, Tmax] We have observations of surface elevations
at different times. The inlet discharge (flow-rate at © = xyin) at time ¢ € [tmin, tmax] is denoted
Qmin(t). For simplicity, if confusion is not possible, we omit the dependence of ¢ in this notation
(denoting Qmin = Qmin(t)). Assume that, at each station z;, we fit a polynomial P;(Qmin) with



degree ¢, in the least-squares sense, in order to minimize the deviations with respect to measured
elevations.
We may consider the model

2(@,t) & Wi(z) PL(Qmin(t)) + - -+ + Wp(@) Pp(Qmin(t)), (3)
where, for all j = 1,...,p, Wj(z) is a polynomial with degree p — 1 such that Wj(z;) = 1 and
W;(xe) = 0 if £ # j. Namely,

[Liz(x — ;)
Hi;éj (i — x5)

The right-hand side of is a sum of p(¢ + 1) monomials of the form %,jxianin fori=0,1,...,p—1
and 7 =0,1,...,q.
This suggests the model

W;j(z) = (4)

s q
Z(l‘, t) ~ Z Z 7i7szQmin(t)] . (5)
i=0 j=0
In , we postulate that the elevation at each point (z,t) is a two-variable polynomial with variables =
and Qmin(t), with degree s in the variable z and degree ¢ in the variable Qui,. Note that in we
have that s =p — 1.

The model induces a linear least-squares problem, in which the coefficients +; ; are the unknowns
and observations are available at different stations and times. We wonder whether, if observations are
given at a finite number of stations z1,...x,, the solution of the least-squares problem comes from
addressing p separate least squares problems, one corresponding to each station. In this case, we could
compute the best polynomial of degree ¢ with respect to measurements at the considered station and
the predicted values at arbitrary points (z,t) would come from interpolation according to and .

The following theorem gives an answer to this question.

Theorem 2.1 Assume that elevations zj ¢ are given at p stations xy, k= 1,...,p, and time instants
te, £ =1,...,r,. Assume, moreover, that for each observed zy o the inlet flow Qmin(ty) (in short Q)
s known. Consider the linear least-squares problems

2

P e | 4 s
Minimize Z Z Z Z fyi,jx};Qg — 2k (6)

k=1¢=1 |j=0 i=0

and
2

q .
> Bri@) = el - (7)
=0

Minimize g

P Tk
k=

14=1

Then, the objective function value at the solution of @ is less than or equal to the objective function
value at the solution of (@ Moreover, if s > p — 1 both objective functions are identical at respective
solutions.

Proof: Problem @ is equivalent to

Tk q . 2
Minimize » > " | > B Q) — 2k ®)
§=0

k=1 (=1



subject to

S
Brj =Y vijahforallk=1,..pj=01,...,4q. (9)
i=0
Therefore, problem @ is equivalent to problem ([7)) with the additional constraints @ So, the feasible
region of contains the feasible region of . This implies that the objective function of at
its solution is smaller than or equal to the objective function of at its solution. Both objective
function values are identical if the feasible region of ([7)) is the same as the feasible region of , that
is, if for all 34 ; € R there exist «; ; such that the identity @ holds. This would mean that the linear
system (9) (with unknowns +; ;) and independent term given by (. ;) is compatible.
By (9), for j =0,1,...,q, we have

Brj = Y047) + Y1571 + - + Vs T, (10)
B2.j = 705%3 + Y1,T5 + -+ + Vs 5T, (11)
Bpi = V0,4Tp +V1,jT5 + - + Vs j T (12)

If s < p—1 the systems — are overdetermined and the solution set may be empty. In that
case, the objective function value at the solution of @ could be bigger than the objective function
value at the solution of . Ifs=p—1, foreach j =0,1,...,q, the equations f define a p x p
Vandermonde system. See [10, pp.203-207]. So, the ¢ 4+ 1 systems are compatible and the
unknowns 7o, j, ..., Vp—1,; are (uniquely) determined by the constraints @ If s > p—1 the systems
f are underdetermined and particular solutions come from completing the solutions of the case

s =p—1with v, ; = ...,7s = 0. Therefore, when s > p — 1, the constraints @ do not impose any
constraint at all to the solution of . Thus, the problems @ and @ are equivalent when s > p — 1.
This completes the proof. O

However, if observations zons(x, tx) are available at different times and stations (xg,tx), k € Kops,
we must rely directly on the least squares problems induced by . Namely,

2
s

q
Minimize Z Z Z'Yi,jfEZ;Qmin(tk)j — Zobs(Th, tk) | - (13)

k€Kops | i=0 j=0

Note that problems of the form @ are of the form but the reciprocal is not true. Observe,
moreover, that the number of parameters v;; that are estimated when we use is (s+1)(g+1),
where s is the degree of the polynomial with respect to the variable z and ¢ is the degree of the
polynomial with respect to the variable Quin.

3 Method of virtual stations

Assume that we have p observation stations with spatial coordinates zi,...,z, and that, for all
i = 1,...,p, N; elevation observations are available for N; different temporal coordinates. It is
plausible that, as suggested in Section [I, and as will be confirmed by forthcoming experiments, the
best model for the predicted elevations at any given station should come from a least-squares fitting
of a suitable polynomial using the observed associated elevations. If the degree of each polynomial
is ¢, the number of coefficients of this model is p(¢ + 1). It is disappointing that this number is, in



general, bigger than (s+1)(¢+ 1), which is the number of coefficients associated with the two-variable
polynomial model discussed in Section [2l Therefore, solving does not lead to the likely optimal
elevation prediction, given the data availability mentioned in this paragraph.

On the other hand, the procedure based on seems to be suitable for the case where one has
observations at different space-time positions, not necessarily concentrated at fixed stations. In this
section we will assume that available elevation data zops(zk,tx) are given at ngny space-time points
(zg,tr) for k =1,...,ngas. We also assume that inlet discharge Qmin (%) is available whenever necessary.

We consider that zyninm < 71 < T2 < -+ < Tpg,, < Tmax- DPach spatial position Z; will be
called “virtual station”. The unknowns of our problem will be the coefficients cg ;, c1 5, c2j, c3,; for all
j =1,...ngat. Note that our fitting problem has 4ng,¢ unknowns. The objective function f will be
a sum of squared errors, each error corresponding to an elevation observation. Namely,

Ndat

f(C) = Z [anl(xky ks C) - ZObS(‘Tku tk:)]2 ) (14)

k=1

where c is the vector of estimated coefficients ¢;; stored columnwise and zca1(xk, tk, ¢) is the elevation
computed by the model at the point (xy,t;) when the model coefficients are given by the vector c.

Let us describe how zcai (7, tg, c) is computed. Given k € {1,...,nqat} We define xjp i) as the
biggest z; such that z; < zj, and we define @ ;gpy(x) as the smallest z; such that zy < z;, except in the
cases that xp < &1 or xp > Zn,,... If T < Z; we define Tleft(k) = T1 and Tright(k) = L2- If 2 > T
we define Tiefy(k) = Tngae—1 AN Tright(k) = Tngae- Lhe coefficients cojefi(k), €1 left(k)» C2,left(k) > €3 left (k)
and Co right(k)» C1,right (k) > C2,right (k) C3,right(k) Will be the only coefficients that appear in the definition of
zcal(l'k» Uk, C)'

We define
Wiefe(k) = Coteft(k) T C1 1eft(k)@umin (tk) + C21efe(k) Qumin (b)) + €3.1ef0 (k) Qrmin (tr) (15)
and

Wright(k) = C0,right(k) + C1,right(k) Qmin (tk) + C2right (k) @min (te)” + €3 right (k) Quin (te). (16)

Finally,

Lk — Tright(k T — Lleft(k
2cal<xkatka C) = ght(A) Wieft (k) + *) Wright (k) (17>
Lleft(k) — Lright(k) Lright(k) — Lleft(k)

According to , , and , Zeal(Tk, tr, ¢) depends linearly on the unknown coefficients c.
Therefore, the minimization of is a linear least-squares problem. This problem has ng,t equations
and 4ngt,; unknowns. Note that the number of virtual stations and their positions are arbitrary and
should be chosen taken into account the coordinates of the available data.

3.1 Choosing virtual stations

The positions of the virtual stations Z1, ..., Zn. .. € [Tmin, Tmax] are “hyper-parameters” of the model
presented in Section [3] The objective function in the model “with variable virtual stations” is given
by and each zcu(xg,tk,c) is defined by , but Zgnyk) and Tieg () are now variables of the
problem that may change in order to obtain better values of the objective function. Therefore, a more
precise definition of the objective function is

Ndat

f(C, 'f) = Z [anl(x/ﬁtk? C) - Zobs(l'katk)]Q, (18)

k=1



where the coordinates of Z are Z1,...,Tn,,, and, for all k =1,... ngat,

_ Tk — Tright(k Tk — Lleft(k
Zeal (T, thy Ty €) = right(k) Wef (k) + el Wright (k)- (19)
Lleft (k) — Lright(k) Lright(k) — Lleft(k)

Let us define now an algorithm that we effectively use for choosing the coordinates of stations
Ty -y Tng,,- Let us initialize the set O in the following way:

O = {2 € [Zmin, Tmax| sSuch that there exists k € {1,... ,nqa} with z = zx}. (20)

Note that we could define
O={x1,...,2n,, }

but this definition should be ambiguous, inducing that the number of elements of O is ng,;. This is
not the case, because z-coordinates may be repeated in the set of observations. In fact, the number of
elements of O is less than or equal to nga;. From now on, we will assume that the cardinality of O is
not smaller than 2. Therefore, one has at least two values of spatial coordinates x for which we have
at least one observation. Note that the number of elements of O is between 2 and ng,¢ and that this
number may be strictly smaller than ng,;. The set of positions of the virtual stations will be called
S. It will be defined recursively in the following way:

Algorithm [3.1] 1. Initialize S < 0.
Step 1. If #8 > ngat or O = (), stop.
Step 2. Compute a solution ¥ of the problem
Maiieirélize min {#L(x), #R(z)} (21)
where
L(z) :={k €{1,...,ngat} | Tree(r) = =} and R(x) :={k € {1,...,ndat} | Tright(k) = T}

Step 3. Update S <~ SU{Z} and O +- O\ {7} and go to Step 1.

At each iteration, the algorithm chooses the virtual station that maximizes the minimum number
of available observations to determine each of the ng,t station cubic polynomial by means of least-
square calculations. It is clear that, after a finite number of steps we have that the number of elements
of § is ngtat or that O is empty and the algorithm stops.

4 Generation of synthetic data

In order to evaluate the effectiveness of different regression models for river predictions, we need to
rely on synthetic experiments. In our present research we decided to generate synthetic data by means
of integration of the Saint-Venant equations [20], which are given by

0A  0Q
o t 5. =0 (22)
. 2 201
0Q 9 (Q 0= n2QIQ|



for * € [Tmin, Tmax] and ¢ € [tmin, tmax), Where h(x,t) = z(x,t) — z(x) is the depth of the river at
(z,t), A(x,t) = h(x,t) w(x) is the cross wetted area at (x,t), P(x,t) = w(z) + 2h(z,t) is the wetted
perimeter at (z,t), R(z,t) = A(x,t)/P(z,t) is the hydraulics radius at (z,t), V(x,t) = Q(x,t)/A(z,t)
is the speed of the fluid at (x,t), and g is the acceleration of gravity taken as 9.81m/s%. Equation
describes mass conservation and equation (23) represents conservation of the linear momentum. The
coefficient ng4 is known as Manning roughness coefficient. It is unclear in which way this coefficient
depends on x or t. On the one hand, the roughness coefficient depends on x due to the morphological
differences of the river along its course. On the other hand, sediment deposition can also affect the
roughness coeflicients over time. In , ng has units m/S.

The Saint-Venant equations were solved approximately by means of an explicit diffusive finite-
difference method [I3] [19] with the following specifications:

e Tpin = 0 and zpax = 3000 (meters).

® tmin =0 and tmax = 29 + % (days) or, equivalently, 719 hours or 2,588,400 seconds.

Initial conditions z(z, tyin) given in Figure [3|and Q(x, tmin) = 3.9m3 /s for all 2 € [Tmin, Tmax]-

Boundary condition Q(Zmin,t) given in Figure
e Manning coefficient ngy(z) = 0.078 for all € [Zmin, Tmax]-
e Time step At = 1 second, spatial step Az = 30, and diffusion coefficient 0.99.

Note that, according to the considered discretization, the finite difference method computes the values
of z(z,t) and Q(z,t) at 101 x 2588401 points. We store only the values of z(x,t) and Q(x,t) for
xz = 0,30,60,...,3000 meters and for ¢ = 0,1,2,...,719 hours. In other words, the “observed”
elevations are given by a matrix of 101 x 720 positions. The level sets defined by this matrix is given
in Figure [5

5 Numerical Experiments

The data used in the numerical experiments are generated as described in Section 4 The employment
of synthetic data allows us to test regression models in situations in which real data are not available.

5.1 Single-station one-dimensional models

In this short subsection, using synthetic data, we perform the same one-dimensional models experiment
described in Section|l] In this case we use the stations defined by £ = 720m and = = 3000 m. We wish
to verify whether the performance of the polynomial one-dimensional models for reproducing synthetic
data is similar to the performance reported for real data in Section [I] Figures [6] and [7] and Tables [3]
and [] show the results. Clearly, in terms of quality of fitting and predictions, the performance of the
polynomial models using synthetic data is similar to the one that has been reported in Section [1] for
data of the real Fork River.

5.2 Experiments using observations on a mesh

In this subsection we consider as observations data between days ¢t = 3 and ¢ = 1010, every 12 hours,
at 26 equally spaced stations between zymin = 0 and Zya = 3000 meters. The objective is, with these
meshed data, to predict the elevation z(z,t) at 26 the equally spaced stations between i, = 0 and
ZTmax = 3000 meters and ¢ € {11,12,...29}. We consider six different ways of prediction by combining

10
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two types of polynomials (interpolating and least squares) and three possible degrees (linear, quadratic
and cubic). Specifically, each of the six experiments consists of:
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’ Station ‘ Polynomial RMSD ‘ co c1 Ca cs3
g linear 1.68217006E-02 | 7.36053069 3.42611821E-02 —— ——
S quadratic | 3.84570654E-03 | 7.30939110 4.29580343E-02 -2.70630819E-04 ——
= cubic 2.59511479E-03 | 7.29329906 4.73743343E-02 -5.86479099E-04 6.35214794E-06
g linear 4.19519692E-02 | 5.81624209 2.58508659E-02 —— ——
§ quadratic | 1.30136586E-02 | 5.69169716 4.70311095E-02 -6.59092116E-04 ——
& cubic 5.98388456E-03 | 5.62617288 6.50135886E-02 -1.94517664E-03 2.58649476E-05

Table 3: Section [5.1] Fitted polynomials, their coefficients and the

thetic data. Observations up to 30 days.

corresponding RMSD using syn-

Station | Polynomial training RMSD festing co cy co cs3
g linear 1.16720184E-02 1.94601125E-02 | 7.35751723 3.46560681E-02 —— —_—
S quadratic | 2.20001211E-03 5.41537380E-03 | 7.30850076 4.32306214E-02 - 2.86981705E-04 ——
= cubic 1.67445669E-03  3.33740105E-03 | 7.29464777 4.71442613E-02 - 5.87655387E-04 6.73839556E-06
g linear 3.07334766E-02  4.72819963E-02 | 5.81094708 2.65408393E-02 —— -
§ quadratic | 7.34536455E-03 2.00261102E-02 | 5.68333537 4.88642187E-02 - 7.47141135E-04 -
» cubic 3.07346962E-03  1.08396889E-02 | 5.61856923 6.71614492E-02 - 2.15286467E-03 3.15036593E-05

Table 4: Section [5.1

Fitting polynomials, their coefficients, and the corresponding RMSD using

synthetic data. In this case, observations of the first 10 days were used as training data to fit the
polynomials. Observations of the remaining 20 days were considered unknown in the fitting phase and
then they were used to test predictions given by the fitted polynomials.

Experiment 1: We assume that observed elevations correspond to instants t; = 9.5 and ¢ = 10 days

12
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(b) Section 2 = 3000 m.

Figure 6: Section Synthetic observed elevations at a given station and their approximations as
(linear, quadratic, and cubic) polynomials of the inlet discharge. Observations up to 30 days were
used to fit the polynomials

and 26 equally spaced stations between zp;;, = 0 and Ty = 3000 meters. We consider that
the inlet discharge Qmin(t) at times t; and ¢9 are also observed. We employ the model with
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Figure 7: Section Synthetic observed elevations at a given station and their approximation as a
(linear, quadratic, and cubic) polynomial of the inlet discharge. In this case, observations of the first
10 days were used as training data to fit the polynomials. Observations of the remaining 20 days were
considered unknown in the fitting phase and, then, they were used to test predictions produced by
the fitted polynomials.
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g =1and s = p—1 = 25. Note that, due to Theorem [2]1, it is not necessary to fit explicitly
a polynomial with degree 25 in order to obtain predictions for the future at the given stations.
Using this fitting, and considering suitable forecasts for the inlet discharges, we can predict
elevations for days 11,12,13,...,29 for 101 values of x equally spaced between xmi, and Tmax
and we can compare these predictions with the observed elevations. Note that, in this case,
the RMSD-error corresponding to the training set is necessarily equal to 0. The result of this
experiment is given in Table [9}

Experiment 2: Observed elevations correspond to instants t; = 9,0 = 9.5, and ¢35 = 10 days.
Elevation data correspond to these instances and the model uses ¢ = 2 and p — 1 = 25. So,
the elevation at each station is modelled by a quadratic interpolating polynomial. The result of
this experiment is given in Table

Experiment 3: Observed elevations correspond to instants t; = 8.5,t5 = 9,3 = 9.5, and t4, = 10
days. Elevation data correspond to these instances and the model uses ¢ =3 and p—1 = 25.
So, the elevation at each station is modelled by a cubic interpolating polynomial. The result of
this experiment is given in Table

Experiment 4: Observed elevations correspond to instants ¢t € {3.5,4,4.5,...,10} days. Elevation
data correspond to these instances and the model is a line that fits the observed elevations
at those instants in the least-squares sense. The result of this experiment is given in Table [T2]

Experiment 5: Observed elevations correspond to instants ¢ € {3.5,4,4.5,...,10} days. Elevation
data correspond to these instances and the model is a quadratic polynomial that fits the
observed elevations at those instants in the least-squares sense. The result of this experiment is
given in Table

Experiment 6: Observed elevations correspond to instants ¢t € {3.5,4,4.5,...,10} days. Elevation
data correspond to these instances and the model is a cubic polynomial that fits the observed
elevations at those instants in the least-squares sense. The result of this experiment is given in
Table 14

Tables in the Appendix show the results. Figures [§and [J give a graphical representation of
the predictions’ RMSD as a function of ¢t € {11,12,...,29}. For each ¢, the RMSD of the 26 equally
spaced = € [0,3000] meters is shown. The experiment shows that polynomial interpolators of past
data are bad at extrapolating to predict the future. One reason may be that they are based on little
data and focus on capturing local behavior. Thus, the linear and quadratic options are less bad than
the cubic, which quickly goes to infinity under the influence of local behavior. On the other hand,
least squares polynomials computed with more data better capture the trend implicit in the data and
thus better predict the future. Of the three options (linear, quadratic, and cubic), the cubic provides
the best predictions.

5.3 Next-day predictions using observations on a mesh

In this experiment, we evaluate the six approaches considered in the previous subsection to predict
the “elevation of the next day”. We consider tiodgay € {2,3,...,28} days and tiomorrow = ttoday + 1.
Available data of z(x,t) with ¢t multiple of half day and t < t(,q4ay Was used as training data. For the
interpolating polinomials, only the most recent information was considered, while for least squares,
all available data was considered. For each of the 26 equally spaced stations x between x,;, = 0 and
ZTmax = 3000 meters, the six approaches were used to predict the elevation z(z, tiomorrow). Table
shows the details. As seen in previous experiments, least squares polynomials gave very reasonable
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Figure 8: Section RMSD of predictions of z(x,t) for ¢t € {10,11,...,29} when predictions are
given by interpolating polinomials (linear, quadratic, and cubic) computed using training data with
t < 10. For each t, the RMSD of the 26 equidistant = € [0, 3000] meters is being displayed.

predictions (with an average error of 1 centimeter in the case of the cubic polynomial) and performed
better than interpolating polynomials. As expected, the cubic was better than the quadratic, which
was better than the linear. Unlike previous experiments, interpolating polynomials were also useful
in many cases, because in the present experiments we are dealing with next-day predictions, i.e.
interpolating polynomials are used to extrapolate only a little outside the interpolating range.

5.4 Next-day predictions using irregularly distributed data

In the experiments of the previous subsection, we considered observations every 12 hours between
day t = 3 and day ¢t = 10 (15 time instants) at 26 stations equidistant between 0 and 3000 me-
ters, totalizing 390 observations. However, considering our synthetic data, in that same domain of
space (x,t) we have available data from hour to hour and at 101 equidistant stations, amounting to
101 x 169 = 17069 available data. With the intuition of using random subsets of data with uniform dis-
tribution, in the next experiment we draw the observations among the available data with probability
390/ 17069 . 0. 0388, with v € {1,2,4}. With this way of determining the observations, we constituted
tralnlng data sets with 394, 195, and 95 elevation observations.

The experiment consists of (a) positioning ngtat stations using Algorithm [4]1, (b) with the stations
already positioned solve the linear least squares problem that computes the cubic polynomial of
each station, and (c) use those polynomials to predict the elevation of the “next day”, that is, the day
tiomorrow = 11 at 101 equidistant points between 0 and 3000 meters. We wish to understand how the
predictions behave for different values of nggat.

Table 6l shows the results when 394 observations are available with the number of virtual stations
varying from 2 to 100. The first column shows the number of stations. The second column reports
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Figure 9: Section RMSD of predictions of z(x,t) for ¢t € {10,11,...,29} when predictions are
given by best fitting polinomials (linear, quadratic, and cubic) computed by solving a linear least

squares problem using training data with ¢ € {3.5,4,4.5,...,9.5}. For each ¢, the RMSD of the 26
equidistant = € [0, 3000] meters is being displayed.

“minobs”, the minimum number of observations that were used, given the positions of the virtual
stations, to determine each of the ng.¢ cubic polynomials by means of least-square calculations. The
third column shows the RMSD of the training data. The last column shows the RMSD of the next-day
prediction at the 101 points equidistant between 0 and 3000 meters. It is clear from the figures in the
table that the RMSD of the training data decreases monotonically as the number of stations increases.
On the other hand, the RMSD of the next-day prediction remains more or less constant (between 3
and 6 centimeters) when the number of virtual stations is between 2 and 49 and deteriorates rapidly
when this number is 50 or more. In fact, the optimal number of virtual stations is, in this case, 19.
For completeness, in this case we report the results up to 100 virtual stations.

In Table[7land Table[§|we report the same type of results when the number of available observations
is 185 and 95, respectively. In the first case, the number of virtual stations goes from 2 to 37 and in
the second case it goes from 2 to 19 because larger numbers of virtual stations yield prediction errors
that are bigger than 1 meter. Again, the error in the training set decreases with the number of virtual

stations, as the number of free parameters is increased.

6 Conclusions

This paper discusses the potential of methods based on surface elevation data alone for predicting
river levels, provided that reliable inlet discharge forecasts Q(zmin,t) are available. We have focused
on low-degree polynomial models because they are simple and economical in terms of the number of
unknown parameters. The various alternatives presented in this paper can be considered successful
in the sense that they provide results that are accurate enough for predicting the levels of real rivers.
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Interpolating Fitting

ttoday polynomial of degree: polynomial of degree:
1 2 3 1 2 3
2 0.0062 0.0069 0.0199 | 0.0141 0.0021 0.0199
3 0.0130 0.0679 0.4752 | 0.0421 0.0219 0.0426
4 0.0051 0.0011 0.0033 | 0.0302 0.0108 0.0057
5 0.0014 0.0154 0.0348 | 0.0329 0.0142 0.0043
6 0.0086 0.0120 0.0150 | 0.0248 0.0094 0.0022
7 0.0071 0.0071 0.0071 | 0.0266 0.0105 0.0052
8 0.0021 0.0005 0.0141 | 0.0176 0.0028 0.0047
9 0.0035 0.0038 0.0041 | 0.0303 0.0075 0.0030
10 0.0163 0.0295 0.5743 | 0.0461 0.0225 0.0055
11 0.0083 0.0018 0.0056 | 0.0035 0.0024 0.0056
12 0.0008 0.0030 0.0034 | 0.0133 0.0013 0.0037
13 0.0905 0.0246 1.1340 | 0.0357 0.0131 0.0053
14 0.0199 0.0089 0.0180 | 0.0043 0.0113 0.0081
15 0.0162 0.0038 0.0069 | 0.0484 0.0079 0.0010
16 0.0063 0.0122 0.0163 | 0.0600 0.0165 0.0059
17 3.7608 1.0794 0.2602 | 0.0075 0.0045 0.0021
18 0.0290 0.0174 3.9772 | 0.0297 0.0090 0.0008
19 0.0168 0.0198 0.0503 | 0.0391 0.0057 0.0012
20 0.0104 0.0121 0.0124 | 0.0405 0.0046 0.0021
21 0.0281 0.0142 0.3077 | 0.0299 0.0129 0.0055
22 0.0353 0.0331 0.0751 | 0.0174 0.0052 0.0060
23 0.0173 0.0048 0.0022 | 0.0656 0.0194 0.0076
24 0.0018 0.0015 0.0014 | 0.0635 0.0199 0.0094
25 0.0126 0.7339 3.3581 | 0.0019 0.0079 0.0043
26 0.0806 0.1488 0.2467 | 0.0230 0.0113 0.0035
27 0.0224 0.0517 0.3592 | 0.0396 0.0099 0.0030
28 0.0075 0.0044 0.0029 | 0.0430 0.0107 0.0054

0.7243 0.2537 1.0417 | 0.0353 0.0118 0.0102

Table 5: Section For a given day t,qay and a given experiment (interpolating or fitting polynomial
of degree 1, 2, or 3) the table shows the RMSD of the next-day predicted elevation of all 26 stations.
The last row shows the overall RMSD of each approach.

In particular, the strategy of virtual stations presented in this paper seems to be useful in the case
where observations are irregularly distributed. Moreover, this strategy preserves the best third-order
polynomial approximations in the regularly distributed case.

It is interesting to consider the problem of predicting flow-rates Q(x,t) from elevation observations
z(x,t) only. From the mass-conservation equation we have that

A 0Q
St =0

Therefore,
v 0A
Q($7t) - Q(xmimt) - / E(f,t)df

min
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2.2853081231014000E-002
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1.4923539265815706E-002
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1.3691065318011980E-002
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1.3263279056685832E-002
1.3175509007241182E-002
1.2893886036635917E-002
1.2272901759381408E-002
1.2090872110758055E-002
1.2043880504159150E-002
1.1923895103591405E-002
1.1864076693219016E-002
1.1682392020077523E-002
1.1670097881090850E-002
1.1628659265365073E-002
1.0416666600669637E-002
1.0399791281676873E-002
1.0383501483021772E-002
9.9227025361913641E-003
9.8817703068327638E-003
9.5545957721222922E-003
9.5259047134240975E-003
9.5068693663715384E-003
9.4031730453848442E-003
9.3878986230084352E-003
9.2827157053270003E-003
9.1301445568780712E-003
8.4370965844998008E-003
8.4166324951854554E-003
8.2245582976612011E-003
8.2013285286650847E-003
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4.6027937601361361E-002
4.8685500605615238E-002
3.5410636986479435E-002
3.4395169668978959E-002
3.5766673494248759E-002
3.4100377670761683E-002
3.8099252360178991E-002
3.9287689605826834E-002
3.6201727385641792E-002
3.4048905093485481E-002
3.2651624306286674E-002
3.2449894571859761E-002
3.2345999462907726E-002
3.2305120343670203E-002
3.1751814157051458 E-002
3.2280097922278560E-002
3.3525846097928733E-002
3.4453557117947238E-002
5.3843426618723260E-002
5.4143100409803191E-002
5.3164207679156618E-002
5.2752211202618811E-002
5.3294152115026458E-002
5.3934282047854318E-002
5.5372017107663166E-002
5.6348350230236106E-002
5.6647214439744825E-002
5.6304646204128742E-002
5.7208920168502021E-002
5.6984529825676034E-002
5.5947727821659403E-002
3.7676481978826011E-002
3.7889247768345305E-002
3.7653477041362522E-002
3.8432530450767118E-002
3.7475166481987364E-002
3.8662642310044168E-002
3.8864212195983724E-002
3.9334825174204911E-002
4.0138579708408451E-002
4.0381481232975115E-002
4.1040039457329369E-002
4.3543218230213378E-002
4.3316691550977185E-002
4.3061145849278733E-002
0.12923190100341689
0.12971323080775976
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8.0329354317997658E-003
8.0306312766861461E-003
8.0187525830073773E-003
8.0179333149921674E-003
8.0079086981791198E-003
7.9116879215693353E-003
7.1120982718531822E-003
7.0527831979785103E-003
6.8200629596160949E-003
6.8099002730974117E-003
6.7569652637862266E-003
6.7551245197326791E-003
6.7356313704111668E-003
6.7297367192108533E-003
6.7266867935987414E-003
6.7264323627948203E-003
4.7223533876023351E-003
4.6359280777656803E-003
4.6330920332480260E-003
4.6122345451842994E-003
4.6102751068605808E-003
4.5875787632858409E-003
4.4777490065165777E-003
4.4755600778543063E-003
4.3307476396778153E-003
3.9620225228191950E-003
2.8886317493116574E-003
2.8869280012161587E-003
2.8599432980772987E-003
2.7391034801038162E-003
2.5652606094846665E-003
2.5267865337923233E-003
2.3775396132823608E-003
2.3001696336729283E-003
2.2706294451196921E-003
2.1418982774388468 E-003
2.1403856079314533E-003
2.1403856079314563E-003
2.1403856079314503E-003
1.2241141853634287E-003
1.1935575705138712E-003
1.1935575705138105E-003
1.1935575705138755E-003
1.1935575705138961E-003
1.1919087363459152E-003
1.0625333177912046E-003
1.0625333177911834E-003
1.0625333177911502E-003
1.0625333177912118E-003

0.12968356044883630
0.12972255677477529
0.12981398947867417
0.12982155115549487
0.12997349516966566
0.13080885606219347
0.12975686606923589
0.12960764964637364
0.12970197134584049
0.13443085010705041
0.13432463882639850
0.13450127671524303
0.14227538180090210
0.15228129547423630
0.71829333520509586
0.71833153306163988
0.71808112648009770
0.80170172105254001
0.84002240218473490
0.83973278380279726
1.5559016307267453
1.5560072582416900
1.5562018595829066
1.6023004097916536
1.6026236880641358
1.6027498818868846
1.6104032246579405
1.6211332816669319
1.8984411394933036
1.8988767221527962
1.9160614771120590
1.9168010751012954
2.3251907404973591
2.3255810361822524
2.3784129971256784
2.3898547222289541
2.3907039892197419
2.4025492211247181
2.4257624451134867
2.7471502163021850
2.7739273204290273
2.7914574146435789
10.769455041417071
13.194184220825461
15.209373170340974
16.484479467068468
18.255510661328792
18.414545717188812
18.510711323780274

Table 6: Section 394 random observations in the first 10 days. Effect of increasing the number of
virtual stations. Reporting training and test.

So, if we have a good approximation for A(x,t), then we can obtain, in principle, a good approximation
of Q(z,t) [6]. Moreover, according to the results of the present paper, a good approximation of z(z,t)
can be obtained using elevation observations and Qi forecasts. Unfortunately, the cross wetted area
A(z,t) can be obtained from z(z, t) only if we already know the bed elevation z,(x) and the geometric
characteristics of the channel. This is the information that we have considered uncertain, and whose
use we have tried to avoid above under the “only elevation” approach of the present paper. Therefore,
predicting flow rates from data alone is more problematic than predicting surface elevations, and this
issue deserves future study.
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5.1248811463696108E-002
3.2529197002708163E-002
3.1284750173733118E-002
2.9878458008594868E-002
2.2450370975549642E-002
2.1764814785424559E-002
2.0766831805240742E-002
2.0573231136337876E-002
2.0104363353167974E-002
1.8826320026367610E-002
1.8270195922934992E-002
1.5006593710845378E-002
1.4856901876581540E-002
1.4558586705511977E-002
1.4367127212092557E-002
1.4056078954309907E-002
1.3944065662380992E-002
1.2663706268095641E-002
1.2527967989703639E-002
1.2452824633423691E-002
1.2430540420894570E-002
1.2308000711774588E-002
1.2170734928201659E-002
1.0773903953212724E-002
1.0703768079820394E-002
8.0880895546961377E-003
8.0856468697171491E-003
8.0624368937640255E-003
7.5576773867298457E-003
7.4451793362722103E-003
7.3306658105015731E-003
6.9433436122286933E-003
6.7419124067725706E-003
6.7171350118954724E-003
5.1430668400310421E-003
2.7526193304603067E-003

7.4089510567510924E-002
3.5519815707586833E-002
4.3991827708239235E-002
8.3143696581750387E-002
6.8068533438989373E-002
6.5415859677875707E-002
6.7534463202462633E-002
6.6790025825457275E-002
6.3158699486610168E-002
7.3860255266057703E-002
9.1669436715929684E-002
7.7134955384989309E-002
7.7603153454404841E-002
7.0383131196731591E-002
7.2430701225312186E-002
7.6150540705157130E-002
7.3380393469394803E-002
9.2371846936037255E-002
9.3799256133081668E-002
9.2679586134847808E-002
9.2397760084283950E-002
0.10149722107077552
0.10745970660633239
0.11569597875671561
0.12342432166878507
0.13473581683984887
0.13471641725588770
0.13730815995101689
0.14055458227230450
0.14283338653559183
0.15803100201596343
0.20812431672514720
0.84362496442554258
0.84673106438894241
0.89984696571610800
1.5797211827586006

Table 7: Section 185 random observations in the first 10 days. Effect of increasing the number of

virtual stations. Reporting training and test RMSD.
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the first column, predictions for ¢ > 10 days use data

10 days. Observed data correspond to z(z,t1) and z(z,t2) and the

1mn

Section [5.2] For each value of =

Table 9

9.5 and t9
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observed at

predict

Qmin(t) that interpolates the data. Each cell of the

table shows |2pred(2,t) — 2(z,t)|, where values of z(x,t) correspond to synthetic data that is not used
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10 days. Observed data correspond to z(z,t1), z(x,t2), and

iven by the quadratic polynomial in Quin(t) that interpolates the data.

Each cell of the table shows |zpred(z,t) — z(,t)|, where values of z(z,t) correspond to synthetic data

that is not used in the prediction. The last line in the table shows the RMSD for each t.

For each value of z in the first column, predictions for ¢ > 10 days use data
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z(x,t3) and the predict
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For each value of z in the first column, predictions for ¢ > 10 days use data

Section [5

Table 11

9.5, and t4 = 10 days. Observed data correspond to z(x,t1), z(x, t2),

97 t3

observed at t1 = 8.5, to

iven by the cubic polynomial in Qumin(t) that interpolates the

data. Each cell of the table shows |zpred(,t) — 2(z, )|, where values of z(z,t) correspond to synthetic

ionis g

z(x,t3), and z(x,t4) and the predict

in the table shows the RMSD for each ¢.

me

The last 1

data that is not used in the prediction.
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For each value of z in the first column, predictions for ¢ > 10 days use data

observed at t € {3.5,4,4.5,...,10} days. Observed data correspond to z(x,t) and the predict

ion

Sect

Table 12

ion is

by the best fitting linear polynomial (solution of a linear least squares problem). Each cell of

given

. In the left-hand part of the table, values of z(x,t) correspond to

synthetic trainind data (used in the fitting), while in the right-hand part of the table z(z,t) correspond
to synthetic (testing) data that is not being used in the fitting. The last line in the table shows the

RMSD for each t.

the table shows |zpreqa(z,t) — 2(z, t)
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For each value of z in the first column, predictions for ¢ > 10 days use data

+~
g
=
)
=
o
<)
=
+~
<
g
<
=
8
N—
N
o
+~
<
g
o
[oF
n
)
=
=
e}
[}
v}
+~
<
o]
=
<)
>
—
)
19}
0
@)
z
<
o]
=
]
—
5.7
<t
-
5.7
o
m —
= W
.-~
)
<
<
D
>
—~
<)
R
Q
o

Secti

Table 13

101 18

by the best fitting quadratic polynomial (solution of a linear least squares problem). Each cell of

given

. In the left-hand part of the table, values of z(x,t) correspond to

synthetic trainind data (used in the fitting), while in the right-hand part of the table z(z,t) correspond
to synthetic (testing) data that is not being used in the fitting. The last line in the table shows the

RMSD for each t.

the table shows |zpreqa(z,t) — 2(z, t)
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For each value of z in the first column, predictions for ¢ > 10 days use data
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least squares problem). Each cell of the

f a linear

0M O

[ (solut
. In the left-hand part of the table, values of z(z,t) correspond to

synthetic trainind data (used in the fitting), while in the right-hand part of the table z(x,t) correspond
to synthetic (testing) data that is not being used in the fitting. The last line in the table shows the

RMSD for each t.
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] lynomi
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by the best fitting cub

table shows |zpred(,t) — 2(x, 1)

given
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