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Abstract

A new active-set method for smooth box-constrained minimization

is introduced. The algorithm combines an unconstrained method, in-

cluding a new line-search which aims to add many constraints to the

working set at a single iteration, with a recently introduced technique

(spectral projected gradient) for dropping constraints from the work-

ing set. Global convergence is proved. A computer implementation is

fully described and a numerical comparison assesses the reliability of

the new algorithm.

Keywords: Box-constrained minimization, numerical methods, active-

set strategies, Spectral Projected Gradient.

1 Introduction

The problem considered in this paper consists in the minimization of a

smooth function f : IRn → IR with bounds on the variables. The feasi-
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ble set Ω is defined by

Ω = {x ∈ IRn | ℓ ≤ x ≤ u}. (1)

Box-constrained minimization algorithms are used as subalgorithms for solv-

ing the subproblems that appear in many augmented Lagrangian and penalty

methods for general constrained optimization. See [11, 12, 16, 17, 18, 19,

20, 21, 26, 28, 31]. A very promising novel application is the reformulation

of equilibrium problems. See [1] and references therein. The methods in-

troduced in [11] and [26] are of trust-region type. For each iterate xk ∈ Ω,

a quadratic approximation of f is minimized in a trust-region box. If the

objective function value at the trial point is sufficiently smaller than f(xk),

the trial point is accepted. Otherwise, the trust region is reduced. The

difference between [11] and [26] is that, in [11], the trial point is in the face

defined by a “Cauchy point”, whereas in [26] the trial point is obtained

by means of a specific box-constrained quadratic solver, called QUACAN.

See [2, 15, 23, 25, 31] and [13] (p. 459). Other trust-region methods for

box-constrained optimization have been introduced in [3, 29].

QUACAN is an active-set method that uses conjugate gradients within

the faces, approximate internal-face minimizations, projections to add con-

straints to the active set and an “orthogonal-to-the-face” direction to leave

the current face when an approximate minimizer in the face is met. In [17]

a clever physical interpretation for this direction was given.

Numerical experiments in [16] suggested that the efficiency of the al-

gorithm [26] relies, not in the trust-region strategy, but in the strategy of

QUACAN for dealing with constraints. This motivated us to adapt the

strategy of QUACAN to general box-constrained problems. Such adapta-

tion involves two main decisions. On one hand, one needs to choose an

unconstrained minimization algorithm to deal with the objective function

within the faces. On the other hand, it is necessary to define robust and

efficient strategies to leave faces and to add active constraints. Attempts for

the first decision have been made in [6] and [10]. In [10] a secant multipoint

minimization algorithm is used and in [6] the authors use the second-order

minimization algorithm of Zhang and Xu [36].

In this paper we adopt the leaving-face criterion of [6], that employs the

spectral projected gradients defined in [7, 8]. See, also, [4, 5, 32, 33, 34].
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For the internal minimization in the faces we introduce a new general al-

gorithm with a line search that combines backtracking and extrapolation.

The compromise in every line-search algorithm is between accuracy in the

localization of the one-dimensional minimizer and economy in terms of func-

tional evaluations. Backtracking-like line-search algorithms are cheap but,

sometimes, tend to generate excessively small steps. For this reason, back-

tracking is complemented with a simple extrapolation procedure here. The

direction chosen at each step is arbitrary, provided that an angle condition

is satisfied.

In the implementation described in this paper, we suggest to choose

the direction using the truncated-Newton approach. This means that the

search vector is an approximate minimizer of the quadratic approximation

of the function in the current face. We use conjugate gradients to find

this direction, so the first iterate is obviously a descent direction, and this

property is easily monitorized through successive conjugate gradient steps.

The present research is organized as follows. In Section 2 we describe an

“unconstrained” minimization algorithm that deals with the minimization

of a function on a box. The algorithm uses the new line-search technique.

Due to this technique it is possible to prove that either the method finishes

at a point on the boundary where, perhaps, many constraints are added,

or it converges to a point in the box where the gradient vanishes. The

box-constrained algorithm is described in Section 3. Essentially, we use

the algorithm of Section 2 to work within the “current face” and spectral

projected gradients [7] to leave constraints. The spectral projected gradient

technique also allows one to leave many bounds and to add many others to

the working set at a single iteration. This feature can be very important

for large-scale calculations. In this section we prove the global convergence

of the box-constrained algorithm. The computational description of the

code (GENCAN) is given in Section 4. In Section 5 we show numerical

experiments using the CUTE collection. In Section 6 we report experiments

using some very large problems (up to 107 variables). Finally, in Section 6

we make final comments and suggest some lines for future research.
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2 A general “unconstrained” algorithm

In this section we assume that f : IRn̄ → IR, f ∈ C1(IRn) and

B = {x ∈ IRn̄ | ℓ̄ ≤ x ≤ ū}.

The set B will represent each of the closed faces of Ω in Section 3. The

dimension n̄ in this section is the dimension of the reduced subspace of the

Section 3 and the gradient of this section is composed by the derivatives

with respect to free variables in Section 3. We hope that using the notation

∇f in this section will not lead to confusion.

From now on, we denote g(x) = ∇f(x) and gk = g(xk) = ∇f(xk).

Our objective is to define a general iterative algorithm that starts in the

interior of B and, either converges to an unconstrained stationary point, or

finishes in the boundary of B having decreased the functional value. This

will be the algorithm used “within the faces” in the box-constrained method.

Algorithm 2.1 is based on line searches with Armijo-like conditions and

extrapolation. Given the current point xk and a descent direction dk, we

finish the line search if xk+dk satisfies a sufficient descent criterion and if the

directional derivative is sufficiently larger than 〈g(xk), dk〉. If the sufficient

descent criterion does not hold, we do backtracking. If we obtained sufficient

descent but the increase of the directional derivative is not enough, we try

extrapolation.

Let us explain why we think that this philosophy is adequate for large-

scale box-constrained optimization.

1. Pure backtracking is enough for proving global convergence of many

optimization algorithms. However, to accept the first trial point when

it satisfies an Armijo condition can lead to very small steps in critical

situations. Therefore, steps larger than the unity must be tried when

some indicator says that this is worthwhile.

2. If the directional derivative 〈g(xk + dk), dk〉 is sufficiently larger than

〈g(xk), dk〉 we consider that there is not much to decrease increas-

ing the steplength in the direction of dk and, so, we accept the unit

steplength provided it satisfies the Armijo condition. This is rea-

sonable since, usually, the search direction contains some amount of
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second-order information that makes the unitary steplength desirable

from the point of view of preserving a satisfactory order of convergence.

3. If the unitary steplength does not satisfy the Armijo condition, we

do backtracking. In this case we judge that it is not worthwhile to

compute gradients of the new trial points, which would be discarded

if the point is not accepted.

4. Extrapolation is especially useful in large-scale problems, where it is

important to try to add as many constraints as possible to the work-

ing set. So, we extrapolate in a rather greedy way, multiplying the

steplength by a fixed factor while the function value decreases.

5. We think that the algorithm presented here is the most simple way

in which extrapolation devices can be introduced with a reasonable

balance between cost and efficiency. It is important to stress that this

line search can be coupled with virtually any minimization procedure

that computes descent directions.

For all z ∈ IRn, the Euclidean projection of z onto a convex set S will be

denoted PS(z). In this section, we denote P (y) = PB(y). The symbol ‖ · ‖
represents the Euclidean norm throughout the paper.

Algorithm 2.1: Line-search based algorithm

The algorithm starts with x0 ∈ Int(B). The non-dimensional parameters

γ ∈ (0, 1/2), β ∈ (0, 1), θ ∈ (0, 1), N > 1 and 0 < σ1 < σ2 < 1 are given.

We also use the small tolerances ǫabs, ǫrel > 0. Initially, we set k ← 0.

Step 1. Computing the search direction

Step 1.1 If ‖gk‖ = 0, stop.

Step 1.2 Compute dk ∈ IRn such that

〈gk, dk〉 ≤ −θ‖gk‖‖dk‖. (2)

Step 2. Line-search decisions

Step 2.1 Compute αmax ← max{α ≥ 0 | [xk, xk + αdk] ⊂ B} and

set α← min{αmax, 1}.
If (αmax > 1, so xk + dk ∈ Int(B)) then go to Step 2.2
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else go to Step 2.3.

Step 2.2 (At this point we have xk + dk ∈ Int(B).)

If (f(xk + dk) ≤ f(xk) + γ〈gk, dk)〉 then (3)

if (〈dk, g(xk + dk)〉 ≥ β〈gk, dk〉) then (4)

take αk = 1, xk+1 = xk + dk and go to Step 5

else go to Step 3 (Extrapolation)

else go to Step 4 (Backtracking).

Step 2.3 (At this point we have xk + dk /∈ Int(B).)

If (f(xk + αmaxdk) < f(xk)) then

take αk ≥ αmax and xk+1 = P (xk + αkdk) ∈ B − Int(B)

such that f(xk+1) ≤ f(xk + αmaxdk) and go to Step 5

(In practice, such a point is obtained performing Step 3

of this algorithm (Extrapolation).)

else go to Step 4 (Backtracking).

Step 3. Extrapolation

Step 3.1 If (α < αmax and Nα > αmax) then set αtrial ← αmax

else set αtrial ← Nα.

Step 3.2 If (α ≥ αmax and ‖P (xk + αtrialdk)− P (xk + αdk)‖∞ <

max(ǫabs, ǫrel‖P (xk + αdk)‖∞)) then

take αk = α, xk+1 = P (xk + αdk) and terminate

the execution of Algorithm 2.1.

Step 3.3
If (f(P (xk + αtrialdk)) ≥ f(P (xk + αdk))) then (5)

take αk = α, xk+1 = P (xk + αdk) and go to Step 5

else set α← αtrial and go to Step 3.1.

Step 4. Backtracking

Step 4.1 Compute αnew ∈ [σ1α, σ2α] and set α← αnew.

Step 4.2
If (f(xk + αdk) ≤ f(xk) + γα〈gk, dk〉) then (6)

take αk = α, xk+1 = xk + αdk and go to Step 5

else go to Step 4.1.

Step 5. If αk ≥ αmax terminate the execution of Algorithm 2.1
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else set k ← k + 1 and go to Step 1.

Remarks. Let us explain here the main steps of Algorithm 2.1 and their

motivations. The algorithm perform line-searches along directions that sat-

isfy the angle-cosine condition (2). In general, this line search will be used

with directions that possess some second-order information, so that the “nat-

ural” step α = 1 must be initially tested and accepted if sufficient-descent

and directional-derivative conditions ((3) and (4)) are satisfied.

The first test, at Step 2.1, asks whether xk + dk is interior to the box. If

this is not the case, but f(xk + αmaxdk) < f(xk), we try to obtain smaller

functional values multiplying the step by a fixed factor and projecting onto

the box. This procedure is called “Extrapolation”. If xk + dk is not interior

and f(xk + αmaxdk) ≥ f(xk) we do backtracking.

If xk + dk is interior but the Armijo condition (3) does not hold, we

also do backtracking. Backtracking stops when the Armijo condition (6)

is fulfilled. If (3) holds, we test the directional derivative condition (4).

As we mentioned above, if (4) is satisfied too, we accept xk + dk as new

point. However, if (3) holds and (4) does not, we judge that, very likely,

taking larger steps along the direction dk will produce further decrease of

the objective function. So, in this case we also do Extrapolation.

In the Extrapolation procedure we try successive projections of xk +αdk

onto the box, with increasing values of α. If the entry point xk + αdk is

interior but xk+Nαdk is not, we make sure that the point xk+αmaxdk will be

tested first. The extrapolation finishes when decrease of the function is not

obtained anymore or when the distance between two consecutive projected

trial points is negligible.

The iteration of Algorithm 2.1 finishes at Step 5. If the corresponding

iterate xk+1 is on the boundary of B, the algorithm stops, having encoun-

tered a boundary point where the functional value decreased with respect

to all previous ones. If xk+1 is in the interior of B the execution continues

increasing the iteration number.

The flux-diagrams in Figures 1 and 2 help to understand the structure

of the line-search procedure.
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x+d ∈∈ Int αα←αmax

αα←←11

Line Search

ββ−condition

xnew←←x+d

End

f(x+ααd)<f(x)

Armijo

Backtracking

Extrapolation

Figure 1: Line Search procedure.
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Extrapolation

α ≥  ααmax and 

dist < εε
αα←←αα trial

αα trial←←NNααα < ααmax and 

NNα > ααmax

f(P(x+αα trial d))

≥≥ f(P(x+αα  d))

xnew←←P(x+ααd)

αα trial←←ααmax

End

Figure 2: Extrapolation strategy.
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In the following theorem we prove that any sequence generated by Algo-

rithm 2.1, either stops at an unconstrained stationary point, or stops in the

boundary of B, or generates, in the limit, unconstrained stationary points.

Theorem 2.1. Algorithm 2.1 is well defined and generates points with

strictly decreasing functional values. If {xk} is a sequence generated by

Algorithm 2.1, one of the following possibilities holds.

(i) The sequence stops at xk, with g(xk) = 0.

(ii) The sequence stops at xk ∈ B − Int(B) and f(xk) < f(xk−1) < . . . <

f(x0).

(iii) The sequence is infinite, it has at least one limit point, and every limit

point x∗ satisfies g(x∗) = 0.

Proof. Let us prove first that the algorithm is well defined and that it

generates a sequence with strictly decreasing function values. To see that

it is well defined we prove that the loops of Steps 3 and 4 necessarily finish

in finite time. In fact, at Step 3 we multiply the nonnull direction dk by a

number greater than one, or we take the maximum allowable feasible step.

Therefore, eventually, the boundary is reached or the increase condition (5)

is met. The loop of Step 4 is a classical backtracking loop and finishes

because of well-known directional derivative arguments. See [14]. On exit,

the algorithm always requires that f(xk + αkdk) < f(xk), so the sequence

{f(xk)} is strictly decreasing.

It remains to prove that, if neither (i) nor (ii) hold, then any cluster

point x∗ of the generated sequence satisfies g(x∗) = 0. Let K1 be an infinite

subset of IN such that

lim
k∈K1

xk = x∗.

Define sk = xk+1 − xk for all k ∈ IN . Suppose first that ‖sk‖ is bounded

away from zero for k ∈ K1. Therefore, there exists ρ > 0 such that ‖sk‖ ≥ ρ

for all k ∈ K1. By (3) or (6) we have that

f(xk+1) ≤ f(xk) + γ〈gk, sk〉

for all k ∈ K1. Therefore, by (2),

f(xk+1) ≤ f(xk)− γθ‖gk‖‖sk‖ ≤ f(xk)− γθρ‖gk‖.
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By the continuity of f this implies that limk∈K1
‖gk‖ = 0 and, so, g(x∗) = 0.

Suppose now that ‖sk‖ is not bounded away from zero for k ∈ K1. So,

there exists K2, an infinite subset of K1, such that limk∈K2
‖sk‖ = 0. Let

K3 ⊂ K2 be the set of indices such that αk is computed at Step 2.2 for

all k ∈ K3. Analogously, let K4 ⊂ K2 be the set of indices such that αk is

computed at Step 3 for all k ∈ K4 and let K5 ⊂ K2 be the set of indices such

that αk is computed at Step 4 for all k ∈ K5. We consider three possibilities:

(i) K3 is infinite.

(ii) K4 is infinite.

(iii) K5 is infinite.

Consider, first, the case (i). By (4) we have that

〈g(xk + sk), sk〉 ≥ β〈gk, sk〉

and

〈g(xk + sk),
sk

‖sk‖
〉 ≥ β〈gk,

sk

‖sk‖
〉 (7)

for all k ∈ K3. Since K3 is infinite, taking an convergent subsequence

sk/‖sk‖ → d, taking limits in (7) and using continuity, we obtain that

〈g(x∗), d〉 ≥ β〈g(x∗), d〉. (8)

Since β ∈ (0, 1), this implies that 〈g(x∗), d〉 ≥ 0. But, by (2) and continuity,

〈g(x∗), d〉 ≤ −θ‖g(x∗)‖. So, g(x∗) = 0.

Consider, now, Case (iii). In this case, K5 is infinite. For all k ∈ K5

there exists s′k such that

f(xk + s′k) ≥ f(xk) + γ〈gk, s′k〉 (9)

and

‖s′k‖ ≤ ‖sk‖/σ1. (10)

By (10), lim ‖s′k‖ = 0. Now, by (9), we have for all k ∈ K5,

f(xk + s′k)− f(xk) ≥ γ〈gk, s
′
k〉.
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So, by the Mean-Value theorem, there exists ξk ∈ [0, 1] such that

〈g(xk + ξks
′
k), s

′
k〉 ≥ γ〈gk, s

′
k〉

for all k ∈ K5. Dividing by ‖s′k‖, taking limits for a convergent subsequence

(s′k/‖s′k‖ → d) we obtain that

〈g(x∗), d〉 ≥ β〈g(x∗), d〉.

This inequality is similar to (8). So, g(x∗) = 0 follows from the same

arguments.

Consider, now, Case (ii). Since we are considering cases where an infinite

sequence is generated it turns out that, in (5), P (xk + αdk) = xk + αdk.

Moreover, by Step 3.1, αtrial ≤ Nα and P (xk + αtrialdk) = xk + αtrialdk.

Therefore, for all k ∈ K4, writing α′
k = αtrial, we have that α′

k ∈ (αk, Nαk]

and

f(xk + α′
kdk) ≥ f(xk + αkdk). (11)

Therefore, by the Mean-Value theorem, for all k ∈ K4 there exists ξk ∈
[αk, α

′
k] such that

〈g(xk + ξkdk), (α
′
k − αk)dk〉 ≥ 0.

Thus, for all k ∈ K4, since α′
k > αk, we have that

〈g(xk + ξkdk), dk〉 ≥ 0.

Since ‖αkdk‖ → 0 we also have that ‖α′
kdk‖ → 0 and ‖ξkdk‖ → 0. So,

dividing by ‖dk‖ and taking a convergent subsequence of dk/‖dk‖, we obtain:

〈g(x∗), d〉 ≥ 0.

But, by (2), taking limits we get 〈g(x∗), d〉 ≤ −θ‖g(x∗)‖. This implies that

−θ‖g(x∗)‖ ≥ 0. So, g(x∗) = 0. This completes the proof. 2

3 The box-constrained algorithm

The problem considered in this section is

Minimize f(x) subject to x ∈ Ω, (12)
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where Ω is given by (1).

As in [23], let us divide the feasible set Ω into disjoint open faces, as

follows. For all I ⊂ {1, 2, . . . , n, n + 1, n + 2, . . . , 2n}, we define

FI = {x ∈ Ω | xi = ℓi if i ∈ I, xi = ui if n + i ∈ I, ℓi < xi < ui otherwise}.

We also define VI the smallest affine subspace that contains FI and SI the

parallel linear subspace to VI . The (continuous) projected gradient at x ∈ Ω

is defined as

gP (x) = PΩ(x− g(x)) − x.

For all x ∈ FI , we define

gI(x) = PSI
[gP (x)].

The main algorithm considered in this paper is described below.

Algorithm 3.1: GENCAN

Assume that x0 ∈ Ω is an arbitrary initial point, η ∈ (0, 1) and 0 < σmin ≤
σmax <∞. Let FI be the face that contains the current iterate xk. Assume

that gP (xk) 6= 0 (otherwise the algorithm terminates). At the main iteration

of the algorithm we perform the test

‖gI(xk)‖ ≥ η‖gP (xk)‖. (13)

If (13) takes place, we judge that it is convenient that the new iterate belongs

to F̄I (the closure of FI) and, so, we compute xk+1 doing one iteration of

Algorithm 2.1, with the set of variables restricted to the free variables in FI .

So, the set B of the previous section corresponds to F̄I here.

If (13) does not hold, we decide that some constraints should be abandoned

and, so, the new iterate xk+1 is computed doing one iteration of the SPG

method described by Algorithm 3.2. In this case, before the computation of

xk+1 we compute the spectral gradient coefficient σk in the following way.

If k = 0 or 〈(xk − xk−1), (g(xk)− g(xk−1)〉 ≤ 0 then

σk = max{1, ‖xk‖/‖gP (xk)‖}.
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Otherwise, define

σ′
k =
〈(xk − xk−1), (g(xk)− g(xk−1))〉

‖xk − xk−1‖2

and

σk = min{σmax,max{σmin, σ′
k}}.

Algorithm 3.2 is the algorithm used when it is necessary to leave the

current face, according to the test (13).

Algorithm 3.2: SPG

Compute xk+1 as the next iterate of a monotone SPG iteration [7, 8] with

the spectral step σk. Namely, we define the search direction dk as

dk = PΩ(xk − σkg(xk))− xk

and we compute xk+1 = xk + αkdk in such a way that

f(xk+1) ≤ f(xk) + γαk〈g(xk), dk〉,

trying first αk = 1 and, perhaps, reducing this coefficient by means of a

safeguarded quadratic interpolation procedure.

Remark. Observe that xk+1 /∈ F̄I if xk ∈ FI and xk+1 is computed by Al-

gorithm 3.2. In this case, (13) does not hold, so ‖gP (xk)‖ > ‖gI(xk)‖. Since

the components corresponding to the free variables of gI(xk) and gP (xk)

are the same, this means that gP (xk) has nonnull components correspond-

ing to fixed variables. Therefore, xk + αgP (xk) /∈ F̄I for all α > 0. So,

PΩ(xk + αgP (xk)) /∈ F̄I for all α > 0. But, according to the SPG iteration,

xk+1 = xk + α′[PΩ(xk + αgP (xk))− xk]

for some α > 0, α′ > 0. This implies that xk+1 /∈ F̄I .

We finish this section giving some theoretical results. Roughly speaking,

we prove that the algorithm is well defined and that a Karush-Kuhn-Tucker
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point is computed up to an arbitrary precision. Moreover, under dual-

nondegeneracy, the (infinite) algorithm identifies the face to which the limit

belongs in a finite number of iterations.

Theorem 3.1. Algorithm 3.1 is well defined.

Proof. This is a trivial consequence of the fact that Algorithm 2.1 and Al-

gorithm 3.2 (the SPG algorithm [7]) are well defined. 2

Theorem 3.2. Assume that {xk} is generated by Algorithm 3.1. Suppose

that there exists k̄ ∈ {0, 1, 2, . . .} such that xk ∈ FI for all k ≥ k̄. Then,

every limit point of {xk} is first-order stationary.

Proof. In this case, xk+1 is computed by Algorithm 2.1 for all k ≥ k̄. Thus,

by Theorem 2.1, the gradient with respect to the free variables tends to zero.

By a straightforward projection argument, it follows that ‖gI(xk)‖ → 0.

Since (13) holds, this implies that ‖gP (xk)‖ → 0. So, every limit point is

first-order stationary. 2

Theorem 3.3. Suppose that for all k ∈ {0, 1, 2, . . .}, xk ∈ FI , there exists

k′ > k such that xk′ /∈ FI . Then, there exists a limit point of {xk} that is

first-order stationary.

Proof. See Theorem 3.3 of [6]. 2

Theorem 3.4. Suppose that all the stationary points of (12) are nondegen-

erate. ( ∂f
∂xi

(x) = 0 only if ℓi < xi < ui.) Then, the hypothesis of Theorem

3.2 (and, hence, its thesis) must hold.

Proof. See Theorem 3.4 of [6]. 2

Theorem 3.5. Suppose that {xk} is a sequence generated by Algorithm 3.1

and let ε be an arbitrary positive number. Then, there exists k ∈ {0, 1, 2, . . .}
such that ‖gP (xk)‖ ≤ ε.
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Proof. This result is a direct consequence of Theorems 3.2 and 3.3. 2

4 Implementation

At iteration k of Algorithm 2.1 the current iterate is xk and we are looking

for a direction dk satisfying condition (2). We use a truncated-Newton

approach to compute this direction. To solve the Newtonian system we call

Algorithm 4.1 (described below) with A ≈ ∇2f(xk), b = g(xk), l̄ = l − xk,

ū = u− xk, and ∆ = max(∆min, 10‖xk − xk−1‖) (∆ = max(∆min, 0.1‖x0‖),
if k = 0).

The following algorithm applies to the problem

min q(s) =
1

2
sT As + bT s. (14)

The initial approximation to the solution of (14) is s0 = 0. The algorithm

finds a point s∗ which is a solution or satisfies q(s∗) < q(s0). Perhaps, the fi-

nal point is on the boundary of the region defined by ‖s‖ ≤ ∆ and l̄ ≤ s ≤ ū.

Algorithm 4.1: Conjugate gradients

The parameters ǭ << 1 and kmax ∈ IN are given. The algorithm starts with

k ← 0, s0 given, r0 = As0 − b and ρ0 = ‖r0‖2.

Step 1. Test stopping criteria

If (
√

ρk ≤ ǭ‖b‖ or k ≥ kmax) then

set s∗ = sk and terminate.

Step 2. Compute conjugate gradient direction

Step 2.1 If (k = 0) then set pk = −rk

else compute βk = ρk/ρk−1 and pk = −rk + βkpk−1.

Step 2.2 If (pT
k rk > 0), replace pk ← −pk.

Step 3. Compute step

Step 3.1 Compute αmax ← max{α ≥ 0 | sk + αpk ∈ S}, where

S = {x ∈ IRn̄ | ‖x‖ ≤ ∆ and l̄ ≤ x ≤ ū}.
Step 3.2 Compute wk = Apk and γk = pT

k wk.

Step 3.3 If (γk > 0) then set αk = min(αmax, ρk/γk).

If (γk ≤ 0 and k = 0) then set αk = αmax.
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If (γk ≤ 0 and k > 0) then set αk = 0, s∗ = sk and terminate.

Step 4. Compute new iterate

Step 4.1 Compute sk+1 = sk + αkpk.

Step 4.2 If (bT sk+1 > −θ‖b‖‖sk+1‖) then

set s∗ = sk and terminate.

Step 4.3 If (αk = αmax) then

set s∗ = sk+1 and terminate.

Step 5. Compute rk+1 = rk + αkw, ρk+1 = ‖rk+1‖2,
set k ← k + 1 and go to Step 1.

This algorithm is a modification of the one presented in [27] (p. 529)

for symmetric positive definite matrices A and without constraints. The

modifications are the following:

• At Step 2.2 we test if pk is a descent direction at sk, i.e., if 〈pk,∇q(sk)〉 <

0. To force this condition we multiply pk by −1 if necessary. If the

matrix-vector products are computed exactly, this safeguard is not

necessary. However, in many cases the matrix-vector product Apk is

replaced by a finite-difference approximation. For this reason, we per-

form the test in order to guarantee that the quadratic decreases along

the direction pk.

• At Step 3.3 we test if pT
k Apk > 0. If this inequality holds, the step αk

in the direction pk is computed as the minimum among the conjugate-

gradient step and the maximum positive step preserving feasibility. If

pT
k Apk ≤ 0 and we are at the first iteration of CG, we set αk ← αmax.

In this way CG will stop with s∗ = −αmaxg(xk) which surely satisfies

the angle condition of Step 4.2. If we are not at iteration zero of CG,

we keep the current approximation to the solution of (14) obtained so

far.

• At Step 4.2 we test whether the angle condition (2) is satisfied by

the new iterate or not. If this condition is not fulfilled, we stop the

algorithm with the previous iterate. We also stop the algorithm if the

boundary of the feasible set is achieved (Step 4.3).
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The convergence criterion ǭ for the conjugate-gradient algorithm is dy-

namic. It varies linearly with the logarithm of the norm of the continuous

projected gradient, beginning with the value ǭi and finishing with ǭf . We

define

ǭ =

√

10aǭ log10(‖gP (xk)‖2

2
)+bǭ ,

where

aǭ =
log10(ǭ

2
f/ǭ2

i )

log10(ǫ
2/‖gP (x0)‖22)

,

bǭ = log10(ǭ
2
i )− aǭ log10(‖gP (x0)‖22),

and ǫ is used in the stopping criterion ‖gP (x)‖∞ < ǫ of Algorithm 3.1.

The parameter kmax is the maximum number of CG-iterations for each

call of the conjugate-gradient algorithm. It also varies dynamically in such

a way that more iterations are allowed at the end of the process than at the

beginning. The reason is that we want to invest a larger effort in solving

quadratic subproblems when we are close to the solution than when we are

far from it. In fact,

kmax = (1− κ)max(1, 10 log10(n̄)) + κn̄,

where

κ = min(0,
log10(‖gP (xk)‖22/‖gP (x0)‖22)

log10(ǫ/‖gP (x0)‖22)
).

In the Incremental-quotient version of GENCAN, ∇2f(xk) is not com-

puted and the matrix-vector products ∇2f(xk)y are approximated by

∇2f(xk)y ≈
g(xk + ty)− g(xk)

t
(15)

with t = max(ǫabs, ǫrel‖xk‖∞)/‖y‖∞. In fact, only the components corre-

spondent to free variables are computed and the existence of fixed variables

is conveniently exploited in (15).

5 Numerical experiments with the CUTE collec-

tion

In order to assess the reliability GENCAN, we tested this method against

some well-known alternative algorithms using all the non-quadratic bound-
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constrained problems with more than 50 variables from the CUTE [12] col-

lection. The algorithms that we used for comparing GENCAN are BOX-

QUACAN [26] (see, also, [28]), LANCELOT [11, 12] and the Spectral Pro-

jected Gradient method (SPG) (described as SPG2 in [7]; see also [8]). All

the methods used the convergence criterion ‖gP (x)‖∞ < 10−5. Any other

stopping criteria were inhibited.

In GENCAN we used θ = 10−6, γ = 10−4, β = 0.5, N = 2, σ1 = 0.1,

σ2 = 0.9 and ∆min = 0.1 (for Algorithm 2.1), η = 0.1, σmin = 10−10,

σmax = 1010 and ǫ = 10−5 (for Algorithm 3.1), and ǭi = 0.1, ǭf = 10−5 (for

Algorithm 4.1). In all algorithms we used ǫrel = 10−7 and ǫabs = 10−10. The

parameters of (the line search of) Algorithm 3.2 were the default parameters

mentioned in [7] and the same used in (the line search of) Algorithm 2.1,

i.e., γ = 10−4, σ1 = 0.1 and σ2 = 0.9.

In LANCELOT we used exact second derivatives and we did not use

preconditioning in the conjugate-gradient method. The reason for this is

that, in GENCAN, the conjugate gradient method for computing directions

is also used without preconditioning. The other options of LANCELOT

were the default ones. A small number of modifications were made in

BOX-QUACAN to provide a fair comparison. These modifications were:

(i) the initial trust-region radius of GENCAN was adopted; (ii) the maxi-

mum number of conjugate-gradient iterations was fixed in 10 log10(n); (iii)

the accuracy for solving the quadratic subproblems was dynamic in BOX-

QUACAN varying from 0.1 to 10−5, as done in GENCAN, (iv) the minimum

trust-region radius ∆min was fixed in 10−3 to be equal to the corresponding

parameter in GENCAN.

The codes are written in Fortran 77. The tests were done using an ultra-

SPARC from SUN, with 4 processors at 167 MHz, 1280 mega bytes of main

memory, and Solaris 2.5.1 operating system. The compiler was WorkShop

Compilers 4.2 30 Oct 1996 FORTRAN 77 4.2. Finally we have used the

flag -O4 to optimize the code.

In the first four tables we report the full performance of LANCELOT,

SPG, BOX-QUACAN, GENCAN (true Hessian) and GENCAN (Incremental-

quotients). The usual definition of iteration in LANCELOT involves only

one function evaluation. However, in order to unify the comparison we call

“iteration” to the whole process that computes a new iterate with lower func-
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tional value, starting from the current one. Therefore, a single LANCELOT-

iteration involves one gradient evaluation but, perhaps, several functional

evaluations. At each iteration several trust-region problems are solved ap-

proximately and each of them uses a number of CG-iterations. Problems

HADAMALS and SCON1LS have bounds where the lower limit is equal to

the upper limit. BOX-QUACAN does not run under this circumstances,

so the performance of this method in that situation is not reported in the

corresponding table. In these tables, we report, for each method:

IT: Number of iterations;

FE: Functional evaluations;

GE: Gradient evaluations;

CG: Conjugate gradient iterations, except in the case of SPG, where CG

iterations are not computed;

Time: CPU time in seconds;

f(x): final functional value obtained;

‖gP (x)‖∞: Sup-norm of the projected gradient at the final point.

The next 3 tables repeat the information of the first ones in a more

compact and readable form. In Table 5 we report the final functional value

obtained for each method, in the cases where there was at least one difference

between them, when computed with four significant digits.

In Table 7 we report, for each method, the numbers FE and (GE+CG).

The idea is that a CG iteration is sometimes as costly as a gradient-evaluation.

The cost is certainly the same when we use the incremental-quotient version

of GENCAN. Roughly speaking, GE+CG represents the amount of work

used for solving subproblems and FE represents the work done on the true

problem trying to reduce the objective function.

Table 8 reports the computer times for the problems where at least one

of the methods used more than 1 second. The computer time used by

LANCELOT must be considered under the warning made in [9] page 136,

“LANCELOT [...] does not require an interface using the CUTE tools. It

is worth noting that LANCELOT exploits much more structure than that
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Problem n IT FE GE CG Time f(x) ‖gP (x)‖∞

BDEXP 5000 10 10 11 27 2.13 1.969D−03 6.467D−06

EXPLIN 120 13 13 14 80 0.06 −7.238D+05 3.454D−06

EXPLIN2 120 11 11 12 52 0.05 −7.245D+05 5.428D−06

EXPQUAD 120 15 18 16 98 0.12 −3.626D+06 4.617D−06

MCCORMCK 10000 6 8 7 16 4.24 −9.133D+03 3.841D−06

PROBPENL 500 1 1 2 0 0.07 3.992D−07 3.423D−07

QRTQUAD 120 144 178 145 570 1.39 −3.625D+06 3.505D−06

S368 100 6 8 7 20 2.64 −1.337D+02 1.898D−08

HADAMALS 1024 10 10 11 68 4.40 3.107D+04 1.126D−06

CHEBYQAD 50 22 28 23 463 2.22 5.386D−03 7.229D−06

HS110 50 1 1 2 0 0.01 −9.990D+09 0.000D+00

LINVERSE 1999 22 28 23 2049 47.22 6.810D+02 3.003D−06

NONSCOMP 10000 8 8 9 78 6.30 2.005D−12 5.253D−06

DECONVB 61 13 15 14 246 0.30 6.393D−09 3.596D−06

QR3DLS 610 281 323 282 23614 439.31 2.245D−08 6.136D−06

SCON1LS 1002 8005 9340 8006 5742462 26761.29 5.981D−04 9.720D−06

Table 1: Performance of LANCELOT.

provided by the interface tools”. As a consequence, although GENCAN used

less iterations, less functional evaluations, less gradient evaluations and less

conjugate-gradient iterations than LANCELOT in SCON1LS, its computer

time is greater than the one spent by LANCELOT. In some problems, like

QR3DLS and CHEBYQAD, the way in which LANCELOT takes advantage

of the SIF structure is also impressive.

Now we include an additional table that was motivated by the observa-

tion of Table 7. It can be observed that the number of functional evalua-

tions per iteration is larger in GENCAN than in LANCELOT and BOX-

QUACAN. The possible reasons are three:

• Many SPG-iterations with, perhaps, many functional evaluations per

iteration.

• Many TN-iterations with backtracking.

• Many TN-iterations with extrapolations.

We classify the iterations with extrapolation in successful and unsuccess-

ful ones. A successful extrapolation is an iteration where the extrapolation

produced a functional value smaller than the one corresponding to the first
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Problem n IT FE GE Time f(x) ‖gP (x)‖∞

BDEXP 5000 12 13 13 0.53 2.744D−03 7.896D−06

EXPLIN 120 54 57 55 0.01 −7.238D+05 4.482D−06

EXPLIN2 120 56 59 57 0.01 −7.245D+05 5.633D−06

EXPQUAD 120 92 110 93 0.03 −3.626D+06 7.644D−06

MCCORMCK 10000 16 17 17 2.27 −9.133D+03 4.812D−06

PROBPENL 500 2 6 3 0.02 3.992D−07 1.022D−07

QRTQUAD 120 598 1025 599 0.20 −3.624D+06 8.049D−06

S368 100 16 19 17 1.45 −1.403D+02 1.963D−08

HADAMALS 1024 30 42 31 1.63 3.107D+04 2.249D−07

CHEBYQAD 50 841 1340 842 33.75 5.386D−03 9.549D−06

HS110 50 1 2 2 0.00 −9.990D+09 0.000D+00

LINVERSE 1999 1022 1853 1023 33.82 6.810D+02 8.206D−06

NONSCOMP 10000 43 44 44 2.81 3.419D−10 7.191D−06

DECONVB 61 1670 2560 1671 1.71 4.826D−08 9.652D−06

QR3DLS 610 105918 228722 105919 2203.97 1.973D−05 9.986D−06

SCON1LS 1002 5000001 7673022 5000002 116189.70 1.224D+00 8.578D−05

Table 2: Performance of SPG.

trial point. An unsuccessful extrapolation corresponds to a failure in the

first attempt to “double” the steplength. Therefore, in an unsuccessful ex-

trapolation, an additional “unnecessary” functional evaluation is done and

the “next iterate” corresponds to the first trial point. According to this, we

report, in Table 9, the following features of GENCAN (incremental-quotient

version):

• SPG-IT: SPG iterations, used for leaving the current face.

• SPG-FE: functional evaluations in SPG-iterations.

• TN-IT: TN iterations.

• TN-FE: functional evaluations in TN-iterations.

• TN-(Step 1)-IT: TN-iterations where the unitary step was accepted.

• TN-(Step 1)-FE: functional evaluations in TN-iterations where the

unitary step was accepted. This is necessarily equal to TN-(Step 1)-

IT.

• TN-(Backtracking)-IT: TN-iterations where backtracking was neces-

sary.
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Problem n IT FE GE CG Time f(x) ‖gP (x)‖∞

BDEXP 5000 10 11 11 20 1.23 1.967D−03 5.742D−06

EXPLIN 120 16 17 17 96 0.03 −7.238D+05 2.302D−07

EXPLIN2 120 13 14 14 70 0.03 −7.245D+05 1.090D−06

EXPQUAD 120 18 21 19 159 0.09 −3.626D+06 4.024D−06

MCCORMCK 10000 8 9 9 28 5.23 −9.133D+03 6.388D−07

PROBPENL 500 2 3 3 4 0.03 3.992D−07 1.994D−07

QRTQUAD 120 22 28 23 214 0.10 −3.625D+06 5.706D−07

S368 100 7 9 8 73 9.16 −1.402D+02 2.432D−08

CHEBYQAD 50 52 66 53 960 45.70 5.387D−03 9.535D−06

HS110 50 1 2 2 3 0.01 −9.990D+09 0.000D−00

LINVERSE 1999 13 19 14 402 18.15 6.810D+02 5.273D−06

NONSCOMP 10000 11 12 12 69 7.11 1.279D−13 1.461D−06

DECONVB 61 17 21 18 413 0.63 5.664D−03 6.559D−06

QR3DLS 610 3087 3108 3088 70433 2286.09 1.450D−05 7.685D−06

Table 3: Performance of BOX-QUACAN.

• TN-(Backtracking)-FE: functional evaluations at iterations with back-

tracking.

• TN-(Extrap(+))-IT: successful iterations with extrapolation.

• TN-(Extrap(+))-FE: functional evaluations at successful iterations with

extrapolation.

• TN-(Extrap(−))-IT: unsuccessful iterations with extrapolation.

• TN-(Extrap(−))-FE: functional evaluations at unsuccessful iterations

with extrapolation. This number is necessarily equal to twice the

corresponding number of iterations.
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Problem n IT FE GE CG Time f(x) ‖gP (x)‖∞

BDEXP 5000 1 12 3 1 0.35 0.000D+00 0.000D+00

EXPLIN 120 17 43 19 39 0.02 −7.238D+05 5.505D−06

EXPLIN2 120 15 45 16 27 0.01 −7.245D+05 3.567D−07

EXPQUAD 120 21 51 23 54 0.04 −3.626D+06 1.086D−06

MCCORMCK 10000 5 18 7 19 4.57 −9.133D+03 1.241D−09

PROBPENL 500 2 7 4 2 0.03 3.992D−07 2.104D−07

QRTQUAD 120 29 73 32 73 0.06 −3.625D+06 4.008D−06

S368 100 9 37 10 14 3.10 −1.360D+02 1.526D−11

HADAMALS 1024 10 18 13 10 1.80 3.107D+04 4.759D−10

CHEBYQAD 50 22 40 23 472 13.86 5.386D−03 3.813D−06

HS110 50 1 3 3 1 0.00 −9.990D+09 0.000D+00

LINVERSE 1999 14 34 16 71 3.88 6.820D+02 1.052D−06

NONSCOMP 10000 17 43 19 32 4.81 7.642D−11 1.161D−06

DECONVB 61 61 138 62 875 1.29 6.043D−11 6.811D−06

QR3DLS 610 305 452 306 27503 976.13 1.960D−10 2.992D−06

SCON1LS 1002 4742 5913 4804 3012141 55779.87 1.269D−03 9.053D−06

Table 4: Performance of GENCAN (true-hessian version).

Problem n IT FE GE CG Time f(x) ‖gP (x)‖∞

BDEXP 5000 1 12 3 1 0.36 0.000D+00 0.000D+00

EXPLIN 120 17 43 19 39 0.01 −7.238D+05 5.483D−06

EXPLIN2 120 15 45 16 27 0.01 −7.245D+05 3.562D−07

EXPQUAD 120 21 51 23 53 0.03 −3.626D+06 2.236D−06

MCCORMCK 10000 5 18 7 19 3.56 −9.133D+03 1.241D−09

PROBPENL 500 3 8 5 3 0.03 3.992D−07 1.989D−07

QRTQUAD 120 29 75 33 68 0.04 −3.625D+06 2.296D−06

S368 100 9 37 10 14 2.50 −1.360D+02 1.384D−11

HADAMALS 1024 10 18 13 10 1.19 3.107D+04 4.705D−10

CHEBYQAD 50 31 43 32 886 22.26 5.386D−03 2.929D−06

HS110 50 1 3 3 1 0.00 −9.990D+09 0.000D+00

LINVERSE 1999 14 34 16 71 2.39 6.820D+02 1.052D−06

NONSCOMP 10000 18 55 20 34 4.58 4.728D−18 1.428D−08

DECONVB 61 57 172 58 511 0.43 3.925D−10 9.061D−06

QR3DLS 610 308 476 309 27209 523.50 2.075D−10 1.238D−06

SCON1LS 1002 7283 8565 7352 4987908 73606.98 4.549D−04 9.578D−06

Table 5: Performance of GENCAN (incremental-quotient version).
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Problem LANCELOT SPG BOX-QUACAN GENCAN-HESS GENCAN-QUOT

BDEXP 1.969D−03 2.744D−03 1.967D−03 0.000D+00 0.000D+00

QRTQUAD −3.625D+06 −3.624D+06 −3.625D+06 −3.625D+06 −3.625D+06

S368 −1.337D+02 −1.403D+02 −1.402D+02 −1.360D+02 −1.360D+02

CHEBYQAD 5.386D−03 5.386D−03 5.387D−03 5.386D−03 5.386D−03

LINVERSE 6.810D+02 6.810D+02 6.810D+02 6.820D+02 6.820D+02

NONSCOMP 2.005D−12 3.419D−10 1.279D−13 7.642D−11 4.728D−18

DECONVB 6.393D−09 4.826D−08 5.664D−03 6.043D−11 3.925D−10

QR3DLS 2.245D−08 1.973D−05 1.450D−05 1.960D−10 2.075D−10

SCON1LS 5.981D−04 1.224D+00 — 1.269D−03 4.549D−04

Table 6: Final functional values.

Problem LANCELOT SPG BOX-QUACAN GENCAN-QUOT

FE GE+CG FE GE FE GE+CG FE GE+CG

BDEXP 10 38 13 13 11 30 12 4

EXPLIN 13 94 57 55 17 112 43 58

EXPLIN2 11 64 59 57 14 83 45 43

EXPQUAD 18 114 110 93 21 177 51 76

MCCORMCK 8 23 17 17 9 36 18 26

PROBPENL 1 2 6 3 3 6 8 8

QRTQUAD 178 715 1025 599 28 236 75 101

S368 8 27 19 17 9 80 37 24

HADAMALS 10 79 42 31 — — 18 23

CHEBYQAD 28 486 1340 842 66 1012 43 918

HS110 1 2 2 2 2 4 3 4

LINVERSE 28 2072 1853 1023 19 415 34 87

NONSCOMP 8 87 44 44 12 80 55 54

DECONVB 15 260 2560 1671 21 430 172 569

QR3DLS 323 23896 228722 105919 3108 73520 476 27518

SCON1LS 9340 5750468 7673022 5000002 — — 8565 4995260

Table 7: Functional and equivalent-gradient (GE+CG) evaluations.
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Problem LANCELOT SPG BOX-QUACAN GENCAN-HESS GENCAN-QUOT

BDEXP 2.13 0.53 1.23 0.35 0.36

MCCORMCK 4.24 2.27 5.23 4.57 3.56

QRTQUAD 1.39 0.20 0.10 0.06 0.04

S368 2.64 1.45 9.16 3.10 2.50

HADAMALS 4.40 1.63 — 1.80 1.19

CHEBYQAD 2.22 33.75 45.70 13.86 22.26

LINVERSE 47.22 33.82 18.15 3.88 2.39

NONSCOMP 6.30 2.81 7.11 4.81 4.58

DECONVB 0.30 1.71 0.63 1.29 0.43

QR3DLS 439.31 2203.97 2286.09 976.13 523.50

SCON1LS 26761.29 116189.70 — 55779.87 73606.98

Table 8: Computer time.

Type of GENCAN iterations Details of Truncated Newton iterations

SPG Iteration TN iterations Step=1 Backtracking Extrap(+) Extrap(−)

Problem IT FE IT FE IT FE IT FE IT FE IT FE

BDEXP 0 0 1 11 0 0 0 0 1 11 0 0

EXPLIN 1 1 16 41 7 7 0 0 5 26 4 8

EXPLIN2 1 1 14 43 4 4 0 0 5 29 5 10

EXPQUAD 2 6 19 44 8 8 3 7 2 17 6 12

MCCORMCK 0 0 5 17 3 3 0 0 1 12 1 2

PROBPENL 0 0 3 7 2 2 0 0 1 5 0 0

QRTQUAD 2 9 27 65 16 16 6 14 4 33 1 2

S368 0 0 9 36 4 4 1 2 4 30 0 0

HADAMALS 0 0 10 17 6 6 1 2 1 5 2 4

CHEBYQAD 0 0 31 42 24 24 7 18 0 0 0 0

HS110 0 0 1 2 0 0 0 0 1 2 0 0

LINVERSE 0 0 14 33 6 6 7 22 1 5 0 0

NONSCOMP 0 0 18 54 2 2 2 14 4 18 10 20

DECONVB 8 58 49 113 14 14 0 0 11 51 24 48

QR3DLS 0 0 308 475 218 218 90 257 0 0 0 0

SCON1LS 0 0 7283 8564 6848 6848 367 1394 63 312 5 10

TOTAL 14 75 7808 9564 7162 7162 484 1730 104 556 58 116

Table 9: GENCAN features.
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Observing Table 9 we realise that:

1. The number of SPG-iterations is surprisingly small. Therefore, only

in few iterations the mechanism to “leave the face” is activated. So,

in most iterations, the number of active constraints remains the same

or is increased. Clearly, SPG-iterations are not responsible for the

relatively high number of functional evaluations.

2. The number of iterations where backtracking was necessary is, also,

surprisingly small. Therefore, extrapolations are responsible for the

functional-evaluations phenomenon. Since an unsuccessful extrapola-

tion uses only one additional (unnecessary) functional evaluations, its

contribution to increasing FE is also moderate. In fact, unsuccessful

extrapolations are responsible for 116 functional evaluations consider-

ing all the problems, this means less than 8 evaluations per problem.

It turns out that many functional evaluations are used in successful

extrapolations. Considering the overall performance of the method

this seems to be a really good feature. An extreme case is BDEXP,

where only one TN-iteration was performed, giving a successful ex-

trapolation that used 11 functional evaluations and gave the solution

of the problem.

Further remarks

Convergence was obtained for all the problems with all the methods

tested, with the exception of SPG that did not solve SCON1LS after more

than thirty hours of computer time. The method that, in most cases, ob-

tained the lowest functional values was GENCAN-QUOT, but the differ-

ences do not seem to be large enough to reveal a clear tendency.

As was already mentioned in [7], the behavior of SPG is surprisingly

good. Although it is the only method that fails to solve a problem in rea-

sonable time, its behavior in the problems where it works is quite efficient.

This indicates the existence of families of problems where SPG is, probably,

the best possible alternative. This observation has already been made in [8].

BOX-QUACAN has been the less successful method in this set of ex-

periments. This is not surprising, since the authors of [16] had observed

that this method outperformed LANCELOT in quadratic problems but is
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not so good when the function is far from being quadratic. In fact, it was

this observation what motivated the present work. Nevertheless, there is

still a large scope for improvements of BOX-QUACAN, as far as we take

into account that improvements in the solution of quadratic subproblems are

possible and that sophisticated strategies for updating trust-region radius

can be incorporated.

6 Experiments with very large problems

We wish to place q circles of radius r in the rectangle [0, d1]× [0, d2] in such

a way that for all i = 1, . . . q and for all j ∈ Ii ⊂ {1, . . . , q}, the intersection

between the circle i and the circle j is at most one point. Therefore, given

Ii ⊂ {1, . . . , q}, i = 1, . . . , q, the goal is to determine c1, . . . , cq ∈ [r, d1− r]×
[r, d2 − r] solving the problem:

Minimize
q

∑

i=1

∑

j∈Ii

max(0, 2r − ‖ci − cj‖22)2

subject to

r ≤ ci
1 ≤ d1 − r, and

r ≤ ci
2 ≤ d2 − r, for i = 1, . . . , q.

The points c1, . . . , cq are the centers of the desired circles. If the objective

function value at the solution of this minimization problem is zero, then the

original problem is solved.

When Ii = {1, . . . , q} − {i} for all i = 1, . . . , q the problem above is

known as the Cylinder Packing problem [22]. The present generalization is

directed to Sociometry applications.

Table 10 describes the main features of some medium and large scale

problems of this type. In the problems 9-15 the sets Ii were randomly

generated with the Schrage’s random number generator [35] and seed = 1.

In all cases we used r = 0.5. Observe that n, the number of variables, is

equal to 2 q.

Tables 11 and 12 show the performances of GENCAN and LANCELOT.

Internal limitations of the big-problems installation of CUTE forbid the

solution of larger instances of this problems using SIF. We show the CPU
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Problem n #Ii box

1 400 199 100 × 100

2 400 199 75 × 75

3 400 199 50 × 50

4 400 199 25 × 25

5 500 249 100 × 100

6 500 249 75 × 75

7 500 249 50 × 50

8 500 249 25 × 25

9 105 10 25 × 2

10 5 × 105 10 25 × 3

11 106 10 30 × 3

12 5 × 106 10 30 × 4

13 107 2 40 × 4

14 107 5 40 × 4

15 107 10 40 × 5

Table 10: Medium- and large-scale classical and modified cylinder packing

problems.

times of GENCAN both using SIF (SIF-Time) and Fortran subroutines (FS-

Time) for computing function and gradient. We used a random initial point

(generated inside the box with the Schrage’s algorithm and seed equal to 1).

Both methods found a global solution in all the cases. In Table 12 we also

report the number of free variables at the solution so far found by GENCAN.

GENCAN

Problem(n) using Fortran subroutines using SIF LANCELOT

IT FE GE CG Time IT FE GE CG Time IT FE GE CG Time

1(400) 2 3 3 2 0.26 2 3 3 2 0.85 2 3 3 2 1.63

2(400) 2 3 3 2 0.25 2 4 3 2 0.78 2 3 3 1 1.60

3(400) 3 10 4 4 0.51 3 9 4 5 1.44 3 4 4 2 2.00

4(400) 9 17 10 29 1.75 7 16 8 13 3.55 9 8 10 11 5.04

5(500) 2 3 3 3 0.44 1 4 2 1 0.89 2 3 3 1 3.08

6(500) 1 5 2 1 0.33 2 4 3 2 1.57 4 4 5 5 4.43

7(500) 4 8 5 7 0.93 4 10 5 7 3.20 5 5 6 6 5.27

8(500) 9 23 10 19 2.40 7 21 8 15 6.50 49 48 50 22 25.88

Table 11: GENCAN and LANCELOT with cylinder packing problems.
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Problem(n) IT FE GE CG Time nfree

9 (105) 14 73 15 23 61.66 92718

10 (5 × 105) 26 140 27 81 870.31 485347

11 (106) 20 90 21 45 1123.19 960323

12 (5 × 106) 21 118 22 99 9350.60 4889338

13 (107) 6 52 7 7 1772.61 9957240

14 (107) 9 63 10 18 4560.70 9906040

15 (107) 14 84 15 28 10649.79 9914682

Table 12: GENCAN with very large problems.

7 Final remarks

Numerical algorithms must be analyzed not only from the point of view of its

present state but also from considerations related to their possibility of im-

provement. The chances of improvement of active-set methods like the one

presented in this paper come from the development of new unconstrained al-

gorithms and from the adaptation of known unconstrained algorithms to the

specific characteristics of our problem. In our algorithm, the computation

of the search direction is open to many possibilities. As we mentioned in

the introduction, a secant multipoint scheme (with a different procedure for

leaving the faces) was considered in [10] and a negative-curvature Newtonian

direction for small problems was used in [6], where leaving faces is also asso-

ciated to SPG. A particularly interesting alternative is the preconditioned

spectral projected gradient method introduced in [30].

The extension of the technique of this paper to general linearly con-

strained optimization is another interesting subject of possible research.

From the theoretical point of view, the extension is straightforward, and the

convergence proofs do not offer technical difficulties. The only real difficulty

is that we need to project onto the feasible set, both in the extrapolation

steps and in the SPG iterations. In theory, extrapolation can be avoided

without affecting global convergence, but projections are essential in SPG

iterations. Sometimes, the feasible polytope is such that projections are

easy to compute. See [8]. In those cases, the extension of GENCAN would

probably be quite efficient.
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