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Abstract

Automatic differentiation is used for the solution of optimal control problems.
Original problem is reduced to a nonlinear programming problem using general Runge-
Kutta integration formulas. Canonical formulas which use a fast automatic differen-
tiation strategy are given to compute derivatives of goal function.

Key words: automatic differentiation, optimal control problem, Runge-Kutta inte-
gration methods.

*Applied Mathematics Department, IMECC-UNICAMP, CP 6065, CEP 13081-970, Campinas - SP -
Brazil (ernesto@ime.unicamp.br). Work sponsored by FAPESP (Grant 95/2452-6).

fComputing Centre of Russian Academy of Sciences, 40 Vavilov Street, 117967 Moscow (evt@ccas.ru).
Work sponsored by Russian Foundation for Basic Research (Grants 96/01-01047 and 96/15-96124) and
FAPESP (Grant 96/6631-5).



1 Introduction

Much attention has been paid to the development of numerical methods for solving optimal
control problems. The most popular approach in this field turned to be the reduction
of the original problem to a nonlinear programming problem (NLP) (see, for example,
[16, 2, 18, 19]). In [3] it was shown that the computation of the gradient in this particular
case is closely related with fast automatic differentiation (FAD) techniques (see [13, 14,
11, 15, 12]). In [4], using generalized FAD expressions, the exact gradient of the objective
functional was derived in a very simple canonical form. The aims of this paper is to show
the application of these canonical formulas to optimal control processes being integrated
by Runge-Kutta family of numerical methods.

In Section 2 of this paper we present the canonical formulas and in section 3 we apply
them to the discrete version of the optimal control problem. Some final remarks are
presented in Section 4.

2 Canonical formulas

The basic optimal control problem can be described as follows. Let a process governed by
a system of ordinary differential equations

T fen, 0,0, To<i<Ty, (1)
where the state function x has its values in R, the control u is an arbitrary piecewise
continuous function of ¢ having its values in a given compact set U C R™* and the vector
of design parameters £ € V' C R™. The solution of (1) is a function z(¢) with initial
condition x(Tp) = xg. In general, the scalars Ty, Tt and vector xg are fixed. If Ty, Ty or
xo must be optimized then we can include them into vector of design parameters &.

The problem is to find a control function u(t) € U and a vector of design parameters
& € V that minimize the cost functional

W (To, Ty, x(Ty), u(Ty), €) (2)

subject to mixed constraints on state, control and vector of design parameters

h(z(t),u(t),€) =0, q(z(t),u(t),&) <0, Ty<t<Ty. (3)

As a rule, this problem is reduced to a mathematical programming problem using
a discretization scheme. Control function u(t) is approximated by a piecewise constant
function in which the accuracy of discretization depends on the problem to be solved.
Sometimes it must be rather high and the software should permit us to provide it. Having
some experience in solving practical problems, we came to the conclusion that very often
the accuracy of integration must be higher than accuracy of founded optimal control.
Therefore, for the sake of simplicity it is possible to assume that control vector u is constant
at each interval of integration. Discretizing system (1) we obtain a N step process in which
functions x and u are naturally represented as vectors



ol = (ol 2T 2k, Wl =l ud Lk,

where x; = x(t;) € R™, u; = u(t;) € R™ and t; = To—i—zz_:lo hpfor0<i<N,0< h; €R
are the discretization steps satisfying

N-1
Z h; = (Tf - TO)v (4)
i=0
z € RN+ e Rrax(N+1) "and o7 means the transposition of vector v. The discrete
version of (1) is split into the N relations

where X; and U; are given sets of variables x; and u;, respectively, and the index j takes
values from 0 to N. At initial step we have Xy = Uy = () and for simplicity we write
xo = F(Xo, Uy, ). The mixed constraints (3) are considered at each grid point

h(zi,ui, &) =0,  q(wg,u;,) <0, 0<i<N (6)

and the discretized optimal control problem for an approximated solution of the original
problem is to minimize

W(TO,Tf,l‘N,UN,f) (7)

with respect to control vector u and vector of design parameters £ and subject to u; € U
for 0 <i < N, ¢ €V and constraints (6).

From (5), fixing control vector u and vector of design parameters £, we obtain the state
vector xn(u,&) and substitute it in the expression W (7o, T, zn,un,§). Then we define
the composite function Q(u,&) = W(To, T, xn(u, ), un,§). For numerical minimization
of this function it is important to know the total derivatives of 2 with respect to u and &
as it allows us to use efficient gradient type minimization algorithms. In [4] it was shown
that, for multistep process (5), formulas to compute total derivatives d€2/du and d€)/d¢
can be obtain as follow.

For each set X; and U; we introduce the sets of indices Q); and K; containing the indices
of all variables z; and u; belonging to the sets X; and Uj, respectively. Then

Qi={jzjeXi}, Ki={j:u; €U}

and we define its conjugate indices sets

Qi={j:rmeX;}, Ki={j:ueU}

The sets @; and K; are the input indices sets at i — th step, while Q; and K; are the
output indices sets at i — th step. Let us define adjoints vectors p; € R™ for 0 < i < N,
total adjoint vector pT = [pd,pl,... . pk] € R">*(N+1) and introduce the new auxiliary
function



N
E($7u7§7p) = W(T(],Tf,.’EN,’LLN7§) + Z F(XZ7 Ulué‘)TpZ (8)
=0

Finally, formulas for the computation of adjoint vectors p; and total derivatives d€)/du
and d€)/d¢ can be written in the following canonical form:

Ty = Epi($7u7§7p)a (9)
pi = E:L‘i(xvuvé.vp) = Wm(TOanaxNauNa + Z F;BZ U]7£ Py, (10)
J€Qi
dQ(u,
% = Eui($7u7§7p) = Wui(T(]quuxNuuNag) + Z Fuz(Xqu]7§)Tp] (11)
! JEK;
and
dQ2(u,
%:Ef(x>u>§>p):Wf(TovaaxNauNa +ZF§ Ujag bj, (12)

where 7 varying from 0 to N and H,, denotes, from now on, the partial derivative of function
H with respect to y, i.e., H, = 0H /0y whereas dH /dy denotes the total derivative of H
with respect to y. We assume that relation (9) defines an explicit process, i.e., at each
1 — th step the input set @); is such that for any k € Q; the inequality k£ < ¢ holds. In this
case, from (10), we have

PN :W$N(T0,Tf,.1‘N,UN,§)- (13)

Note that, considering expression (10), we can conclude that adjoints values p; are partial
derivatives of €2 with respect to state variables x;.

3 Application to Runge-Kutta methods

As a practical application we consider multistep process (5) given by Runge-Kutta family
methods

p_ .
o = F(Xip1, Ui, &) = a2 + hy Y [ f(z])], i=0,...,N—1 (14)
and
e =2 4 Bihif(z]), j=0,...,p—2, i=0,...,N—1, (15)
where «a; are defined for j = 0,...,p—1 and 3; forj:O,...,p 2, ac?_xZ andtozt for
i =0,...,N, auxiliary vectors z] € R", t] =t; + Bj_1h;, u] = u(tj) and z] = (azg,ui,f)
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p Integration Method Values
1 Runge-Kutta order 1 or Euler ap =1
2 | Runge-Kutta order 2 or Modified Euler ag=0a; =1
Bo = 0.5
2 Runge-Kutta order 2 apg =050 =05
Bo=1
4 Runge-Kutta order 4 ag=1/6a1 =1/3az=1/3 a3 =1/6
Bo=05p=050=1
Table 1: Examples of Runge-Kutta family methods.
fori=0,...,Nand j =0,...,p— 1. As we are assuming that control variables u; are
constant into the integration step we have u; = w] and 2z} = (z},u;,€) for i =0,...,N

and 7 =0,...,p— 1. Table 1 shows some examples of Runge-Kutta family methods (see,
for example, [17]).
Applying canonical formulas (9) - (12) to Runge-Kutta definition (14) - (15) we obtain

N—-1p— N-1
E(m,u,g,p) = W(T())va ZN Z Z j+1 4 J—H + Z 2-1—1 pz—l—l (16)
i=0 j=0 =0

and replacing, in (16), 22, ; and 1 for its values in (14) and (15) we arrive to

i
L
3
(&)

E(z,u,&p) = W(To, Ty, 2%)+ [+ 8;hi f (2])]" J“+Z zd+h; Z aj FDN Y. (17)

i

Il
=]
<.

Il
=]

Now, differentiating (17) we obtain

dE(x,u, €,
p = % = Wao (To, Ts, 28) + i + [Bohi foo (D)) 07+ Ys1 + [hilao foo (2))) 0011, (18)

. dE T, U,G,P
Pg = % = Wrz (TO,Tfyz?V) + [ﬂ]hzfrz( )]T J+1 + h; [a]f ( )] leFl’ (19)
2
dE(z,u, &, p) 3 1
TLLED) (13,77, %) +§ Bihafu DV DI+ b Z tifulel P, 020
dE@w8p) _ gy (1, 1y, 29) Y
dupn



and

2

p— p—1

2
= We(To, Ty, 23) + [B5hife(7; nT jH + Z hzz a; fe(z )]]Tp?Jru (22)
j=0 §=0

dE(x7 u) f? p)
dg

3

[\
o
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where i = 0,...,N —1 and j = 1,...,p — 1. Finally, rearranging formulas (18) - (22)
and discarding null derivatives, we arrive to the subroutine for the computation of Q(u, &),
dQ(u, &) /du and d(u, &) /d€. It is necessary to remark that the approach presented above
(formulas (18) - (22)) is simpler and closer to computer implementation than analogous
results given in [2] (pages 379-382). Meanwhile our formulas can be used for wide class of
Runge-Kutta methods. This improvement comes from the application of auxiliary func-
tion (8) and canonical formulas (9) - (12) introduced in [4].

Subroutine 3.1
Set x) « .
For i =0,...,N —1 (increasing loop)
{
For j=0,...,p—2 (increasing loop defined only for p > 2)
{ .
Set y — f(2]),
compute J:ZH =2 + h;Bjy and
compute zl,; =¥, | + hioy.
¥
Set y «— f(zf_l) and
compute a:?Jrl = x?H + hia,_1y.
¥
Compute W (Ty, Ty, 2%).
dE b IS0
Set 7(%2510) — We(To, Ty, 2%),

set E@ulp) Wy (To, Ty, 23) and

dun

set py «— WxN(TO,Tf,z?V).

For i=N —1,...,0 (decreasing loop)
{

Compute dE(ﬂcég,E,p) _ dE(%g,E,p) + h-ozp_1[f5(Zf_1)]Tpi+1,
compute LLEP) — pq, [fute N piga,

du; %
compute v = h;a, 1[f, o 1(2f “HTpis1 and
compute p; = pi41 +v.
For j=p—2,...,0 (decreasing loop defined only for p > 2)
{
Compute y = a;piy1 + B;v,
dE thadh-B) dE IS0, j
(wdgﬁp) ($2‘5p)+ha][f( )Ty,

compute
compute dE(Z’u’E’p) S (Z:i’g’p) + hiaj [fuz(zf)]Ty,

Uq




compute v = h;[f ; (ZZJ)]TZ/ and
compute p; = p; +'v.

}

In subroutine above, y,v € R"* are auxiliary vectors for intermediate computations.
It is important to remark that there is not need to save adjoints values p] of intermediate
variables xf with j # 0. For this reason we use notation p; for adjoints values p? of ).
This kind of implementation is a mixed strategy which try to find an equilibrium between
computational cost and memory storage. It is easy to see that, as W and its partial
derivatives W, W, and W, are being computed together, we should call to a unique
function which compute all of them using reverse mode. This is not the case of function f
and its derivatives which are being computed at different times. For this reason it is not
possible to take advantage of common expressions between f and f,,, f,, and fe. We call
this strategy of hibrid FAD. In this implementation we are sacrificing computational time
to save memory storage.

A particular and important class of control problems are such in which the goal is to
minimize the duration of the process. A possible strategy to handle this situation is to
introduce a new design parameter £¢, define goal function (7) as

W(To, Ty, 2) = (Ty = To)"™s, (23)
i.e, goal function is the duration of controlled process, and rewrite (1) as

da(t)
dt

fl@,u,&) =& f(z,u,8), Top<t<Ty, (24)

0 <™ < +oo. (25)

If we apply subroutine 2.1 to compute the gradient of this particular case it will
compute f two times at the same point. First one to compute f(x,u,&) = €% f(x,u,§)
and the second one to compute f;ng (x,u,&) = f(z,u,&). This problem comes from the
way in which we apply canonical formulas (9) - (12). To solve it we should use, instead
of auxiliary vector y € R"*, a three dimensional array y € RrexNxp (or N X p vectors
y € R"™). In this way f(z]) values will be saved in y] (as (N +1) X p vectors ] € R™ are
being saved) to be used in the computation of f_gng (zf ). This modification comes from the
observation of subroutine 2.1 or from the application of canonical formulas to the following
reformulation of Runge-Kutta family methods:

p—1 )
2 = F(Xig1,Uip1, &) = o + hy Y ;€™ f]], i=0,...,N -1,
=0

e =20 4 Bihiene !, j=0,...,p—2, i=0,...,N—1
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and
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1

This is an special modification for a particular case. In this new approach we are doubling
the storage space in order to avoid the computational cost of evaluate f twice.

4 Conclusions

In this work we show how to apply the methodology introduced in [4] to Runge-Kutta
family of integration methods. An equivalent approach can be applied to other integration
methods like, for example, Newton-Cotes and Adams-Moulton (see [17] and its numerous
references [1, 5, 6, 7, 20]). Initial optimal control problem (1) - (3) is approximated by
discrete process (14) - (15) with constraints (6) and goal function (7). This discrete prob-
lem can be solved by many nonlinear programming methods like augmented Lagrangian,
linearization, Newton’s methods, interior point techniques, etc.. There are many ways to
take into account constraints (6). If we use sequential minimization techniques (as penalty
function methods) then part of these constraints, as for example box constraints, can be
considered explicitly in the optimization process while other constraints can be penalized.
In all cases, rewriting auxiliary function (8), canonical formulas (9) - (12) and subroutine
3.1 are applicable for the computation of total derivatives. Moreover, in the same way,
derivatives of higher order can be computed.
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