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Abstract

Augmented Lagrangian methods for large-scale optimization usually require efficient al-
gorithms for minimization with box constraints. On the other hand, active-set box-constraint
methods employ unconstrained optimization algorithms for minimization inside the faces of
the box. Several approaches may be employed for computing internal search directions in
the large-scale case. In this paper a minimal-memory quasi-Newton approach with secant
preconditioners is proposed, taking into account the structure of Augmented Lagrangians
that come from the popular Powell-Hestenes-Rockafellar scheme. A combined algorithm,
that uses the quasi-Newton formula or a truncated-Newton procedure, depending on the
presence of active constraints in the penalty-Lagrangian function, is also suggested. Numer-
ical experiments using the Cute collection are presented.

Key words: Nonlinear programming, Augmented Lagrangian methods, box constraints,
quasi-Newton, truncated-Newton.

1 Introduction

Augmented Lagrangian methods for minimizing smooth functions with nonlinear constraints
usually employ box-constraint minimization solvers for performing outer iterations. The function
to be minimized at each step is an Augmented Lagrangian, defined in terms of the objective
function and the constraints of the problem. General box-constraint algorithms may be used for
those subproblems [30] but the particular form of the constraints suggests that it is possible to
take advantage of structure in many ways, preserving the global convergence properties of the
solver.
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A version of the Powell-Hestenes-Rockafellar (PHR) Augmented Lagrangian algorithm for
equality and inequality constraints was given in [2]. This method works with two levels of con-
straints. Constraints in the upper level are included in the penalty-Lagrangian function whereas
lower-level constraints are kept explicitly in the subproblems. The most common situation is
when the lower level contains only box constraints. This is the case considered in this paper.

Due to the structure of the lower level, efficient box-constraint minimization algorithms are
required and, since large-scale problems are the most relevant in applications, cheap iterations
with low memory requirements are preferred. Algencan , the algorithm described in [2] for box
constraints and available in the Tango webpage (www.ime.unicamp.br/∼egbirgin/tango/),
uses the box-constraint algorithm Gencan [6]. Gencan is an active-set method that employs
truncated-Newton internal iterations for exploring the faces of the box and spectral projected
gradient (SPG) iterations for leaving the faces. Although generally effective, the truncated-
Newton approach can be inconvenient in some cases, because it requires the computation of
several gradients per iteration in order to approximate Hessian-vector products. A radically
different approach for approximating the Augmented Lagrangian Hessian was given in [36],
where the approximation consisted in neglecting the terms of the Hessian that involve second
derivatives of the constraints. Although efficient in some nonlinear programming problems
coming from minimax reformulations, this approach might fail if the contribution of the second
derivatives of the constraints to the Hessian of the Lagrangian is important. This observation
motivated us to define a quasi-Newton approximation to the Hessian of the PHR Augmented
Lagrangian where the Gauss-Newton term of [36] is corrected at every iteration using spectral
and BFGS arguments. In our algorithm no information is kept from old iterations, so that
memory requirements are really minimal. The quasi-Newton direction so far defined is computed
approximately using conjugate gradients. Moreover, the philosophy that leads to the definition of
the quasi-Newton approximation motivates us to define a secant preconditioner for the quadratic
subproblem. Finally, when the contribution of the constraints to the Hessian of the Augmented
Lagrangian does not exist, a combined version of our methods switches to the truncated-Newton
approach.

This paper is organized as follows. In Section 2 we describe both the Augmented Lagrangian
algorithm and the computation of quasi-Newton approximations and preconditioners. In Sec-
tion 3 we show the numerical experiments. Conclusions are given in Section 4.

Notation

[v]i denotes the i-th component of the vector v. Sometimes, if there is no possibility of confusion,
we also denote vi = [v]i. PΩ(v) denotes the Euclidian projection of v on the set Ω. Diag(A)
is the diagonal matrix whose elements are the diagonal elements of the matrix A. We denote
IR+ = {t ∈ IR | t ≥ 0} and IR++ = {t ∈ IR | t > 0}.

2 Description of the method

We consider the problem

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, x ∈ Ω,
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where f : IRn → IR, h : IRn → IRm, g : IRn → IRp and Ω = {x ∈ IRn | ℓ ≤ x ≤ u}. We assume
that f, h, g are twice continuously differentiable on Ω.

For all x ∈ IRn, ρ ∈ IR++, λ ∈ IRm, µ ∈ IR
p
+ we define the Augmented Lagrangian [34, 40, 45,

46]:

L(x, λ, µ, ρ) = f(x) +
m∑

i=1

[λihi(x) +
ρ

2
hi(x)2] +

p∑

i=1

1

2ρ
max{0, µi + ρgi(x)}2.

The Augmented Lagrangian algorithm considered in this paper (see [2]) is described below.

Algorithm 2.1.

Let x0 ∈ Ω an arbitrary initial point. The parameters for the execution of the algorithm
are: τ ∈ [0, 1), γ > 1, −∞ < λ̄min < λ̄max < ∞, 0 ≤ µ̄max < ∞, ρ0, ρ1 ∈ IR++, [λ̄0]i ∈
[λ̄min, λ̄max] ∀i = 1, . . . ,m, [µ̄0]i, [µ̄1]i ∈ [0, µ̄max] ∀i = 1, . . . , p, ε1 > 0.

Step 1. Initialization

Set k ← 1. For j = 1, . . . , p, compute

[β0]j = max

{
gj(x0),−

[µ̄0]j
ρ0

}
.

Step 2. Solving the subproblem

Compute xk ∈ Ω such that

‖PΩ(xk −∇L(xk, λk, µk, ρ)‖∞ ≤ εk. (1)

Step 3. Estimate multipliers

For all i = 1, . . . ,m, compute

[λk+1]i = [λ̄k]i + ρkhi(xk)

and
[λ̄k+1]i = max{λ̄min,min{λ̄max, [λk+1]i}}.

For all j = 1, . . . , p, compute

[µk+1]j = max{0, [µ̄k]j + ρkgj(xk)},

[βk]j = max

{
gj(xk),−

[µ̄k]j
ρk

}
,

and
[µ̄k+1]j = min{µ̄max, [µk+1]j}.

Step 4. Update the penalty parameters

If
max{‖h(xk)‖∞, ‖βk‖∞} ≤ τ max{‖h(xk−1)‖∞, ‖βk−1‖∞},
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define
ρk+1 = ρk.

Else, define
ρk+1 = γρk.

Step 5. Begin a new outer iteration

Compute εk+1 > 0. Set k ← k + 1. Go to Step 2.

If {xk} is a sequence generated by the Augmented Lagrangian Algorithm 2.1 and limk→∞ εk =
0, it can be proved [2] that:

1. Every limit point is a stationary (KKT) point of the problem

Minimize

m∑

i=1

hi(x)2 +

p∑

j=1

max{0, gj(x)}2 subject to x ∈ Ω.

2. If a limit point x∗ is feasible and satisfies the constant positive linear dependence (CPLD)
constraint qualification [3, 42], then x∗ is a KKT point.

3. Under suitable regularity conditions, if the sequence {xk} converges to x∗, the sequence of
penalty parameters {ρk} is bounded.

For obtaining (1) we must solve, approximately, the box-constrained minimization problem

Minimize L(x, λk, µk, ρk) subject to x ∈ Ω.

For this purpose we use a general box-constraint optimization method. The strategy used in
Gencan [6] consists in visiting the different faces of the box using two types of iterations.
Internal iterations are used to stay in the current face and external iterations are employed for
leaving the face. At internal iterations active constraints may be added but not deleted while,
at external iterations, the algorithm abandons some active constraint but can also incorporate
new ones.

The main step of internal iterations consists in finding a direction that minimizes, approx-
imately, a quadratic approximation of the objective function restricted to the affine subspace
that supports the current face. Therefore, at each internal iteration an approximation of the
Hessian ∇2L is needed. In [2, 6] the quadratic subproblem that gives the descent direction is
solved using the truncated-Newton approach. This means that the conjugate gradient method
is used and that directional derivatives (matrix-vector products) are approximated using finite
differences [38].

As an alternative to the truncated Newton approach, we introduce a memoryless quasi-
Newton formula that takes advantage of the true-Hessian structure. Direct calculation shows
that, for all x ∈ IRn,

∇2L(x, λ, µ, ρ) = ∇2f(x) + A(x) + B(x)
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where

A(x) = ρ

[ m∑

i=1

∇hi(x)∇hi(x)T +
∑

i∈I(x)

∇gi(x)∇gi(x)T
]
,

B(x) =
m∑

i=1

[λi + ρhi(x)]∇2hi(x) +
∑

i∈I(x)

[µi + ρgi(x)]∇2gi(x),

and
I(x) = {i ∈ {1, . . . , p} | µi + ρgi(x) > 0}. (2)

In [36] it was shown that, for some problems, good results can be obtained neglecting ∇2f(x)
(unless f(x) is convex and its Hessian has a convenient structure) and B(x). The reason is
that, although the approximation of Hessian-vector products turns out to be poorer than the
one obtained using the truncated-Newton technique, the quadratic subproblem that gives the
search direction is convex and, so, its resolution by conjugate gradients is easier. However, when
we approximate ∇2L(x, λ, µ, ρ) by A(x), a lot of second-order information is lost. In this paper
we suggest to recover this information using a minimal-memory quasi-Newton technique.

Assume that xc is the current iterate when solving the box-constrained subproblem and that
xp is the “previous” iterate of the box-constraint solver. (If xc is the initial iterate of the box-
constraint solver we define xp as the projection of xc − tsmall∇L(xc) onto the affine subspace

that supports the current face.) For all B ∈ IRn×n, v ∈ IRn, let B̂ be the square submatrix of
B that corresponds to the free variables (ℓi < [xc]i < ui) at the current point xc. Let v̂ be the
corresponding subvector of v. From now on, for simplicity, we write L(x) = L(x, λk, µk, ρk).

We wish to define a reasonable and cheap approximation of ∇̂2L(xc). Let us define:

s = xc − xp, y = ∇L(xc)−∇L(xp).

For obtaining the Hessian approximation, the reduced Gauss-Newton matrix Â(x) will be cor-

rected twice. In the first correction, we add a positive definite diagonal matrix σÎ to Â(x) in

order to ensure positive-definiteness. (Â(x) is positive semidefinite.) Moreover, following the
spectral gradient philosophy [4, 7, 8, 15, 16, 18, 24, 39, 43, 44] we impose:

σspec = Argminσ ‖(A(x) + σI)s− y‖22.

This gives:

σspec =
(y −A(x)s)T s

sT s
. (3)

In order to guarantee boundedness and safe positive definiteness, given a small parameter 0 <

σmin and a large parameter σmin < σmax, we define:

σ = max{σmin,min{σmax, σspec}} (4)

and
Â+ = Â(x) + σÎ.
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If xp and xc belong to different faces or if ŝT ŷ ≤ 10−8‖ŝ‖2‖ŷ‖2 (see [28]), we define H = Â+.

Otherwise, we correct Â+ to ensure fulfillment of the secant equation Hŝ = ŷ maintaining
positive definiteness. Since Â+ is positive definite, it is natural to correct Â+ using the BFGS
formula [23]. Consequently, we define:

H = Â+ +
ŷŷT

ŝT ŷ
−

Â+ŝŝT Â+

ŝT Â+ŝ
. (5)

This completes the definition of the Hessian approximation.
The search direction at a generic iteration of the internal algorithm is obtained solving a

linear system whose matrix is H. We use the conjugate gradient algorithm [26, 35] for this
purpose. A suitable preconditioner HP may be defined for this system in the following way:

1. Define D = Diag(A(x)).

2. Compute, similarly to (3,4),

σP = max

{
σmin,min

{
σmax,

(y −Ds)T s

sT s

}}
.

3. Compute D̂+ = D̂ + σP Î.

4. As in the computation of H, if the active box constraints at xc and xp are not the same

or if ŝT ŷ ≤ 10−8‖ŝ‖2‖ŷ‖2, we define HP = D̂+. Else, we define

HP = D̂+ +
ŷŷT

ŝT ŷ
−

D̂+ŝŝT D̂+

ŝT D̂+ŝ
. (6)

(HP does not need to be computed explicitly.)

In (6), HP is a BFGS correction of a positive definite matrix. Therefore, HP is positive
definite too. Applying the well-known inverse of the BFGS formula [23], if HP is given by (6)
we obtain:

H−1
P = D̂+

−1
+

(ŝ− D̂+
−1

ŷ)ŝT + ŝ(ŝ− D̂+
−1

ŷ)T

ŝT ŷ
−

(ŝ− D̂+
−1

ŷ)T ŷŝŝT

(ŝT ŷ)2
. (7)

This formula shows that HP may be used as preconditioner of the conjugate gradient method
for linear systems whose matrix is given by (5).

3 Numerical experiments

For easy reference, we give the following names to the implementations of Algorithm 2.1 studied
in this paper:
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1. Algencan-tn : Algorithm 2.1 as described in [2]. The subproblem is solved using Gen-

can [6] where the search directions of the internal algorithms are computed using the con-
jugate gradient truncated-Newton approach. This version of Gencan is fully described
in [6].

2. Algencan-qn : Algorithm 2.1 is implemented with the version of the box-constraint
solver Gencan in which internal directions are computed using the inexact structured
spectral-BFGS quasi-Newton method described in Section 2.

3. Algencan-h : This algorithm uses the strategy of Algencan-qn whenever m+#I(x) >

0 and the strategy of Algencan-tn otherwise.

4. Algencan-tn-p : Identical to Algencan-tn , except that in the internal algorithm the
conjugate gradient method uses the preconditioner defined in Section 2.

5. Algencan-qn-p : Identical to Algencan-qn , using preconditioners as in Algencan-

tn-p

6. Algencan-h-p : This algorithm uses the strategy of Algencan-qn-p whenever m +
#I(x) > 0 and the strategy of Algencan-tn-p otherwise.

7. Alspg : Algorithm 2.1 using the spectral projected gradient method [7, 8, 9] as box-
constraint solver.

8. Albfgs : Algorithm 2.1 using the box-constraint limited-memory BFGS method [12, 47]
for bound-constrained minimizations.

All the algorithms (except Albfgs ) can be found and freely downloaded from the Tango

webpage (see www.ime.usp.br/∼egbirgin/tango/).
In addition, we will consider the well-known Augmented Lagrangian solver Lancelot [13,

14] with its default options. As default, Lancelot uses an SR1 approximation for the second
derivatives, conjugate gradients for solving linear systems and the modified Cholesky factor-
ization of the band submatrix of the quadratic-model Hessian with semi-band 5 (11 non-null
diagonals) for preconditioning.

For all the versions of Algorithm 2.1, based on the numerical experiments reported in [1, 2, 5],
we set τ = 0.5, γ = 10, µ̄min = λ̄min = −1020, µ̄max = λ̄max = 1020, εk = 10−4 for all k, and
ρ0 = ρ1 = 10. In all the experiments we use the initial guess x0 provided by Cute and the
null vector for the initial Lagrange multipliers approximation. As stopping criterion we used
max(‖h(xk)‖∞, ‖σk‖∞) ≤ 10−4 and ‖Pbox[xk − ∇L(xk, λ̄k, µ̄k, ρk)] − xk‖∞ ≤ 10−4, where Pbox

represents the projection onto the feasible box. For the computation of the safeguarded spectral
correction σ we used σmin = 10−10 and σmax = 1010.

All the experiments were run on an 1.8GHz AMD Opteron 244 processor, 2Gb of RAM
memory and Linux operating system. Codes are in Fortran77 and the compiler option “-O” was
adopted.

We use all the 873 problems of the Cute collection [10] in our comparison. We discarded the
problems that were solved by all the algorithms in less than 0.01 seconds. (Without discarding
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these problems the same results are achieved, but with more ties when analyzing the efficiency
of the methods.) All the algorithms were ran with a maximum of 5 minutes of CPU time
per problem. If, at the end of the execution, an algorithm found a feasible point (with a
tolerance of 10−4) and obtained the smallest functional value (with a tolerance of |f − fmin| ≤
10−2|fmin| + 10−6, where fmin is the smallest functional value considering the algorithms that
found a feasible point), we say the the algorithm solved the problem. Otherwise, we say that
the algorithm failed and we set its computer CPU time equal to +∞. Given a problem and two
algorithms A and B, we say that A was more efficient than B if it used less computer time than
B.

The following report on the numerical experiments is oriented to corroborate or to discard
the conjectures that motivated the introduction of the new algorithms in the present paper. For
easy presentation of the results we use performance profiles (PP) [19]. Each PP graphic aims
to elucidate a specific numerical hypothesis.

1. Truncated-Newton or Minimal-memory quasi-Newton?

Figure 1a shows the comparison between Algencan-tn (truncated-Newton) and Algencan-

qn (quasi-Newton with the approximation (5)) using all the constrained problems of the
collection. Figure 1b corresponds to the unconstrained and box-constrained problems. In
the unconstrained and bound-constrained problems the superiority of Algencan-tn is
clear, both in terms of robustness (right-hand side of the graphic) and efficiency (left-hand
side of the graphic). In the constrained problems, although both methods are equally
robust, Algencan-qn is more efficient. The reason is that in unconstrained and box-
constrained problems little true information is contained in the Hessian approximation
which, in this case, is a very-low memory BFGS correction of the spectral approxima-
tion of the Hessian (see [39]). On the other hand, in many iterations (but not all!) of
the Augmented Lagrangian method for constrained problems the Gauss-Newton matrix
A(x) dominates the Hessian, so that employing the (more expensive) truncated-Newton
approach is not worthwhile.

2. Is it possible to detect the situations in which A(x) dominates the Hessian?

The previous experiment suggests to define the hybrid method Algencan-h . The idea is
to use the structured quasi-Newton when A(x) dominates the Hessian and the truncated-
Newton approach if this is not the case. However, a sophisticated decision on the degree
of domination of A(x) would be computationally expensive. Our hybrid method uses a
rough and easy criterion: we use the quasi-Newton approximation (5) when m+#I(x) > 0
and the truncated-Newton approach otherwise. Recall that I(x), defined in (2), is the set
of indices of inequality constraints that contribute to the Augmented Lagrangian in x.
Clearly, in unconstrained and bound-constrained problems Algencan-tn coincides with
Algencan-h . Therefore, the interesting comparison involves only constrained problems
(m + p > 0). Moreover, if m > 0 Algencan-qn coincides with Algencan-h .

In Figure 2a, we present the performance profiles of Algencan-tn , Algencan-qn and
Algencan-h considering all the constrained problems (m+p > 0). Algencan-h appears
as slightly better than Algencan-qn and both are better than Algencan-tn . In order
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to eliminate the many coincidences between Algencan-h and Algencan-qn due to the
absence of inequality constraints (p = 0) we present, in Figure 2b, the performance profiles
for problems with at least one inequality constraint (p > 0).

3. Does preconditioning improve the methods?

We wish to know whether, in practice, the use of the preconditioners defined by (6) and (7)
improve the performance of Algencan-tn , Algencan-qn and Algencan-h . The pre-
conditioned versions of these methods are called Algencan-tn-p , Algencan-qn-p and
Algencan-h-p respectively. Since, in the previous items, we realized that Algencan-h

is consistently more efficient than Algencan-tn and Algencan-qn , we restrict the com-
parison to Algencan-h and Algencan-h-p . The corresponding performance profiles
are given in Figure 3. This figure shows that the preconditioned method Algencan-h-p

is better than Algencan-h both in terms of robustness and efficiency.

4. General comparison of Augmented Lagrangian methods.

According to the previous comparisons, it seems that Algencan-h-p must be the de-
fault version of Algencan . Therefore, it is natural to compare this method with other
Augmented Lagrangian algorithms. In Figure 4a we give the performance profiles corre-
sponding to Algencan-h-p , Alspg , Albfgs and Lancelot (default version).

We finish this section introducing a generalization of the performance-profile scheme [19] for
displaying numerical performance of algorithms.

Given a tolerance t > 0, we say that Algorithm A1 is at least as good as Algorithm A2 for
solving a problem P if:

(i) Algorithm A1 solved the problem in the sense described above; and

(ii) the computer time used by Algorithm A1 was less than or equal to (1 + t) times the
computer time used by Algorithm A2.

Now suppose that we test algorithms A1, . . . , AN using problems P1, . . . , PK . Let Sij(t) be the
number of algorithms Aℓ such that Ai is at least as good as Aℓ for solving problem Pj . The
score of Algorithm Ai for the tolerance t is:

Si(t) =

∑K
j=1 Sij(t)

(N − 1)K
.

The quantity
∑K

j=1 Sij(t) is the number of pairwise comparisons in which Algorithm Ai resulted
at least as good as a competitor, with tolerance t, considering all the problems, whereas (N −
1)K is the total number of possible comparisons. Therefore, Si(t) × 100 is the percentage of
comparisons in which Algorithm Ai is at at least as good as other algorithm Aj .

A Complete Performance Profile (CPP) graphic displays the functions Si(t), i = 1, . . . , N .
When we compare only two algorithms the CPP graphic coincides with the classical PP graphic.
In fact, in classical performance profiles one defines Sij(t) = 1 if the algorithm Ai is at least as
good as Aℓ for all ℓ = 1, . . . , N and Sij(t) = 0 otherwise. The difference between PP and CPP is
that in CPP we score not only “the best” algorithm for solving a problem (with tolerance t) but
the complete ranking of A1, . . . , AN on each single problem. In Figure 4b we present the CPP
graphic corresponding to the whole performance of the algorithms considered in Figure 4a.
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4 Conclusions

Augmented Lagrangian methods with lower-level box constraints are usually considered as com-
plementary alternatives to sequential quadratic programming and interior-point techniques for
nonlinear programming [25]. They are especially attractive for large-scale problems in which the
Jacobian structure of the upper-level constraints is very complicate so that sparse factorizations
are not easily affordable.

These nonlinear programming methods stimulate the development of general (not necessarily
quadratic) box-constraint minimization solvers, among which those based on active-set strategies
deserve special attention [6, 11, 12, 30]. It must be noted that second derivatives of the PHR
Augmented Lagrangian are discontinuous at the points defined by µi + ρgi(x) = 0. This is not a
serious inconvenient for Newton and inexact-Newton methods because the projected gradient of
the Augmented Lagrangian is semismooth and, so, quadratic convergence of the pure Newton’s
method and superlinear convergence of the pure Inexact-Newton method is preserved [37, 41].
However, the lack of continuity of second derivatives may affect more severely the behavior of
quasi-Newton algorithms. The reason is that quasi-Newton Hessian approximations accumulate
information of (perhaps many) past iterations, whereas the set of constraints that contribute to
the definition of the Augmented Lagrangian at old iterations might be quite different from the
set of constraints that define the current Augmented Lagrangian.

The compromise between cheapness and accuracy of internal iterations gave rise to the hybrid
and preconditioned method Algencan-h-p , which becomes the default choice for Algencan

in the Tango project (www.ime.usp.br/∼egbirgin/tango/). Our internal iteration choice
uses the structure of Augmented Lagrangian Hessians both for defining the quadratic model
and the preconditioners. It must be mentioned that, although using the problem structure for
defining search directions is generally recommendable, the employment of attractive recently
developed conjugate gradient methods and their box-constraint counterparts deserves attention,
both in theory as in practice [30, 31, 32, 33]. Perhaps nonlinear conjugate-gradient methods do
not suffer the long-memory effect that deteriorates the performance of classical quasi-Newton
approaches.

In our implementations of Augmented Lagrangian methods we used the set of parameters
recommended in [2] and [5]. In particular, box-constrained subproblems were solved with a rather
high precision. Although this strategy was the best one in the experiments of [2] and [5], it is not
clear that it is the best strategy among the many ones defined by combinations of algorithmic
parameters. In particular, we think that adaptive strategies [20, 21, 22, 29], which link the
precision required in the subproblems to the level of infeasibility, should be studied in connection
to the approach of [2] for general nonlinear programming problems. The interesting fact for box-
constraint solvers is that the best method for minimizing a function with high precision is not
necessarily the best one for solving the same problem with low precision. This may require a
different type of comparison of box-constraint solvers and, perhaps, the development of new
methods regarding low-precision resolution of the subproblems. More research on this subject
is needed.

In an independent recent report, Groceri, Sottosanto and Maciel [27] proposed a differ-
ent structured BFGS method for solving Augmented Lagrangian subproblems for equality con-
straints. They propose a least-change update method in the sense of Dennis and Schnabel [17]
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which differs from our approach in the amount of information on previous iterations that is kept
in the Hessian approximations. Memoryless versions of their approach and application to the
inequality constrained problem also deserve future investigation.
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Figure 1: Truncated-Newton (Algencan-tn ) versus quasi-Newton (Algencan-qn ).
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Figure 2: Evaluation of Algencan-h .
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Figure 3: Evaluation of the preconditioner.
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Figure 4: Comparison of Algencan-h-p against other solvers: (a) using performance profiles
and (b) using complete performance profiles.
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