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Abstract

In this work, we deal with the problem of packing (orthogonally and without
overlapping) identical rectangles in a rectangle. This problem appears in different
logistics settings, such as the loading of boxes on pallets, the arrangements of pal-
lets in trucks and the stowing of cargo in ships. We present a recursive partition-
ing approach combining improved versions of a recursive five-block heuristic and an
L-approach for packing rectangles into larger rectangles and L-shaped pieces. The
combined approach is able to rapidly find the optimal solutions of all instances of
the pallet loading problem sets Cover I and II (more than 50 thousand instances). It
is also effective for solving the instances of problem set Cover III (almost 100 thou-
sand instances) and practical examples of a woodpulp stowage problem, if compared
to other methods from the literature. Some theoretical results are also discussed
and, based on them, efficient computer implementations are introduced. The com-
puter implementation and the data sets are available for benchmarking purposes at
http://www.ime.usp.br/∼egbirgin/packing/.

Key words: Cutting and packing, manufacturer’s pallet loading problem, woodpulp
stowage problem, non-guillotine cutting pattern, dynamic programming, raster points.

1 Introduction

This work is concerned with the problem of arranging (orthogonally and without over-
lapping) the maximum number of identical rectangles of size (l, w) into a large rectangle of
size (L, W ). This two-dimensional packing problem is also known as the manufacturer’s
pallet loading problem, since it appears in the loading of identical boxes on pallets, as
well as in the packaging design and truck or rail car loading [7, 8, 13, 14, 23, 32]. It is
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assumed that there are no constraints related to cargo weight, density, fragility, etc. This
problem also appears in other logistics settings, for example, in the problem of finding
the maximum number of stowed units of woodpulp into holds of maritime ships, referred
to as the woodpulp stowage problem [27]. Apparently easy to be optimally solved, the
problem is claimed to be NP-hard although it has not been proven [11, 16, 25]. Var-
ious authors have proposed approximate methods to deal with it, as discussed in e.g.
[1, 2, 4, 15, 16, 18, 19, 26, 29, 30] and the references therein. Upper bounds for the
problem were studied in e.g. [5, 10, 16, 19, 24, 25].

In this paper we present an effective recursive partitioning approach that combines
refined versions of the recursive five-block heuristic proposed in [21, 22] and the L-approach
for packing rectangles into larger rectangles and L-shaped pieces presented in [17] (see
also [6]). We prove some theoretical results and develop some strategies related to the
recursive five-block heuristic that enable us to reduce the number of subproblems solved
by the method. Regarding the L-approach, two new ways of dividing an L-shaped piece
into two L-shaped pieces, which were not considered in [17], are described. Moreover, the
usage of the so-called reduced raster points (simply called raster points from now on) [29]
is incorporated into the combined recursive partitioning approach. The refinements based
on theoretical results and the integration of these methods enable us to develop a recursive
partitioning approach that is very effective for solving difficult pallet loading instances.

For instance, the combined approach is capable of rapidly finding all optimal solutions
of the well-known problem sets Cover I and II, which contains more than 50,000 instances
involving packing patterns of up to 100 boxes in the pallet surface [1, 25, 29]. Moreover,
if compared to the method in [1], the combined approach improves the solutions of 116
instances of problem set Cover III, whose 98,016 instances involve packings from 100 up
to 150 boxes. Requiring moderate computational resources, the combined approach also
improves the solutions of practical examples of the woodpulp stowage problem, when
compared to the method presented in [27]. These are large examples involving packings
of hundreds of woodpulp units by hold (i.e., boxes by pallet). Since we were unable to
find a counterexample for which the present combined approach fails, we conjecture that
it always finds optimal packings, as well as the L-approach in [17].

This paper is organized as follows. In Section 2, we define the problem, discuss some
of its properties and introduce the combined recursive partitioning approach. In Sec-
tions 3 and 4, we describe the refinements of the recursive five-block heuristic and the
L-approach, respectively. We also introduce theoretical results and related strategies that
improve the performance of these algorithms. Section 5 presents the time complexity of
the recursive partitioning approach. Section 6 analyzes numerical experiments. Finally,
some concluding remarks and perspectives for future research are described in Section 7.

2 Problem properties and the combined recursive partition-

ing approach

As mentioned, the problem consists of packing rectangular boxes with length l and
width w into a large rectangular pallet with length L and width W . The boxes have a fixed
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horizontal orientation, they must be placed orthogonally (i.e., with each side orthogonal
to one side of the pallet) and only 90-degree rotations are allowed. The objective is to find
a two-dimensional (non-guillotine) packing pattern with the maximum number of boxes
packed. Without loss of generality, we assume that L, W , l and w are integers and that
L ≥W and l ≥ w. Thus, a problem instance is determined by the quadruple (L, W, l, w).
This packing problem can be classified as 2/B/O/C according to Dyckhoff’s typology of
cutting and packing problems [14], and as “two-dimensional, rectangular Identical Item
Packing Problem (IIPP)” based on Wäescher et al.’s typology [32].

Given a pallet (L, W ), we assume that the bottom-left corner of the pallet coincides
with the origin of R

2. A packing of N boxes for problem (L, W, l, w) is represented by a
set of N triplets (xi, yi, oi), i = 1, . . . , N , where (xi, yi) corresponds to the coordinate of
the bottom-left corner of the i-th box, and oi = horizontal means that the i-th box is
not rotated, while oi = vertical means that it is 90-degree rotated. Clearly, the boxes
cannot overlap and they must be inside the pallet.

Let (x′′
i , y

′′
i , oi), i = 1, . . . , N , be a packing for problem (L, W, l, w). In [17], it was shown

that there is another packing (x′
i, y

′
i, oi), i = 1, . . . , N , such that x′

i and y′i, i = 1, . . . , N ,
are integer conic combinations of l and w, that is, (x′

i, y
′
i) ∈ SL×SW , i = 1, . . . , N , where

SL = {x ∈ Z+ | x = r l + s w, 0 ≤ x ≤ L, r, s ∈ Z+},
SW = {y ∈ Z+ | y = t l + u w, 0 ≤ y ≤W, t, u ∈ Z+}.

As a consequence of Assertion 1 in [28] (that deals with non-identical rectangles and
whose formal proof is not given), it can be shown that there is another packing (xi, yi, oi),
i = 1, . . . , N , such that (xi, yi) ∈ RL ×RW , i = 1, . . . , N , where

RL = {x ∈ Z+ | x = 〈L− x̂〉SL
for some x̂ ∈ SL},

RW = {y ∈ Z+ | y = 〈W − ŷ〉SW
for some ŷ ∈ SW },

(1)

and
〈x̃〉SL

= max{x ∈ SL | x ≤ x̃} and 〈ỹ〉SW
= max{y ∈ SW | y ≤ ỹ}.

RL and RW are known as the sets of raster points [29] for (L, l, w) and (W, l, w), respec-
tively. For completeness, the theorem below formalizes this claim.

Theorem 2.1 Let (x′′
i , y

′′
i , oi), i = 1, . . . , N , be a packing for problem (L, W, l, w). There

is a packing (xi, yi, oi), i = 1, . . . , N , such that (xi, yi) ∈ RL ×RW , i = 1, . . . , N .

Proof: By [17] (p. 779) there is a packing (x′
i, y

′
i, oi), i = 1, . . . , N , such that (x′

i, y
′
i) ∈

SL × SW , i = 1, . . . , N . Consider now the packing given by (L− x′
i − d1, W − y′i − d2, oi),

i = 1, . . . , N , where d1 = l and d2 = w if oi = horizontal and d1 = w and d2 = l if
oi = vertical. This packing can be seen as a double reflection of the previous pack-
ing. Applying the procedure described in [17] (p. 779), we obtain a packing (xi, yi, oi),
i = 1, . . . , N , such that (xi, yi) ∈ RL ×RW , i = 1, . . . , N . �

Figure 1 illustrates the application of Theorem 2.1 to a very small problem. Con-
sider problem (14, 7, 7, 5). For this problem we have that SL = {0, 5, 7, 10, 12, 14}, SW =
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double
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(d)

Figure 1: Example of an application of Theorem 2.1. The initial packing in (a) is such
that the bottom-left corners of the items do not belong to RL×RW (not even to SL×SW );
while the packing in (d), obtained by applying the procedure described in the theorem,
has the bottom-left corners in RL ×RW .

{0, 5, 7}, RL = {0, 7, 14} and RW = {0, 7}. Figure 1(a) shows a solution such that the
bottom-left corner of item 2 does not belong to SL × SW . Figure 1(b) illustrates that,
performing a bottom-left shift, it is possible to obtain another packing such that the
bottom-left corners of the items belong to SL × SW (note that the bottom-left corner of
item 2 does not belong to RL×RW ). This shift corresponds to the application of the the-
orem in [17]. Figure 1(c) shows the double reflection mentioned in Theorem 2.1. Finally,
Figure 1(d) shows a bottom-left shift applied to the packing in Figure 1(c). The packing
of Figure 1(d) is such that the bottom-left corners of the items belong to RL ×RW .

A corollary of Theorem 2.1 is that it can be assumed, without loss of generality,
that L ∈ SL and W ∈ SW . Therefore, problem (L, W, l, w) is equivalent to problem
(〈L〉SL

, 〈W 〉SW
, l, w). If 〈L〉SL

< 〈W 〉SW
then, by convention, we consider the also equiva-

lent problem, (〈W 〉SW
, 〈L〉SL

, l, w). The process of converting a problem (or subproblem)
into an equivalent problem such that the dimensions of the pallet are integer conic combi-
nations and the first dimension is greater than or equal to the second dimension is called
normalization. The normalization process is useful to detect equivalent problems and solve
only one of them. An analogous process also applies to the packing of rectangles within
L-shaped pieces; see [17] for details.

Another corollary of Theorem 2.1 is that a method needs to look for an optimal packing
only trying to place the boxes with their bottom-left corners within the set RL × RW .
For instance, consider the problem (L, W, l, w) = (28, 21, 7, 4). The sets of integer conic
combinations SL and SW are given by

SL = {0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28},
SW = {0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21},

and the sets of raster points are given by

RL = {0, 4, 7, 8, 12, 14, 16, 20, 21, 24, 28},
RW = {0, 4, 7, 8, 12, 14, 16, 21}.

Figure 2(a) shows all possible positions for the bottom-left corners that might be tried
by a method that uses the integer conic combinations (like the one introduced in [17]),
while Figure 2(b) shows the smaller set of possible positions that might be considered by
a method that uses the raster points.
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(a) SL × SW (b) RL ×RW

Figure 2: Intersections in (a) and (b) represent sets SL × SW and RL ×RW , respectively,
for problem (L, W, l, w) = (28, 21, 7, 4). By definition, RL×RW ⊆ SL×SW . Moreover, in
this particular example, the number of possibilities that might be tried by a method based
on raster points is much smaller than the number of possibilities that might be tried by a
method based on integer conic combinations.

The recursive partitioning approach introduced in the present paper consists of the
combination of efficient implementations of the five-block recursive heuristic [21, 22] and
the L-approach [17, 6]. The combined approach has two phases. First, the five-block
recursive algorithm is executed (phase 1) and, if a certificate of optimality is not provided
by the method, that is, if the computed upper bound is not equal to the solution value
found, the L-approach algorithm is executed (phase 2). Moreover, additional information
obtained in phase 1 by the first algorithm is used in phase 2 by the second algorithm in
at least two ways.

On one hand, subproblems generated by the first algorithm may also be generated by
the second. If this situation occurs, the lower and upper bounds obtained by the first
algorithm are used by the second. Therefore, if an optimal solution was already found for
the subproblem in phase 1, it is not solved again in phase 2, improving the performance
of phase 2. On the other hand, the second algorithm computes lower bounds for L-shaped
subproblems by partitioning them into two rectangles (in the two straightforward different
ways) and summing up the lower bounds of the rectangles. Having the information saved
by the first algorithm at hand, we have often better lower bounds for the rectangles
than the ones provided by the homogeneous packings computed by the second algorithm,
therefore improving the performance of phase 2.

3 Refinements of the recursive five-block heuristic

The recursive five-block heuristic [21, 22] in phase 1 is, basically, a recursive application
of the method presented in [7]. The algorithm divides a rectangle into five (or less) smaller
rectangles in a way that is called first-order non-guillotine cut ; see Figure 3. As shown
in this figure, a first-order non-guillotine cut is represented by a quadruple (x1, x2, y1, y2).
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Each small rectangle is recursively cut unless an optimal solution is found, or a depth limit
in the recursion (input parameter of the method) is attained. An optimal solution can
be detected by closing the gap between known lower and upper bounds on the number of
boxes that can be packed. An efficient implementation of the method is to reduce to its
minimum, without loss of generality, the number of quadruples (x1, x2, y1, y2) needed to
generate all the possible first-order non-guillotine cuts of a given rectangle. It also depends
on developing an efficient strategy to avoid solving the same (or an equivalent) subproblem
more than once. In the rest of this section, we describe the strategies developed to improve
the algorithm introduced in [21].

(0, 0)

y1

y2

x1 x2 (0, 0)

1
2

3

4
5

L4 L5

L2L1

W1

W4

W2

W5

(a) (b)

Figure 3: First-order non-guillotine cut. (a) A first-order non-guillotine cut can be defined
by a quadruple (x1, x2, y1, y2) such that 0 ≤ x1 ≤ x2 ≤ L and 0 ≤ y1 ≤ y2 ≤ W . (b)
It determines five subrectangles (L1, W1), . . . , (L5, W5) such that L1 = x1, W1 = W − y1,
L2 = L− x1, W2 = W − y2, L3 = x2 − x1, W3 = y2 − y1, L4 = x2, W4 = y1, L5 = L− x2

and W5 = y2.

The first two improvements consist of the usage of raster points and the upper bound
introduced by Barnes [5]. The raster points are incorporated in connection with the data
structures described in [6]. This combination will enable us to arrive to an efficient usage
of the raster points (as pointed out in [21, 22]). The two theorems below show that there
is no loss of generality by only considering cuts generated by raster points.

Definition 3.1 Given two rectangular pieces R and R′, we say that R′ ≥ R if there is
a transformation (combination of rotation, reflection and/or translation) such that every
point p ∈ R also belongs to R′.

Definition 3.2 Let C and C ′ be two cuts and let P = {P1, P2, . . . , PK} and P ′ =
{P ′

1, P
′
2, . . . , P

′
K} be the sets of pieces defined by each cut, respectively. We say that C ′

covers C if there exists a bijective function g : {1, 2, . . . , K} → {1, 2, . . . , K} such that
P ′

g(i) ≥ Pi for all i = 1, . . . , K.
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Definition 3.3 Let x ∈ SL and y ∈ SW , we define

⌈x⌉RL
= min{r ∈ RL | x ≤ r} and ⌈y⌉RW

= min{r ∈ RW | y ≤ r}.

Theorem 3.1 Let x ∈ SL (y ∈ SW ). Then, x′ = ⌈x⌉RL
(y′ = ⌈y⌉RW

) defines a vertical
(horizontal) guillotine cut that covers the vertical (horizontal) guillotine cut defined by x
(y).

Proof: The subrectangles generated by the vertical guillotine cut defined by x are R1 =
(L1, W1) = (x, W ) and R2 = (L2, W2) = (〈L− x〉SL

, W ). The subrectangles generated by
the vertical guillotine cut defined by x′ are R′

1 = (L′
1, W

′
1) = (x′, W ) and R′

2 = (L′
2, W

′
2) =

(〈L− x′〉SL
, W ). It is easy to see that R′

1 ≥ R1 and that, by Lemma A.3, R′
2 = R2. The

proof for the horizontal cut is analogous. �

Theorem 3.2 Let (x1, x2, y1, y2) ∈ S2
L × S2

W be a first-order non-guillotine cut. Then,
(x′

1, x
′
2, y

′
1, y

′
2) = (⌈x1⌉RL

, ⌈x2⌉RL
, ⌈y1⌉RW

, ⌈y2⌉RW
) ∈ R2

L × R2
W defines a first-order non-

guillotine cut that covers the one defined by (x1, x2, y1, y2).

Proof: Let R1, R2, R3, R4 and R5 the five subrectangles generated by (x1, x2, y1, y2) (see
Figure 3), and R′

1, R′
2, R′

3, R′
4 and R′

5 the five subrectangles generated by (x′
1, x

′
2, y

′
1, y

′
2).

It is easy to see that R′
4 ≥ R4. By Lemma A.3, R′

1 ≥ R1, R′
2 ≥ R2 and R′

5 ≥ R5; and, by
Lemma A.4, R′

3 ≥ R3. �

Regarding the use of lower bounds, other than the trivial one obtained by homogeneous
packings, preliminary experiments suggested that the effort of computing them does not
compensate the poor fathoming of nodes of the search tree provided by them. In [10]
it is mentioned that the upper bound introduced by Barnes [5] is better than the trivial
bound given by the areas ratio in around 4.2% of the cases. Our experiments confirm
this claim. However, computing the Barnes upper bound only once per subproblem and
saving them to be used later makes its use profitable. Other upper bounds studied in e.g.
[16, 19, 24, 25] could also be considered.

A control of recursion depth is incorporated to avoid multiple resolutions of the same
subproblem. The test made in [21] consists of, given a subproblem, solving it again if
the current depth is smaller than the depth related to its stored solution, since a deeper
recursion could potentially find a better solution. In the present implementation, we also
save the information whether the process of computing the solution of the subproblem
was influenced by the depth limit. If it was not, the subproblem is never solved again (see
Figure 4).

In the following we analyze symmetries. Degenerated first-order non-guillotine cuts in
which a rectangle is cut in exactly three or four subrectangles can be eliminated. This
elimination is based on the fact that these cuts can be generated by two or three consec-
utive guillotine cuts. Therefore, without loss of generality, it is possible to consider only
guillotine cuts and the first-order non-guillotine cuts that generate exactly five subrectan-
gles.

7



P

· · ·

...
...

S

S

depth = N

Figure 4: A tree search to represent the algorithm. The root node represents the main
problem and each node represents a subproblem. Subproblem S appears twice. If the
first occurrence of subproblem S corresponds to the node closer to the root, the stored
solution will be used when subproblem S appears for the second time. If, on the other
hand, the first occurrence corresponds to the deeper node, there are two possibilities when
the subproblem appears for the second time. If the depth limit N was used to stop the
recursion when solving the subproblem then it will be solved again. On the other hand,
if the depth limit did not interfere in the subproblem resolution, the subproblem will not
be solved again, as a better solution cannot be found.

We are interested in symmetries for the guillotine cuts and the non-degenerate first-
order non-guillotine cuts. We say that two cuts are symmetric or equivalent when they
both generate the same set of normalized subproblems.

Symmetries for vertical guillotine cuts

Let (x1, x2, y1, y2) ∈ R2
L × R2

W be (a quadruple that represents) a vertical guillotine
cut. Without loss of generality, we assume that y1 = y2 = 0 and x1 = x2 = x. We claim
that it is enough to generate vertical guillotine cuts with x ∈ (0, ⌊L/2⌋].

Theorem 3.3 Every vertical guillotine cut (x1, x2, y1, y2) ∈ R2
L×R2

W such that y1 = y2 =
0, x1 = x2 = x, x > L/2 is equivalent to a vertical guillotine cut (x′

1, x
′
2, y

′
1, y

′
2) ∈ R2

L×R2
W

such that y′1 = y′2 = 0, x′
1 = x′

2 = x′, x′ ≤ ⌊L/2⌋.

Proof: Let R1 and R2 be the two subrectangles generated by (x1, x2, y1, y2) with y1 = y2 =
0 and x1 = x2 = x (see Figure 5). We show that there is a one-to-one equivalence relation
between {R1, R2} and the set {R′

1, R
′
2} of subrectangles generated by (x′

1, x
′
2, y

′
1, y

′
2) with
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y′1 = y′2 = 0, x′
1 = x′

2 = x′ and

x′ = 〈L− x〉SL
≤ ⌊L/2⌋. (2)

Since

R1 = (L1, W1) = (x, W ),
R2 = (L2, W2) = (〈L− x〉SL

, W ),
R′

1 = (L′
1, W

′
1) = (x′, W ),

R′
2 = (L′

2, W
′
2) = (〈L− x′〉SL

, W ),

by (2) and Lemma A.2 follows that R1 = R′
2 and R2 = R′

1. �

L− xx

〈L− x〉SL
L
2

R1 R2

Figure 5: Vertical guillotine cut (x1, x2, y1, y2) with x1 = x2 = x and y1 = y2 = 0. R1 and
R2 are the normalized subrectangles generated by the cut. R1 = (L1, W1) = (x, W ) and
R2 = (L2, W2) = (〈L− x〉SL

, W ).

The case of horizontal guillotine cuts is analogous. A corollary of Theorem 3.3 is that
a method needs to consider only guillotine cuts (x1, x2, y1, y2) ∈ R2

L ×R2
W such that:

1. y1 = y2 = 0 and 0 < x1 = x2 = x ≤ ⌊L/2⌋; and

2. x1 = x2 = 0 and 0 < y1 = y2 = y ≤ ⌊W/2⌋.

Symmetries for non-degenerate first-order non-guillotine cuts

We analyze now symmetries for the non-degenerate first-order non-guillotine cuts. In
order to do that, we divide the pallet into four regions called A, B, C and D (see Figure 6).
From now on, until the end of this section, we will use the term “cut” to refer to a “non-
degenerate first-order non-guillotine cut”.

We call p the center of “Subrectangle 3”, the central subrectangle of a cut (refer to
Figure 3(b)). The symmetries are analyzed considering the position of p. We claim that
a cut with p ∈ intD (the interior of D) is equivalent to a cut with p ∈ intA; see Figure 7.
(Analogously, a cut with p ∈ intC is equivalent to a cut with p ∈ intB.) The same claim
is also made for a cut with p ∈ {(x, y) | x = L/2 and y ∈ [W/2, W ]}, that is equivalent to
a cut with p ∈ {(x, y) | x = L/2 and y ∈ [0, W/2]}.
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Figure 6: The four regions used to analyze symmetries of non-degenerate first-order non-
guillotine cuts.

L
2

W
2

x1 x2

y1

y2
q

x′
1 x′

2

y′1

y′2

L
2

W
2

q

(a) (b)

Figure 7: (a) A non-degenerate first-order non-guillotine cut generated by (x1, x2, y1, y2) ∈
R2

L× ∈ R2
W with the center of Subrectangle 3 in region D. (b) A non-degenerate first-

order non-guillotine cut generated by x′
1 = 〈L− x2〉SL

, x′
2 = 〈L− x1〉SL

, y′1 = 〈W − y2〉SW

and y′2 = 〈W − y1〉SW
. The latter cut has the center of Subrectangle 3 in region A and is

equivalent to the first cut.

Theorem 3.4 Every non-degenerate first-order non-guillotine cut with the center of Sub-
rectangle 3 in region F = C ∪ D ∪ {(x, y) | x = L/2 and y ∈ [W/2, W ]} is equivalent to
a non-degenerate first-order non-guillotine cut with the center of Subrectangle 3 in region
E = A ∪B ∪ {(x, y) | x = L/2 and y ∈ [0, W/2]}. Note that the original cut as well as its
equivalent cut are determined by quadruples of raster points.

Proof: Consider problem (L, W, l, w). Let RL and RW be the set of raster points defined
in (1). Let (x1, x2, y1, y2) ∈ R2

L × R2
W be a non-degenerate first-order non-guillotine cut.

Let (x, y) = ((x1 + x2)/2, (y1 + y2)/2) be the center of Subrectangle 3. We show that
if (x, y) ∈ intD then there is an equivalent cut (x′

1, x
′
2, y

′
1, y

′
2) ∈ R2

L × R2
W such that

(x′, y′) = ((x′
1 + x′

2)/2, (y′1 + y′2)/2) ∈ intA. Moreover,

(x′
1, x

′
2, y

′
1, y

′
2) = (〈L− x2〉SL

, 〈L− x1〉SL
, 〈W − y2〉SW

, 〈W − y1〉SW
). (3)
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The five subrectangles generated by (x1, x2, y1, y2) and (x′
1, x

′
2, y

′
1, y

′
2) are:

R1 = (L1, W1) = (x1, 〈W − y1〉SW
),

R2 = (L2, W2) = (〈L− x1〉SL
, 〈W − y2〉SW

),
R3 = (L3, W3) = (〈x2 − x1〉SL

, 〈y2 − y1〉SW
),

R4 = (L4, W4) = (x2, y1),
R5 = (L5, W5) = (〈L− x2〉SL

, y2),

R′
1 = (L′

1, W
′
1) = (x′

1, 〈W − y′1〉SW
),

R′
2 = (L′

2, W
′
2) = (〈L− x′

1〉SL
, 〈W − y′2〉SW

),
R′

3 = (L′
3, W

′
3) = (〈x′

2 − x′
1〉SL

, 〈y′2 − y′1〉SW
),

R′
4 = (L′

4, W
′
4) = (x′

2, y
′
1),

R′
5 = (L′

5, W
′
5) = (〈L− x′

2〉SL
, y′2),

respectively. By (3) and using Lemma A.2, it is easy to verify that R′
1 = R5, R′

2 = R4,
R′

3 = R3, R′
4 = R2 and R′

5 = R1. Proofs for (x, y) ∈ intC and for (x, y) such that x = L/2
and y > W/2 are analogous. �

To end this section, Algorithms 1 and 2 present a detailed description of the original
five-block recursive method [21, 22] and its improved version, respectively.

4 Refinements of the L-approach

The L-approach in phase 2 of the recursive partitioning approach is based on the com-
putation of a recursive formula of dynamic programming that deals with a huge number
of subproblems [17, 6]. As in the recursive five-block approach in phase 1, we combine the
L-approach with the raster points. Its usage is straightforward and the implementation
also uses the data structures described in [6].

We present two new ways of dividing an L-shaped piece into two L-shaped pieces
that were not considered in [17]. Following the notation in [17], the normalized L-shaped
piece represented by the quadruple (X, Y, x, y), with X ≥ x and Y ≥ y, is denoted
by L(X, Y, x, y) and defined as the topological closure of the rectangle whose diagonal
goes from (0, 0) to (X, Y ) minus the rectangle whose diagonal goes from (x, y) to (X, Y ).
Moreover, the division of an L-shaped piece into two L-shaped pieces can be determined
by a pair (x′, y′). The two new subdivisions, called B8 and B9, are given by:

B8 : x′ ∈ [0, x], y′ ∈ [y, Y ], L(x, Y, x′, Y − y′), L(X − x′, y′, x− x′, y),
B9 : x′ ∈ [x, X], y′ ∈ [0, y], L(x′, Y − y′, x, y − y′), L(X, y, X − x′, y′).

Figure 8 shows the nine ways of dividing a rectangle or an L-shaped piece into two L-shaped
pieces. The new ones are the last two. Their usage does not show any clear advantage to
the method, other than completeness, since we did not find a counter-example for which
the absence of subdivisions B8 and B9 prevents the approach of obtaining an optimal
solution.

It remains as an open problem to prove a statement similar to Theorems 3.1 and 3.2
regarding L-shaped cuts B1, . . . , B9, i.e., to prove that there is no loss of generality in
considering cuts given by raster points instead of cuts given by integer conic combinations,
in the L-approach.

One of the key subjects of the methods analyzed in the present work is related to the
storage of information of the subproblems that are previously considered by the algorithm
during its execution. In particular, we save a lower and an upper bound on the optimal
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Algorithm 1: Pseudo-code of the original version of the recursive five-block heuristic
as introduced [22].

Input: L,W, l, w, n ∈ Z.
Output: Number of (l, w)-boxes packed within the (L,W )-pallet.
Recursive-BD(L,W, l, w, n)
begin1

zlb ← lowerBound[IL, JW ]2

zub ← upperBound[IL, JW ]3

if zlb = zub or depth[IL, JW ] ≤ n then4

depth[IL, JW ]← min{depth[IL, JW ], n}5

return zlb6

Build sets SL and SW for (L,W, l, w)7

foreach x1 ∈ SL such that x1 ≤ L− w do8

foreach x2 ∈ SL such that x1 ≤ x2 ≤ L− w do9

foreach y1 ∈ SW such that y1 ≤W − w do10

foreach y2 ∈ SW such that y1 ≤ y2 ≤W − w do11

if this pattern is not symmetrical to any other then12

for i← 1 to 5 do13

Compute (Li,Wi)14

zi

lb
← lowerBound[ILi

, JWi
]15

zi

ub
← upperBound[ILi

, JWi
]16

Slb ←
∑

5

i=1
zi

lb
17

Sub ←
∑

5

i=1
zi

ub
18

if n < N then19

for i← 1 to 5 do20

zi ← Recursive-BD(Li,Wi, l, w, n + 1)21

Slb ← Slb + zi − zi

lb
22

Sub ← Sub + zi − zi

ub
23

if zlb ≥ Sub then24

break25

if Slb > zlb then26

zlb ← Slb27

if zlb = zub then28

depth[IL, JW ]← n29

return zlb30

if Slb > zlb then31

zlb ← Slb32

if zlb = zub then33

depth[IL, JW ]← n34

return zlb35

depth[IL, JW ]← n36

return zlb37

end38
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Algorithm 2: Improved version of the recursive five-block heuristic. This pseudo-
code, together with the pseudo-code of routine Solve below, include all the improve-
ments described in the present work.

Input: L,W, l, w, n ∈ Z.
Output: Number of (l, w)-boxes packed within the (L,W )-pallet.
Recursive-BD2(L,W, l, w, n)
begin1

if W > L then2

Swap(L,W )3

zlb ← lowerBound[IL, JW ]4

zub ← upperBound[IL, JW ]5

reachedLimit[IL, JW ]← false6

if zlb = zub then7

return zlb8

Build sets RL and RW for (L,W, l, w)9

foreach x1 ∈ RL such that x1 ≤ ⌊
L

2
⌋ do10

foreach x2 ∈ RL such that x1 < x2 and x1 + x2 ≤ L do11

foreach y1 ∈ RW such that y1 < W do12

foreach y2 ∈ RW such that y1 < y2 and y1 + y2 ≤W do13

if ¬(x1 + x2 = L and y1 + y2 > W ) then14

Compute (Li,Wi) for i = 1, . . . , 515

P ← {(L1,W1), . . . , (L5,W5)}16

zlb ← max{zlb,Solve(L,W, n, zlb,P)}17

if zlb = zub then18

return zlb19

foreach x1 ∈ RL such that x1 ≤ ⌊
L

2
⌋ do20

x2 ← x1 y1 ← 0 y2 ← 021

Compute (L1,W1) and (L2,W2)22

P ← {(L1,W1), (L2,W2)}23

zlb ← max{zlb,Solve(L,W, n, zlb,P)}24

if zlb = zub then25

return zlb26

foreach y1 ∈ RW such that y1 ≤ ⌊
W

2
⌋ do27

y2 ← y1 x1 ← 0 x2 ← 028

Compute (L2,W2) and (L5,W5)29

P ← {(L2,W2), (L5,W5)}30

zlb ← max{zlb,Solve(L,W, n, zlb,P)}31

if zlb = zub then32

return zlb33

return zlb34

end35
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Algorithm 3: Subroutine Solve used by the improved recursive five-block heuristic.

Solve(L,W, n, zlb,P)
begin1

zub ← upperBound[IL, JW ]2

for i← 1 to |P| do3

zi

lb
← lowerBound[ILi

, JWi
]4

zi

ub
← upperBound[ILi

, JWi
]5

Slb ←
∑|P|

i=1
zi

lb
6

Sub ←
∑|P|

i=1
zi

ub
7

if n < N then8

if zlb < Sub then9

for i← 1 to |P| do10

if depth[ILi
, JWi

] > n and reachedLimit[ILi
, JWi

] then11

zi ← Recursive-BD2(Li,Wi, l, w, n + 1)12

lowerBound[ILi
, JWi

]← zi13

depth[ILi
, JWi

]← n14

if ¬reachedLimit[ILi
, JWi

] then15

upperBound[ILi
, JWi

]← zi16

else17

zi ← lowerBound[ILi
, JWi

]18

if reachedLimit[ILi
, JWi

] then19

reachedLimit[IL, JW ]← true20

Slb ← Slb + zi − zi

lb
21

Sub ← Sub + zi − zi

ub
22

if zlb ≥ Sub then23

return zlb24

if Slb > zlb then25

zlb ← Slb26

if zlb = zub then27

reachedLimit[IL, JW ]← false28

return zlb29

else30

reachedLimit[IL, JW ]← true31

if Slb > zlb then32

zlb ← Slb33

if zlb = zub then34

reachedLimit[IL, JW ]← false35

return zlb36

return zlb37

end38
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Figure 8: Subdivisions of an L-shaped piece into two L-shaped pieces. The last two are
the new ones presented in this work.

value (if they are equal, the solution is optimal). If the lower bound corresponds to a
homogeneous packing, we save whether the homogeneous packing is vertical or horizontal.
Otherwise, we save the parameters of the cut that determines the lower bound, in order to
be able to report the solution found by the method. The relevant amount is the number
of all possible subproblems, and not the real number of generated subproblems, which is
much smaller than the first one. In [6], it was empirically shown that less than 2% of
all the possible subproblems is in fact generated by the L-approach. Note that the fact
of saving information of the already solved subproblems (of the problem currently being
solved) is related to the idea of creating a pool of solutions described by [8].

An important result related to this subject is that “subproblems of subproblems are
subproblems of the original problem”. This is a valid claim for subproblems generated in
the recursive five-block heuristic in phase 1, as well as in the L-approach in phase 2. In
other words, all subrectangles (L̂, Ŵ ) and L-shaped pieces (X̂, Ŷ , x̂, ŷ) generated through
the methods are such that L̂, X̂, x̂ ∈ RL, the set of raster points associated to (L, l, w)
(where L is the dimension of the original problem), and Ŵ , Ŷ , ŷ ∈ RW , the set of raster
points associated to (W, l, w) (where W is the dimension of the original problem). As
a consequence, the number of all possible subproblems is O(|RL| |RW |) in the recursive
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five-block heuristic and O(|RL|
2 |RW |

2) in the L-approach.
Consider a set of raster points RS (where S is either L or W ) as an ordered set (with

its elements in increasing order). Consider now an array u of dimension S. If s is the i-th
element of RS , then us = i. Positions of u that do not correspond to elements in RS are
undefined. Using this kind of indexing arrays it is possible to map, in constant time, a pair
of raster points (L̂, Ŵ ) or a quadruple of raster points (X̂, Ŷ , x̂, ŷ) into indices (I

L̂
, I

Ŵ
)

and (I
X̂

, J
Ŷ

, ix̂, jŷ), respectively. In other words, we have a trivial way of associating every
possible subproblem with a pair or quadruple of indices [6].

In the case of the recursive five-block heuristic, provided the quantity |RL||RW | is not
too large, we can simply use a two-dimensional array of dimension |RL| by |RW | to save
the information related to each subproblem (L̂, Ŵ ) into position (I

L̂
, I

Ŵ
). In the case of

the L-approach, if the quantity |RL|
2 |RW |

2 is affordable (i.e., if the computer has enough
memory), a four-dimensional array can be used. Otherwise, we proceed as follows. If
|RL|

2 |RW | is affordable, a three-dimensional array is used whose (I, J, i) element is a
balanced binary search tree with key j. If |RL|

2 |RW | is not affordable but |RL| |RW |
is, we consider a two-dimensional array whose element (I, J) is a balanced binary search
tree with key (i, j). Figure 9 illustrates the case of a three-dimensional array with a
balanced binary search tree in each position. This strategy to save the information of the
subproblems enables us to apply the method to potentially large problems.

I J i

X Y x

j1 y1

j2 y2 j4 y4

j3 y3

Figure 9: Data structure to store information related to the subproblems. The figure
represents a data structure with a three-dimensional array and a binary search tree. The
information of subproblems (X, Y, x, y1), (X, Y, x, y2), (X, Y, x, y3) and (X, Y, x, y4) is being
saved in a binary search tree with keys j1, . . . , j4 located at position (I, J, i) of a three-
dimensional array.

To prove that “subproblems of subproblems are subproblems of the original problem”,
we need to prove that all subrectangles (L̂, Ŵ ) and L-shaped pieces (X̂, Ŷ , x̂, ŷ) generated
using the five-block heuristic and the L-approach are such that L̂, X̂, x̂ ∈ RL and Ŵ , Ŷ , ŷ ∈
RW . By the definition of the methods, L̂, X̂, x̂, Ŵ , Ŷ and ŷ are:

• raster points by themselves,

• raster points by construction and by the definition of raster points, or
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• the raster point of the difference of two raster points.

The first two cases are trivial. Lemma A.1 proves that the normalization of the differ-
ence of two raster points is a raster point. In particular, the result is a little more general,
as the second element can be an integer conic combination, instead of a raster point.

5 Complexity of the recursive partitioning approach

Our implementation of the recursive partitioning approach is a memoized dynamic
programming algorithm (see, for example, [9] pp. 347–349). Each subproblem of the
five-block heuristic is given by a rectangle (X, Y ) ∈ RL×RW and each subproblem of the
L-approach is given by an L-shaped piece (X, Y, x, y) ∈ RL×RW×RL×RW . Thus, to save
the solution of every possible subproblem, the recursive partitioning approach uses a table
of size |RL||RW | for phase 1 and a table of size |RL|

2|RW |
2 for phase 2. In both phases the

method also uses a few integer arrays with no more than L elements. Therefore, the mem-
ory complexity of phases 1 and 2 is O(|RL||RW |+L) and O(|RL|

2|RW |
2 +L), respectively;

the memory complexity of the recursive partitioning approach being O(|RL|
2|RW |

2 + L).
To simplify the time complexity analysis below, we ignore from now on the time savings

related to symmetries and normalization of subproblems. We assume that no limit to
the recursion depth of the five-block heuristic is imposed and, as a consequence, each
subproblem is solved at most once. We also assume that there is enough space for the
L-approach to save subproblems solutions in a four-dimensional array of size |RL|

2|RW |
2.

As the worst-case time complexity of a memoized dynamic programming method is
equivalent to the complexity of its iterative dynamic programming counterpart, we analyze
only the latter one. In terms of the recursive partitioning approach it means that in
phase 1, as well as in phase 2, smaller subproblems are solved first. It also means that
in the five-block heuristic the recursive call in subroutine Solve (Algorithm 3, line 12) is
replaced by the O(1) task of obtaining the solution of the subproblem from a table. Thus,
the worst-case time complexity of subroutine Solve (Algorithm 3) is O(1).

Consider a subproblem given by a rectangle (X, Y ). In Algorithm 2, the worst-case
time complexity for lines 1 to 8 is O(1); the worst-case time complexity of line 9 (gener-
ation of raster points sets) is O(|SX | + |SY |); and the time complexities of the loops are
O(|RX |

2|RY |
2), O(|RX |) and O(|RY |) (lines 10 to 19, 20 to 26 and 27 to 33, respectively).

Therefore, the worst-case time complexity for solving all possible subproblems is given by

∑

(X,Y )∈RL×RW

O(|SX |+ |SY |+ |RX |
2|RY |

2 + |RX |+ |RY |).

The cost of initializing the table and the arrays is O(|RL||RW |+L). Therefore, the worst-
case time complexity of the five-block heuristic is

O(|RL||RW |+ L) +
∑

(X,Y )∈RL×RW
O(|SX |+ |SY |+ |RX |

2|RY |
2 + |RX |+ |RY |)

= O(|RL||RW |(|RL|
2|RW |

2 + |SL|+ |SW |) + L).

(4)
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Let us now analyze the worst-case time complexity of the L-approach. We analyze in
separate subproblems given by a non-degenerated L-shaped piece and by a rectangular
piece. There are seven different ways of partitioning a non-degenerated L-shaped piece
(X, Y, x, y) ∈ RL ×RW ×RL ×RW into two L-shaped pieces (see B1, B2, B3, B4, B5, B8

and B9 in Figure 8). Each of them is determined by a pair (x′, y′) ∈ RX × RY . Thus,
the worst-case complexity for solving a subproblem given by a non-degenerated L-shaped
piece (X, Y, x, y), including the complexity O(|SX |+ |SY |) for generating its raster points
sets, is

O(|RX ||RY |+ |SX |+ |SY |). (5)

Analogously, the worst-case complexity for solving a subproblem given by a rectangular
piece (X, Y ) is

O(|RX |
2|RY |+ |RX ||RY |

2 + |SX |+ |SY |). (6)

The cost of initializing the table and the arrays is O(|RL|
2|RW |

2 + L) and summing
(5) and (6) over all possible subproblems, we have that the worst-case complexity of the
L-approach is

O(|RL|
2|RW |

2 + L) +
∑

(X,Y,x,y)∈RL×RW×RL×RW
O(|RX ||RY |+ |SX |+ |SY |)+

∑
(X,Y )∈RL×RW

O(|RX |
2|RY |+ |RX ||RY |

2 + |SX |+ |SY |)

= O(|RL|
2|RW |

2(|RL||RW |+ |SL|+ |SW |) + L).

(7)

Finally, if the worst-case complexity of the five-block heuristic is given by (4) and
the worst-case complexity of the L-approach is given by (7), we have that the worst-case
complexity of the recursive partitioning approach is given by (7).

6 Numerical experiments

In this section, we present the computational results obtained with the refined version
of the recursive five-block heuristic in Section 3, the refined version of the L-approach in
Section 4 and the combined recursive partitioning approach, here simply referred to as
Five-block Algorithm, L-Algorithm and Recursive Partitioning Algorithm, respectively.
These algorithms were coded in C/C++ language. All the experiments were run on
a 2.4GHz Intel Core2 Quad Q6600 with 4.0GB of RAM memory and Linux Operating
System. Compiler option -O3 was adopted.

6.1 Pallet loading instances of Cover I, II and III

In order to evaluate the performances of the algorithms, initially we took five well-
known data sets of the manufacturer’s pallet loading literature:

Cover IA: 8,274 instances satisfying 1 ≤ L
W
≤ 3, 1 ≤ l

w
≤ 4 and 1 ≤ LW

lw
< 51;

Cover IIA: 41,831 instances satisfying 1 ≤ L
W
≤ 2.2, 1 ≤ l

w
≤ 4 and 51 ≤ LW

lw
< 101;
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Cover IB: 7,827 instances satisfying 1 ≤ L
W
≤ 2, 1 ≤ l

w
≤ 4 and 1 ≤ LW

lw
< 51;

Cover IIB: 40,609 instances satisfying 1 ≤ L
W
≤ 2, 1 ≤ l

w
≤ 4 and 51 ≤ LW

lw
< 101;

Cover IIIB: 98,016 instances satisfying 1 ≤ L
W
≤ 2, 1 ≤ l

w
≤ 4 and 101 ≤ LW

lw
< 151.

The generation of the cover set problems was introduced in [12]. Each instance in the cover
sets is a representative of an equivalence class of problems containing infinite elements.
Cover IA and IIA were extensively used in the pallet loading problem literature; see e.g.
[16, 25, 29]. Cover IB, IIB and IIIB were recently generated and presented in [1]. Instances
in Cover IB, IIB and IIIB are the minimum size instances (see, for example, [20]) of their
respective equivalence classes, while instances in Cover IA and IIA are not. See [1] for
details.

We start showing empirically computed average sizes of the sets of integer conic com-
binations and raster points for problems in the cover sets. Consider a problem (L, W, l, w)
in Cover IA, IIA, IB, IIB or IIIB. We are interested in computing, for example, γ ∈ (0, 1]
such that |RL| = γ(L + 1), i.e., the proportion between the number of raster points and
the number of integer numbers between 0 and L. Considering problems from Covers type
A, we have that the set of integer conic combinations is, on average, 71% smaller than
L + 1, while the set of raster points is, on average, 31% smaller than the set of integer
conic combinations. For Covers type B these figures are 40% and 33%, respectively. The
difference in the average values of γ for Covers type A and B comes from the facts that:
(i) Covers type B contain only minimum size instances of each class of problems; and (ii)
the sizes of the raster points and integer conic combinations sets are invariant with respect
to the units of measurement of the problem.

The aim of the next experiment is to determine the influence of the depth limit N in
the recursion of the Five-block Algorithm. The same solutions for all problems of Cover
IA, IIA, IB, IIB and IIIB were found using N ≥ 4, while lower quality solutions were found
using N = 1, 2, 3. Contrary to the observation in [21], the runtime decreases for increasing
values of N , the best results being obtained for N = ∞, i.e., no limit in the recursion
depth. This is a consequence of the control of recursion depth incorporated in the present
work (to avoid multiple resolutions of the same subproblem). The tendency is that for
large values of N the depth limit has no influence in the resolution of the subproblems.
Saving this information avoids multiple resolutions of the same subproblem, even when it
appears in different recursion levels.

Table 1 compares the computer runtimes (in seconds) between the original Five-block
Algorithm in [21, 22] and its refined version described in Section 3. To evaluate the
influence of each improvement in the overall behaviour of the refined method, the table
shows from the third to the sixth column the performance of the refined method without
the Barnes’s upper bound, without the generation of only non-symmetric cuts, without the
proper indexation for the usage of raster points and without the raster points, respectively.
For example, note in the second row that the original version of the Five-block Algorithm
uses 114.64 seconds (column 2) to solve all the problems in Cover IB, while the refined
version presented here uses 4.51 seconds (column 7) to solve the same problems. Note
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also that the deterioration of the algorithm performance when none of the improvements
is used (column 2) is sensitive.

Runtimes (in seconds)

Data set
Original
version
[21, 22]

Without
Barnes’s
bound

Without
generating only
non-symmetric

cuts

Without proper
indexation for
raster points

Without
raster
points

Full
improved
version

Cover IA 32.61 2.74 2.90 8.34 7.23 2.54
Cover IB 114.64 4.84 6.46 15.44 20.19 4.51
Cover IIA 9176.43 324.71 251.91 1049.54 867.22 200.48
Cover IIB 30233.11 775.51 793.97 787.29 3771.49 598.50
Cover IIIB 976871.02 18790.04 16897.56 76215.44 98467.22 13780.30

Table 1: Performance of the Five-block Algorithm. The table shows a comparison between
the original version presented in [21, 22] (column 2) and the improved version presented
in the present work (column 7). Moreover, it also shows the influence of each new feature
in the full improved version (columns 3 to 6).

Table 2 compares the runtimes between the original L-Algorithm in [17] with the inte-
ger conic combinations (i.e., without raster points) and its refined version with the raster
points as described in Section 4. Note that the reduction of the runtimes is substantial.
(The original L-Algorithm was not used to solve problems in Cover IIIB as it would take
a few months of computer runtime.)

L-Algorithm with raster points

Data set
Runtimes (in seconds)

Total Average Standard deviation Min Max
Cover IA 4003.09 0.48 0.27 0.00 1.43
Cover IB 3754.65 0.47 0.28 0.00 1.64
Cover IIA 74292.08 1.77 2.22 0.00 21.34
Cover IIB 98414.81 2.42 2.72 0.00 24.26
Cover IIIB 2096308.86 21.38 22.75 0.00 167.44

L-Algorithm without raster points

Data set
Runtimes (in seconds)

Total Average Standard deviation Min Max
Cover IA 6561.17 0.79 1.10 0.00 16.82
Cover IB 8844.76 1.13 1.74 0.00 23.81
Cover IIA 1452125.78 34.71 63.38 0.00 761.73
Cover IIB 2057429.27 50.66 81.19 0.00 836.60
Cover IIIB – – – – –

Table 2: Comparison of the performances of the L-Algorithm with and without raster
points. Using raster points, the method is around 20 times faster (Cover IIA and IIB).
Note that the usage of the raster points in an efficient way was possible due to using the
simple-but-effective indexation suggested in [6].

Table 3 presents the performance of the Recursive Partitioning Algorithm. The re-
ductions of the runtimes, when compared with only applying the L-Algorithm, are very
large. For example, note that the average runtime to solve each instance of data set Cover
IIB reduces from 2.42 seconds (Table 2) to 0.71 seconds (Table 3). The table also shows
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that the Recursive Partitioning Algorithm consumes, on average, less than one second for
solving an instance of the data sets Cover IA, IB, IIA and IIB; and it consumes, on aver-
age, less than eight seconds to solve an instance of the data set Cover IIIB. On the other
hand, the Recursive Partitioning Algorithm uses a little less than three minutes to solve
the most time-consuming problem of all the data sets. These times are very reasonable
for a method conjectured (although not proven) to be optimal. Therefore, it is fair to
say that, while the Tabu Search approach introduced in [1] runs faster than the Recursive
Partitioning Algorithm, the latter finds better quality solutions in some hard problems of
the data set Cover IIIB. The stopping criterion of the Tabu Search method is based on
the number of iterations and the authors in [1] show some empirical relationships between
the number of iterations of the method and the quality of the obtained solution. Thus, it
is possible that using more iterations, the Tabu Search method would find better quality
solutions.

Recursive Partitioning Algorithm

Data set
Runtimes (in seconds)

Total Average Standard deviation Min Max
Cover IA 28.94 0.00 0.02 0.00 0.65
Cover IB 150.54 0.01 0.06 0.00 0.87
Cover IIA 6871.80 0.16 0.92 0.00 19.39
Cover IIB 29200.13 0.71 1.95 0.00 22.98
Cover IIIB 745602.23 7.60 17.43 0.00 164.72

Table 3: Performance of the Recursive Partitioning Algorithm. The method is around 3
times faster than the L-Algorithm with raster points and around 60 times faster than the
L-Algorithm without raster points, as introduced in [17].

The Recursive Partitioning Algorithm optimally solved all the problems in Cover IA,
IIA, IB and IIB, as well as 97,046 (over a total of 98,016) of the instances in Cover
IIIB - the solutions of the remaining 970 examples are not proven optimal1. It is worth
mentioning that for 116 instances out of 98,016, the Recursive Partitioning Algorithm
improved the best solution found by the tabu search algorithm in [1]. For the remaining
97,900 instances, the solutions of both algorithms were the same.

6.2 Real cases of a woodpulp stowage problem

In this section we analyze the results obtained by applying the Recursive Partition-
ing Algorithm to solve practical examples of the woodpulp stowage problem in Brazilian
ports. These examples are detailed in [27, 31]. As mentioned, the problem consists of
determining the maximum number of stowed units of woodpulp into holds of dedicated
maritime ships. Basically, this problem (essentially three-dimensional) can be reduced to

1The optimality certificate of the 97,046 problems of Cover IIIB comes from the fact of having reached
the upper bounds presented in Cover IIIB. On the other hand, an optimality certificate for other 245
problems of Cover IIIB was obtained by solving the integer programming formulation [21, 17] using CPLEX
7.0. Then, up to the present moment (August 1, 2008), optimality certificates for the solutions found by
the Recursive Partitioning Algorithm was obtained for 97,291 out of the 98,016 instances in Cover IIIB.
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the two-dimensional case due to constraints provided by transport, and becomes similar
to the manufacturer’s pallet loading problem.

Table 4 presents, for each instance data (L, W, l, w), the solutions obtained by the Re-
cursive Partitioning Algorithm. The first half of the table shows the solutions obtained
in phase 1. When the Five-block Algorithm did not give a certificate of optimality, the
second half of the table shows the solution obtained in phase 2 by the L-Algorithm. Note
that this data set involves packings of up to 341 units. For all examples, the Recursive
Partitioning Algorithm was able to find solutions at least as good as the solutions obtained
by the method of Lagrangean relaxation with clusters in [27, 31]. In the examples marked
in the table with an asterisk, the Recursive Partitioning Algorithm produced better solu-
tions than the ones in [27, 31], which in turn are better than the stowage plans used in
practice. Figure 10 depicts the obtained improved stowage plans.

In seven problems (namely, problems 1, 5, 6, 7, 11, 13 and 14) out of the fifteen
woodpulp stowage problems, an optimality certificate was given by phase 1 of the Recursive
Partitioning Algorithm. In another five problems (namely, problems 2, 3, 4, 8 and 9),
an optimality certificate was obtained comparing the solution given by the Recursive
Partitioning Algorithm with the Barnes’s upper bound of their minimum size instance2.
For the remaining problems (namely, problems 10, 12 and 15), an optimality certificate
was obtained by solving the relaxation of an integer programming formulation [21, 17]
using CPLEX 7.0. Therefore, the solutions obtained for all fifteen problems are proven to
be optimal.

It is worth mentioning that the RAM memory of the present computational environ-
ment was enough to use four-dimensional arrays to store the information related to the
subproblems of all the pallet loading problems in the cover sets. On the other hand,
memory was not enough for the large woodpulp stowage problems. Considering the eight
problems in which phase 2 of the Recursive Partitioning Algorithm was activated, in five
of them a four-dimensional array was used and in the other three (namely, problems 9, 10
and 12) a three-dimensional array was used.

7 Concluding remarks

This study dealt with the problem of packing, orthogonally and without overlapping,
identical rectangles in a rectangle. This problem appears in different logistics settings,
such as the loading of boxes onto pallets, the arrangements of pallets in trucks and the
stowing of cargo in ships. An effective two-phase recursive partitioning approach, com-
bining improved versions of a recursive five-block heuristic and an L-approach for packing
rectangles into larger rectangles and L-shaped pieces, was presented. The combined ap-
proach was able to rapidly find the optimal solutions of all instances of the well-known
manufacturer’s pallet loading problem sets Cover I and II. It was also effective for solv-

2The execution of phase II of the Recursive Partitioning Algorithm could have been avoided if we had
computed this upper bound at the beginning of phase I. With this modification, the CPU time of the
Recursive Partitioning Algorithm would have been, for problems 2, 3, 4, 8 and 9, the CPU time of phase
I reported in Table 4.
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Problem Recursive Partitioning Algorithm

ID (L, W, l, w)
Phase 1 - Five-block Algorithm Phase 2 - L-Algorithm
CPU Time (secs.) Solution CPU Time (secs.) Solution

1 (2296, 1230, 136, 94) 0.12 219 – –
2 (2536, 1312, 144, 84) 3.41 273 1036.31 273
3 (2252, 1470, 144, 84) 4.43 271 1339.59 271
4 (1470, 1458, 144, 84) 0.95 175 144.48 175
5 (2296, 1230, 135, 92) 0.00 226 – –
6 (1804, 1230, 137, 95)∗ 0.33 169 – –
7 (2466, 1230, 137, 95) 0.01 231 – –
8 (1804, 1750, 137, 95)∗ 14.85 241 894.51 241
9 (2426, 1230, 137, 95) 3.33 227 1702.64 227

10 (2530, 1320, 137, 95)∗ 3.40 255 1455.89 255
11 (2560, 1610, 143, 84)∗ 24.42 341 – –
12 (2625, 1600, 137, 95)∗ 8.41 320 7996.65 320
13 (1838, 1600, 137, 95)∗ 6.70 224 – –
14 (2100, 1600, 144, 84) 0.00 277 – –
15 (1600, 1230, 137, 95) 1.21 147 50.81 147

Table 4: Recursive Partitioning Algorithm for solving practical examples of the woodpulp
stowage problem in Brazilian ports [27, 31]. In six out of the fifteen cases, better solutions
were found. However, all the best solutions were found by the Five-block Algorithm (phase
1) of the Recursive Partitioning Algorithm.

ing the instances of problem set Cover III and practical examples of a woodpulp stowage
problem, if compared to other methods from the literature.

Possible refinements of the approach would be the use of more powerful upper bounds,
e.g. based on linear programming or Lagrangean relaxation of a mathematical program-
ming model for the problem. To cope with large scale problems, the recursions of the
approach could be modified to consider discarding non-promising paths (subdivisions),
based on the lower and upper bound information, as in the and/or-graph approach in [3].
Another interesting perspective for future research is to extend the approach to deal with
the packing of different rectangles in a rectangle, i.e. a more general case of non-guillotine
packing or cutting.

The current computer implementation of the combined recursive partitioning approach
(including the source code in C/C++ language) and the data sets are available for bench-
marking purposes at http://www.ime.usp.br/∼egbirgin/packing/.

Acknowledgement: The authors would like to thank Dr. W. F. Mascarenhas for his
help to prove Lemmas A.1 and A.2 an anonymous referee for his/her useful comments and
suggestions.
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Instance (1804, 1230, 137, 95) with 169 boxes Instance (1804, 1750, 137, 95) with 241 boxes

Instance (2530, 1320, 137, 95) with 255 boxes Instance (2560, 1610, 143, 84) with 341 boxes

Instance (2625, 1600, 137, 95) with 320 boxes Instance (1600, 1230, 137, 95) with 147 boxes

Figure 10: Six improved solutions found by the Recursive Partitioning Algorithm out of the
fifteen practical examples of the woodpulp stowage problem in Brazilian ports presented
in [27, 31].

24



References

[1] R. Alvarez-Valdes, F. Parreno and J. M. Tamarit, A tabu search algorithm for the
pallet loading problem, OR Spectrum 27, pp. 43–61, 2005.

[2] R. Alvarez-Valdes, F. Parreno and J. M. Tamarit, A Branch-and-Cut Algorithm for
the Pallet Loading Problem, Computers and Operations Research 32, pp. 3007–3029,
2005.

[3] M. Arenales and R. Morabito, An and/or-graph approach to the solution of two-
dimensional non-guillotine cutting problems, European Journal of Operational Re-
search 84, pp. 599–617, 1995.

[4] R. Balasubramanian, The pallet loading problem: A survey, International Journal of
Production Economics 28, pp. 217–225, 1992.

[5] F. W. Barnes, Packing the maximum number of m×n tiles in a large p× q rectangle,
Discrete Mathematics 26, pp. 93–100, 1979.

[6] E. G. Birgin, R. Morabito and F. H. Nishihara, A note on an L-approach for solv-
ing the manufacturer’s pallet loading problem, Journal of the Operational Research
Society 56, pp. 1448–1451, 2005.

[7] E. Bischoff and W. B. Dowsland, An application of the micro to product design and
distribution, Journal of the Operational Research Society 33, pp. 271–280, 1982.

[8] L. Brunetta and P. Gregoire, A general purpose algorithm for three-dimensional pack-
ing, Informs Journal on Computing 17, pp. 328–338, 2005.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms,
Second Edition, The MIT Press and McGraw-Hill, Cambridge, 2001.

[10] K. A. Dowsland, Determining an upper bound for a class of rectangular packing
problems, Computers and Operations Research 12, pp. 201–205, 1985.

[11] K. A. Dowsland, An exact algorithm for the pallet loading problem, European Journal
of Operational Research 84, pp. 78–84, 1987.

[12] K. A. Dowsland, A combined database and algorithmic approach to the pallet-loading
problem, Journal of the Operational Research Society 38, pp. 341–345, 1987.

[13] K. A. Dowsland and W. B. Dowsland, Packing problems, European Journal of Oper-
ational Research 56, pp. 2–14, 1992.

[14] H. Dyckhoff, A Typology of Cutting and Packing Problems, European Journal of
Operational Research 44, pp. 145–159, 1990.

[15] A. Herbert and K. A. Dowsland, A family of genetic algorithms for the pallet loading
problem, Annals of Operations Research 63, pp. 415–436, 1996.

25



[16] A. Letchford and A. Amaral, Analysis of upper bounds for the pallet loading problem,
European Journal of Operational Research 132, pp. 582–593, 2001.

[17] L. Lins, S. Lins and R. Morabito, An L-approach for packing (l, w)-rectangles into
rectangular and L-shaped pieces, Journal of the Operational Research Society 54, pp.
777–789, 2003.

[18] K. Maing-Kyu and G. Young-Gun, A fast algorithm for two-dimensional pallet loading
problems of large size, European Journal of Operational Research 134, pp. 193–200,
2001.

[19] G. H. A. Martins, Packing in two and three dimensions, Ph.D. Dissertation, Naval
Postgraduate School, CA, 2003.

[20] G. H. A. Martins and R. F. Dell, The minimum size instance of a pallet loading
problem equivalence class, European Journal of Operational Research 179, pp. 17–26,
2007.

[21] R. Morabito and S. Morales, A simple and effective recursive procedure for the man-
ufacturer’s pallet loading problem, Journal of the Operational Research Society 49,
pp. 819–828, 1998.

[22] R. Morabito and S. Morales, A simple and effective recursive procedure for the manu-
facturer’s pallet loading problem (49, pp. 819–828, 1998), Journal of the Operational
Research Society 50, pp. 876–876, 1999.

[23] R. Morabito, S. Morales and J. A. Widmer, Loading optimization of palletized prod-
ucts on trucks, Transportation Research E36, pp. 285–296, 2000.

[24] R. Morabito and R. Farago, A Tight Lagrangean Relaxation Bound for the Manufac-
turer’s Pallet Loading Problem, Studia Informatica Universalis 2, pp. 57–76, 2002.

[25] J. Nelißen, How to use the structural constraints to compute an upper bound for the
pallet loading problem, European Journal of Operational Research 84, pp. 662–680,
1995.

[26] V. Pureza and R. Morabito, Some Experiments with a Simple Tabu Search Algorithm
for the Manufacturer’s Pallet Loading Problem, Computers and Operations Research
33, pp. 804–819, 2006.

[27] G. M. Ribeiro and L. A. N. Lorena, Optimizing the woodpulp stowage using La-
grangean relaxation with clusters, Journal of the Operational Research Society 59,
pp. 600-606, 2008.

[28] G. Scheithauer, Equivalence and dominance for problems of optimal packing of rect-
angles, Ricerca Operativa 27, pp. 3–34, 1997.

[29] G. Scheithauer and J. Terno, The G4-Heuristic for the Pallet Loading Problem, Jour-
nal of the Operational Research Society 47, pp. 511–522, 1996.

26



[30] G. Scheithauer and G. Sommerweiss, 4-block Heuristic for the Rectangle Packing
Problem, European Journal of Operational Research 108, pp. 509–526, 1998.

[31] D. R. Sirtoli, G. M. Ribeiro and L. A. N. Lorena, Estivagem de unidades de celu-
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A Some raster points properties

Let (L, W, l, w) be a packing problem. Let SL and SW be its sets of integer conic
combinations and RL and RW be its sets of raster points.

Lemma A.1 Let x ∈ RL and y ∈ SL such that x ≥ y. Then, 〈x−y〉SL
= 〈x−y〉RL

∈ RL.

Proof: Since x ∈ RL, there is z ∈ SL such that x = 〈L− z〉SL
. We claim that 〈x−y〉SL

=
〈L−z−y〉SL

. Note that this implies the thesis, as 〈L−(z+y)〉SL
∈ RL because z+y ∈ SL

since the sum s of any pair of elements in SL belongs to SL provided that s ≤ L. But
s ≤ L is implied by L − s = L − z − y ≥ 〈L − z〉SL

− y = x − y ≥ 0. To show that
〈x− y〉SL

= 〈L− z − y〉SL
, note that:

(a) x = 〈L− z〉SL
=⇒ x ≤ L− z =⇒ x− y ≤ L− z − y =⇒ 〈x− y〉SL

≤ 〈L− z − y〉SL
.

(b) By definition of 〈L− z − y〉SL
, there are r1 and s1 such that

(i) r1l + s1w = 〈L− z − y〉SL
,

(ii) r1, s1 ≥ 0, and

(iii) r1l + s1w ≤ L− z − y.

Since y ∈ SL, there are ry ≥ 0 and sy ≥ 0 such that y = ryl+syw. Therefore, by (iii),
we conclude that (r1+ry)l+(s1+sy)w ≤ L−z. Then, since x = max{rl+sw | r, s ≥
0, rl + sw ≤ L − z}, we have that x ≥ (r1 + ry)l + (s1 + sy)w = r1l + s1w + y.
Hence, x − y ≥ r1l + s1w. Thus, by definition of 〈x − y〉SL

, we conclude that
〈x− y〉SL

≥ r1l + s1w and (i) shows that 〈x− y〉SL
≥ 〈L− z − y〉SL

.

Items (a) and (b) imply that 〈x− y〉SL
= 〈L− z − y〉SL

and the proof is complete. �

Lemma A.2 For all x ∈ RL, 〈L− 〈L− x〉SL
〉SL

= x.

Proof: Let x ∈ RL. We first show that x ≤ 〈L−〈L−x〉SL
〉SL

. First note that 〈L−x〉SL
≤

L− x imply that
x ≤ L− 〈L− x〉SL

. (8)
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Since 〈L − 〈L − x〉SL
〉SL

= max{u ∈ SL | u ≤ L − 〈L − x〉SL
}, by x ∈ RL ⊆ SL and (8),

we have x ≤ 〈L− 〈L− x〉SL
〉SL

. Now, we show that x ≥ 〈L− 〈L− x〉SL
〉SL

. By x ∈ RL,
we have x = 〈L− v〉SL

for some v ∈ SL. Since x = 〈L− v〉SL
≤ L− v, we have v ≤ L− x.

Therefore, as v ∈ SL, we have
v ≤ 〈L− x〉SL

. (9)

Then, by (9), L−〈L−x〉SL
≤ L−v and, in consequence, 〈L−〈L−x〉SL

〉SL
≤ 〈L−v〉SL

= x.
�

Lemma A.3 Let x ∈ SL and x′ = ⌈x⌉RL
. Then, 〈L− x′〉SL

= 〈L− x〉SL
.

Proof: If x ∈ RL then x′ = x and there is nothing to prove. Suppose that x /∈ RL. Since
x < x′, we have that L − x′ < L − x and, thus, 〈L − x′〉SL

≤ 〈L − x〉SL
. Suppose, by

contradiction, that 〈L − x′〉SL
< 〈L − x〉SL

. We show that there exists a raster point r,
x < r < x′, contradicting the definition of x′. Let t = 〈L− x〉SL

. Then,

L− x′ < t ≤ L− x. (10)

By the first inequality in (10), L − t < x′ and, thus, r = 〈L − t〉SL
< x′. By the second

inequality in (10), x ≤ L− t and, since x ∈ SL, x ≤ r. However, r ∈ RL, by definition of
RL, and x /∈ RL. Thus, x < r. Therefore, x < r < x′. �

Lemma A.4 Let x1, x2 ∈ SL such that x1 ≤ x2 and let x′
1 = ⌈x1⌉RL

and x′
2 = ⌈x2⌉RL

.
Then, 〈x2 − x1〉SL

≤ 〈x′
2 − x′

1〉SL
.

Proof: The proof of this statement is divided in three cases.

Case 1: x1 ∈ RL. In this case we have x′
1 = x1. Then x2 − x1 ≤ x′

2 − x′
1 and

〈x2 − x1〉SL
≤ 〈x′

2 − x′
1〉SL

follows trivially.

Case 2: x1 /∈ RL and x2 ∈ RL. Suppose, by contradiction, that 〈x2−x1〉SL
> 〈x′

2−x′
1〉SL

.
So, t = 〈x2 − x1〉SL

∈ SL is such that x′
2 − x′

1 = x2 − x′
1 < t ≤ x2 − x1. Subtracting

x2 and multiplying by −1 all terms, we have x′
1 > x2 − t ≥ x1. Since x1 ∈ SL, we

have x′
1 > 〈x2 − t〉SL

≥ x1. Since x2 ∈ RL and t ∈ SL, by Lemma A.1, we have that
r = 〈x2 − t〉SL

∈ RL. However, x1 /∈ RL. Thus, x′
1 > r > x1, which contradicts the

definition of x′
1.

Case 3: x1, x2 /∈ RL. Suppose, by contradiction, that 〈x2 − x1〉SL
> 〈x′

2 − x′
1〉SL

. Thus,
there exists t ∈ SL such that x′

2 − x′
1 < t ≤ x2 − x1. Subtracting x′

2 and multiplying
by −1 all terms, we have that x′

1 > x′
2 − t ≥ (x′

2 − x2) + x1 > x1. Since x1 ∈ SL,
x′

1 > 〈x′
2− t〉SL

≥ x1. Since x′
2 ∈ RL and t ∈ SL, by Lemma A.1, 〈x′

2− t〉SL
∈ RL. By the

fact that x1 /∈ RL, we have x′
1 > 〈x′

2 − t〉SL
> x1, which contradicts the definition of x′

1.
�
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