
Copyright information to be inserted by the Publishers

AUTOMATIC DIFFERENTIATION AND

SPECTRAL PROJECTED GRADIENT

METHODS FOR OPTIMAL CONTROL

PROBLEMS

ERNESTO G. BIRGIN ∗

Department of Applied Mathematics, IMECC-UNICAMP,
CP 6065, CEP 13081-970, Campinas - SP - Brazil

ernesto@ime.unicamp.br

YURI G. EVTUSHENKO †

Computing Centre of Russian Academy of Sciences,
40 Vavilov Street, 117967 Moscow

evt@ccas.ru

Received 23 April 1998; in final form 4 August 1998

Automatic differentiation and nonmonotone spectral projected gradient techniques are used for
solving optimal control problems. The original problem is reduced to a nonlinear programming one

using general Runge-Kutta integration formulas. Canonical formulas which use a fast automatic
differentiation strategy are given to compute derivatives of the objective function. On the basis
of this approach, codes for solving optimal control problems are developed and some numerical
results are presented.

KEY WORDS: automatic differentiation, spectral projected gradient, nonmonotone line search,
optimal control problem, software for optimal control problems, Runge-Kutta
integration methods

1 INTRODUCTION

Much attention has been paid to the development of numerical methods for solving
optimal control problems. The most popular approach in this field turned out to
be the reduction of the original problem to a nonlinear programming one (see, for
example, [29, 11, 33, 34]). In [12], it was shown that the computation of the gra-
dient in this particular case is closely related to the fast automatic differentiation

∗ Sponsored by FAPESP (Grants 95/2452-6 and 97/12033-6)
† Sponsored by the Russian Foundation for Basic Research (Grants 96/15-96124 and

98/01-00517) and FAPESP (Grant 96/6631-5)

1



2 E. G. BIRGIN AND Y. G. EVTUSHENKO

(FAD) techniques (see [25, 26, 21, 27, 22]). In [13], using generalized FAD expres-
sions, the exact gradient of the objective function of a general multistep process
was derived in a very simple canonical form. One of the aims of this paper is to
show the application of these canonical formulas to optimal control processes be-
ing integrated by the Runge-Kutta family of numerical methods. There are many
papers concerning numerical comparisions between automatic differentiation, finite
differences and symbolic differentiation. See, for example, [1, 2, 6, 7, 21] among
others.

Another objective is to test the behavior of the spectral projected gradient meth-
ods introduced in [5]. These methods combine the classical projected gradient with
two recently developed ingredients in optimization: (i) the nonmonotone line search
schemes of Grippo, Lampariello and Lucidi ([24]), and (ii) the spectral steplength
(introduced by Barzilai and Borwein ([3]) and analyzed by Raydan ([30, 31])). This
choice of the steplength requires little computational work and greatly speeds up
the convergence of gradient methods. The numerical experiments presented in [5],
showing the high performance of these fast and easily implementable methods,
motivate us to combine the spectral projected gradient methods with automatic
differentiation. Both tools are used in this work for the development of codes for
numerical solution of optimal control problems.

In Section 2 of this paper, we apply the canonical formulas to the discrete version
of the optimal control problem. In Section 3, we give a concise survey about spectral
projected gradient algorithms. Section 4 presents some numerical experiments.
Some final remarks are presented in Section 5.

2 CANONICAL FORMULAS

The basic optimal control problem can be described as follows: Let a process gov-
erned by a system of ordinary differential equations be

dx(t)

dt
= f(x(t), u(t), ξ), T0 ≤ t ≤ Tf , (1)

where x : [T0, Tf ]→ IRnx , u : [T0, Tf ]→ U ⊆ IRnu , U compact, and ξ ∈ V ⊆ IRnξ .
Function x is called state, u is the control and ξ is the vector of design parameters.
The solution of (1) is a function x(t) with initial condition x(T0) = x0. In general,
the scalars T0, Tf and vector x0 are fixed. If T0, Tf or x0 have to be optimized,
then we can include them in the vector of design parameters ξ.

The problem is to find a control function u(t) ∈ U and a vector of design param-
eters ξ ∈ V that minimize a cost functional W (T0, Tf , x(Tf ), u(Tf ), ξ) subject to
the mixed constraints on state, control and vector of design parameters:

h(x(t), u(t), ξ) = 0, q(x(t), u(t), ξ) ≤ 0, T0 ≤ t ≤ Tf . (2)

As a rule, this problem is reduced to a mathematical programming one using
a discretization scheme. The control function u(t) is approximated by a piecewise
constant function in which the accuracy of discretization depends on the problem to



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 3

be solved. Sometimes this accuracy should be rather high and the software should
permit us to provide it. Having some experience in solving practical problems, we
came to the conclusion that very often the accuracy of the integration must be
higher than the accuracy of the control function discretization. Therefore, for the
sake of simplicity, it is possible to assume that the control vector u is constant in
each interval of integration. Discretizing system (1), we obtain a N step process in
which functions x and u are naturally represented as vectors,

xT = [xT
0 , xT

1 , . . . , xT
N ] and uT = [uT

0 , uT
1 , . . . , uT

N ],

where xi = x(ti) ∈ IRnx , ui = u(ti) ∈ IRnu and ti = T0 +
i−1
∑

k=0

∆tk for i = 0, 1, . . . , N ,

0 < ∆ti ∈ IR are the discretization steps satisfying

N−1
∑

i=0

∆ti = Tf − T0, (3)

x ∈ IRnx(N+1) and u ∈ IRnu(N+1). The discrete version of (1) is split into the N
relations

xi = F (Xi, Ui, ξ), i = 1, 2, . . . , N, (4)

where Xi and Ui are given sets of variables xj and uj, respectively, and the index
j takes values from 0 to N . At the initial step we have X0 = U0 = ∅ and, for
simplicity, we write x0 = F (X0, U0, ξ). The mixed constraints (2) are considered
at each grid point as

h(xi, ui, ξ) = 0, q(xi, ui, ξ) ≤ 0, i = 0, 1, . . . , N, (5)

and then the discretized optimal control problem, for an approximated solution of
the original problem, can be written as

Minimize W (T0, Tf , xN , uN , ξ)
subject to ui ∈ U, ξ ∈ V

h(xi, ui, ξ) = 0
q(xi, ui, ξ) ≤ 0.

(6)

By fixing vectors u and ξ it is possible to obtain, from (4), the state vector
xN (u, ξ), and define the composite function W(u, ξ) = W (T0, Tf , xN (u, ξ), uN , ξ).
For numerical minimization of this function, it is important to know the total
derivatives of W with respect to u and ξ, since it allows us to use efficient gradient
type minimization algorithms. In [13], it was shown that, for multistep processes
like (4), formulas to compute total derivatives dW/du and dW/dξ can be obtain as
follows.

For each set Xi and Ui we introduce the sets of indices Qi and Ki containing the
indices of all variables xj and uj belonging to the sets Xi and Ui, respectively, i.e.,

Qi = {j : xj ∈ Xi}, and Ki = {j : uj ∈ Ui}.



4 E. G. BIRGIN AND Y. G. EVTUSHENKO

We also define their conjugate indices sets as

Q̄i = {j : xi ∈ Xj} and K̄i = {j : ui ∈ Uj}.

The sets Qi and Ki are the input indices and Q̄i and K̄i are the output indices sets at
the i-th step. Let us introduce the adjoint vectors pi ∈ IRnx for i = 0, 1, . . . , N , the
total adjoint vector pT = [pT

0 , pT
1 , . . . , pT

N ] ∈ IRnx(N+1) and the auxiliary function

E(x, u, ξ, p) = W (T0, Tf , xN , uN , ξ) +
N

∑

i=0

F (Xi, Ui, ξ)
T pi. (7)

Therefore, the formulas for the computation of the adjoint vectors pi and the total
derivatives dW/du and dW/dξ can be written in the following canonical form:

xi = Epi
(x, u, ξ, p) = Fxi

(Xj , Uj , ξ), (8)

pi = Exi
(x, u, ξ, p) = Wxi

(T0, Tf , xN , uN , ξ) +
∑

j∈Q̄i

Fxi
(Xj , Uj, ξ)

T pj , (9)

dW(u, ξ)

dui

= Eui
(x, u, ξ, p) = Wui

(T0, Tf , xN , uN , ξ) +
∑

j∈K̄i

Fui
(Xj , Uj , ξ)

T pj , (10)

dW(u, ξ)

dξ
= Eξ(x, u, ξ, p) = Wξ(T0, Tf , xN , uN , ξ) +

N
∑

j=0

Fξ(Xj , Uj, ξ)
T pj , (11)

for i varying from 0 to N . Here and from now on, Yw denotes the partial derivative
of function Y with respect to w, i.e., Yw = ∂Y/∂w whereas dZ/dw denotes the
total derivative of Z with respect to w. We assume that relation (8) defines an
explicit process, i.e., at each step i the input set Qi is such that for any k ∈ Qi the
inequality k < i holds. In this case, from (9), we have

pN = WxN
(T0, Tf , xN , uN , ξ). (12)

Note that, considering expression (9), we can conclude that the adjoint values pi

are the partial derivatives of W with respect to the state variables xi.
As a practical application, we consider the multistep process (4) given by the

Runge-Kutta family methods defined by











x0
i+1 = F (Xi+1, Ui+1, ξ) = x0

i + ∆ti

M−1
∑

j=0

αjf(zj
i ),

xj+1
i = x0

i + βj∆tif(zj
i ), j = 0, . . . , M − 2,

(13)

for i = 0, . . . , N − 1. Here, x0
i ≡ xi, t0i ≡ ti, tji = ti + βj−1∆ti, uj

i = u(tji ),

zj
i = (xj

i , u
j
i , ξ) and xj

i ∈ IRnx are auxiliary vectors. Since we have assumed that

the control variables ui are constant in the integration step, we have ui = uj
i and



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 5

TABLE 1: Examples of Runge-Kutta family methods.

Integration Method M α β

Runge-Kutta order 1 or Euler 1 α0 = 1

Runge-Kutta order 2 or Modified Euler 2 α0 = 0 α1 = 1 β0 = 0.5

Runge-Kutta order 2 2 α0 = α1 = 0.5 β0 = 1

Runge-Kutta order 4 4
α0 = α3 = 1/6
α1 = α2 = 1/3

β0 = β1 = 0.5
β2 = 1

zj
i = (xj

i , ui, ξ). Table 1 shows some examples of the Runge-Kutta family methods
(see, for example, [32]).

Substituting (13) in (7) we obtain

E(x, u, ξ, p) = W (T0, Tf , z0
N) +

N−1
∑

i=0

M−2
∑

j=0

[x0
i + ∆tiβjf(zj

i )]
T pj+1

i

+

N−1
∑

i=0



x0
i +

M−1
∑

j=0

∆tiαjf(zj
i )





T

p0
i+1,

(14)

and, applying the canonical formulas (8)–(11), we get

p0
i = Wx0

i
(T0, Tf , z0

N) + p1
i + ∆tiβ0fx0

i
(z0

i )T p1
i + p0

i+1 + ∆tiα0fx0

i
(z0

i )T p0
i+1, (15)

pj
i = W

x
j

i

(T0, Tf , z0
N) + ∆tiβjfx

j

i

(zj
i )

T pj+1
i + ∆tiαjfx

j

i

(zj
i )

T p0
i+1, (16)

dE

dui

= Wui
(T0, Tf , z0

N) +

M−2
∑

j=0

∆tiβjfui
(zj

i )
T pj+1

i +

M−1
∑

j=0

∆tiαjfui
(zj

i )
T p0

i+1, (17)

for i = 0, 1, . . . , N − 1 and j = 1, 2, . . . , M − 1, and,

dE

duN

= WuN
(T0, Tf , z0

N), (18)

dE

dξ
= Wξ(T0, Tf , z0

N) +

N−1
∑

i=0

M−2
∑

j=0

∆tiβjfξ(z
j
i )

T pj+1
i +

N−1
∑

i=0

M−1
∑

j=0

∆tiαjfξ(z
j
i )

T p0
i+1.

(19)



6 E. G. BIRGIN AND Y. G. EVTUSHENKO

Finally, rearranging formulas (15)–(19) and discarding the null derivatives, we ar-
rive at Subroutine 2.1 for the computation of W(u, ξ), dW(u, ξ)/du and dW(u, ξ)/dξ.
It is necessary to remark that the approach presented above (formulas (15)–(19))
is simpler and closer to the computer implementation than the analogous results
given in [11] (pp. 379–382). Meanwhile, our formulas can be used for the whole
class of Runge-Kutta methods. This improvement comes from the application of
the auxiliary function (7) and the canonical formulas (8)–(11) introduced in [13].

Subroutine 2.1

Set x0
0 ← x0.

For i = 0, . . . , N − 1 (increasing loop)
For j = 0, . . . , M − 2 (increasing loop defined only for M ≥ 2)

Set y ← f(zj
i ),

compute xj+1
i = x0

i + ∆tiβjy and

compute x0
i+1 = x0

i+1 + ∆tiαjy.
endfor

Set y ← f(zM−1
i ) and

compute x0
i+1 = x0

i+1 + ∆tiαM−1y.
endfor

Compute W (T0, Tf , z0
N ).

Set dE/dξ ←Wξ(T0, Tf , z0
N ),

set dE/duN ←WuN
(T0, Tf , z0

N) and

set pN ← WxN
(T0, Tf , z0

N).
For i = N − 1, . . . , 0 (decreasing loop)

Compute dE/dξ = dE/dξ + ∆tiαM−1fξ(z
M−1
i )T pi+1,

compute dE/dui = ∆tiαM−1fui
(zM−1

i )T pi+1,

compute v = ∆tiαM−1fx
M−1

i

(zM−1
i )T pi+1 and

compute pi = pi+1 + v.
For j = M − 2, . . . , 0 (decreasing loop defined only for M ≥ 2)

Compute y = αjpi+1 + βjv,

compute dE/dξ = dE/dξ + ∆tiαjfξ(z
j
i )

T y,

compute dE/dui = dE/dui + ∆tiαjfui
(zj

i )
T y,

compute v = ∆tifx
j

i

(zj
i )

T y and

compute pi = pi + v.
endfor

endfor

In Subroutine 2.1, y, v ∈ IRnx are auxiliary vectors for intermediate computa-
tions. Observe that there is no need to save adjoint values pj

i of intermediate

variables xj
i , when j 6= 0. For this reason, we use notation pi for adjoint values

p0
i of x0

i . This kind of implementation is a mixed strategy which tries to find an
equilibrium between computational cost and memory storage. It is easy to see that,
as W and its partial derivatives, Wξ, WuN

and WxN
, are being computed together,

we should call for a unique function which computes all of them using the reverse



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 7

mode. This is not the case of function f and its derivatives, which are being com-
puted at different steps. For this reason, it is not possible to take advantage of
common expressions between f and fxi

, fui
and fξ. We call this strategy hibrid

FAD. In this implementation we are sacrificing computational time to save memory
storage.

A particular and important class of control problems is when the goal is to
minimize the duration of the process. A possible strategy to handle this situation
is to introduce a new design parameter ξnξ , define the goal function in (6) as

W (T0, Tf , z0
N ) = (Tf − T0)ξ

nξ , (20)

and rewrite (1) as

dx(t)

dt
= f̄(x, u, ξ) = ξnξf(x, u, ξ), T0 ≤ t ≤ Tf , (21)

0 ≤ ξnξ < +∞. (22)

If we use Subroutine 2.1 to compute the gradient of (20), f will be computed
twice at the same point: f̄(x, u, ξ) = ξnξf(x, u, ξ) and f̄ξ

nξ (x, u, ξ) = f(x, u, ξ). To
overcome this problem, we should use, instead of the auxiliary vector y ∈ IRnx ,
a three-dimensional array y ∈ IRnx×N×M (or NM vectors yj

i ∈ IRnx). In this

way the values of f(zj
i ) will be saved in yj

i and then used in the computation

of f̄ξ
nξ (zj

i ). This modification results from the observation of Subroutine 2.1 or
from the application of the canonical formulas to the following reformulation of the
Runge-Kutta family methods:



















f j
i = f(zj

i ), j = 0, . . . , M − 1,

x0
i+1 = F (Xi+1, Ui+1, ξ) = x0

i + ∆ti

M−1
∑

j=0

[αjξ
nξf j

i ],

xj+1
i = x0

i + βj∆tiξ
nξf j

i , j = 0, . . . , M − 2,

(23)

for i = 0, . . . , N − 1. This is a special modification for a particular case. In this
new approach we are doubling the storage space in order to avoid the computa-
tional cost of evaluating f twice. To show how to use the methodology, we will
use Subroutine 2.1 for all the problems in the numerical experiments presented in
Section 4.

3 NONMONOTONE SPECTRAL PROJECTED GRADIENT METHODS

The nonmonotone spectral gradient-projection algorithms have been introduced
in [5]. These methods combine the classical projected gradient with two recently
developed ingredients in optimization: (i) the nonmonotone line search schemes
developed by Grippo, Lampariello and Lucidi ([24]) for Newton’s method and (ii)
the spectral steplength, introduced by Barzilai and Borwein ([3]) and analyzed by
Raydan ([30, 31]). In this section, we reproduce the definition of both versions of



8 E. G. BIRGIN AND Y. G. EVTUSHENKO

spectral projected gradient methods. The first one (SPG1 from now on) uses the
classical projected gradient as a curvilinear search path. The second one (SPG2
from now on) uses, in order to avoid additional trial projections during the one-
dimensional search process, the feasible spectral projected gradient as a search
direction. These methods apply to problems like

minimize ϕ(x)
subject to x ∈ S,

(24)

where S is a closed convex set in IRn. Throughout this section we assume that ϕ
is defined and has continuous partial derivatives in an open set that contains S.

Given z ∈ IRn, we define P (z) as the orthogonal projection of z onto S. We
denote g(x) = ∇ϕ(x). The algorithms use an integer K ≥ 1, a small parame-
ter λmin > 0, a large parameter λmax > λmin, a sufficient decrease parameter
γ ∈ (0, 1), and safeguarding parameters 0 < σ1 < σ2 < 1. Given λ0 ∈ [λmin, λmax]
and x0 ∈ S, Algorithms 3.1 and 3.2 below, describe how to obtain x∗ such that
‖P (x∗ − g(x∗))− x∗‖2 = 0.

Algorithm 3.1

Set k ← 0.
While (‖P (xk − g(xk))− xk‖2 6= 0)

Compute x+ = P (xk − λkg(xk)) and

set α← λk.

While (ϕ(x+) > max0≤j≤min{k,K−1}{ϕ(xk−j)}+ γ〈x+ − xk, g(xk)〉)
define α ∈ [σ1α, σ2α] and

compute x+ = P (xk − αg(xk)).
endwhile

Set xk+1 ← x+ and

compute sk = xk+1 − xk, yk = g(xk+1)− g(xk) and bk = 〈sk, yk〉.
If (bk ≤ 0) set λk+1 ← λmax

else compute λk+1 = min{λmax, max{λmin, 〈sk,sk〉
bk
}}.

Set k ← k + 1.
endwhile

Set x∗ ← xk.

Algorithm 3.2

Set k ← 0.
While (‖P (xk − g(xk))− xk‖2 6= 0)

Compute dk = P (xk − λkg(xk))− xk,

compute x+ = xk + dk and

set α← 1.
While (ϕ(xk+1) > max0≤j≤min{k,K−1}{ϕ(xk−j)}+ γα〈dk, g(xk)〉)

define α ∈ [σ1α, σ2α] and

compute x+ = xk + αdk.

endwhile



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 9

Set xk+1 ← x+ and

compute sk = xk+1 − xk, yk = g(xk+1)− g(xk) and bk = 〈sk, yk〉.
If (bk ≤ 0) set λk+1 ← λmax

else compute λk+1 = min{λmax, max{λmin, 〈sk,sk〉
bk
}}.

Set k ← k + 1.
endwhile

Set x∗ ← xk.

The computation of α ∈ [σ1α, σ2α] uses a one-dimensional quadratic interpolation.

4 NUMERICAL RESULTS

Our code requires five subroutines implemented in C/C++. The first one, for
the computation of the goal function W and its partial derivatives WxN

, WuN

and Wξ, should use the reverse mode. The second one is used to compute the
equality constraints h and hxi

, hui
and hξ, the third one to compute the inequality

constraints q and its partial derivatives; the forth one computes f ; finally, the last
one computes fxi

, fui
and fξ. Since in our test problems the functions (f and W )

and the constraints (h and q) are simple enough, we decided to write their codes
by hand. In general cases, automatic differentiation codes like ADOL-C ([23]) or
ADIC++ ([6]) should be used. Some parameters are connected to the Runge-Kutta
methods and the integration stepsize. In order to choose the Runge-Kutta method,
there are input parameters M , α and β (see Table 1). Methods listed in that
table are only examples and any other method in the Runge-Kutta family can be
used. Integration stepsize ∆t can be fixed or, as defined in (3), different integration
stepsizes ∆ti can be considered.

The test problems are the ones reported in [20]. We divided the 11 problems into
three groups according to their complexity. The first group includes the simplest
control problems which do not have constraints on final state variables. Problems
with final state constraints belong to the second group. Finally, the third group
contains problems where the objective is to minimize the duration of the process
and there are constraints at the final state. For the reproducibility of our results,
and since the original reference is in Russian, all our final continuous formulations
of the test problems are listed below. A full description of their physical meanings
and optimal controls and trajectories can be found in [20]. It is necessary to remark
that in this kind of optimization problem, which derives from an optimal control
problem, the complexity of the goal function depends not only on the dimension of
the solution, n = nu(N+1)+nξ, but also on the dimensionality of state variables. A
good measure of the complexity of the goal function is nocp = (nx+nu)(N +1)+nξ.
Table 2 presents the groups and the variables n and nocp.

Problem 1.a: (nx = 3, nu = 1, nξ = 0)

f(x(t), u(t), ξ)T = [x1(t), (1−x0(t)2)x1(t)−x0(t)+u0(t), x0(t)2+x1(t)2+u0(t)2], T0 ≤ t ≤ Tf ,



10 E. G. BIRGIN AND Y. G. EVTUSHENKO

x(T0)
T = [3, 0, 0], T0 = 0, Tf = 10,

W (T0, Tf , x(Tf ), u(Tf ), ξ) = x2(Tf ), −1010 ≤ u0(·) ≤ 1010,

and initial control u(·) ≡ 0.

Problem 1.b: (nx = 3, nu = 1, nξ = 0)

f(x(t), u(t), ξ)T = [x1(t), (1−x0(t)2)x1(t)−x0(t)+u0(t), x0(t)2+x1(t)2+u0(t)2], T0 ≤ t ≤ Tf ,

x(T0)
T = [0, 1, 0], T0 = 0, Tf = 5,

W (T0, Tf , x(Tf ), u(Tf ), ξ) = x2(Tf ), −1010 ≤ u(·) ≤ 1010,

and initial control u(·) ≡ 0.

Problem 1.c: (nx = 3, nu = 1, nξ = 0)

f(x(t), u(t), ξ)T = [x1(t), (1−x0(t)2)x1(t)−x0(t)+u0(t), x0(t)2+x1(t)2+u0(t)2], T0 ≤ t ≤ Tf ,

x(T0)
T = [0, 1, 0], T0 = 0, Tf = 5,

W (T0, Tf , x(Tf ), u(Tf ), ξ) = x2(Tf ), −0.8 ≤ u(·) ≤ 0.8,

and initial control u(·) ≡ 0.

Problem 2: Use of catalyst for two successive chemical reactions (nx = 2, nu = 1, nξ = 0)

f(x(t), u(t), ξ)T = [u0(t)(10x1(t)−x0(t)),−u0(t)(10x1(t)−x0(t))−(1−u0(t))x1(t)], T0 ≤ t ≤ Tf ,

x(T0)
T = [1, 0], T0 = 0, Tf = 1,

W (T0, Tf , x(Tf ), u(Tf ), ξ) = x0(Tf ) + x1(Tf ), 0 ≤ u(·) ≤ 1

and initial control u(·) ≡ 0.5.

Problem 3: Chemical reaction between gases (nx = 2, nu = 1, nξ = 0)

f(x(t), u(t), ξ)T = [f0(x(t), u(t), ξ), f1(x(t), u(t), ξ)],

f0(x(t), u(t), ξ) = −2c1x0(t)u0(t)/(2c0 + x1(t)),

f1(x(t), u(t), ξ) = −2f1(x(t), u(t), ξ) − c2u0(t)2(2x1(t)/(2c0 + x1(t)))2, T0 ≤ t ≤ Tf ,

c0 = 1.475 × 10−2, c1 = 1.8725688803 × 107, c2 = 1.2162426427 × 1014,

x(T0)
T = [0.0105, 0.0085], T0 = 0, Tf = 8,

W (T0, Tf , x(Tf ), u(Tf ), ξ) = −100x1(Tf ), 0 ≤ u(·) ≤ 1

and initial control u(·) ≡ 0.

Problem 4: Dolichobrachistochrone problem (nx = 2, nu = 1, nξ = 0)

f(x(t), u(t), ξ)T = [u0(t),
√

(1 + u0(t)2)/x0(t)], T0 ≤ t ≤ Tf ,

x(T0)
T = [3, 0], T0 = 0, Tf = 2,

W (T0, Tf , x(Tf ), u(Tf ), ξ) = x1(Tf ), x0(Tf ) = 10, −1010 ≤ u(·) ≤ 1010

and initial control u(·) ≡ 5.

Problem 5: Rotation of an electrical machine (nx = 3, nu = 1, nξ = 0)

f(x(t), u(t), ξ)T = [x1(t),−(4 + 0.8x1(t)) + u0(t), u0(t)2], T0 ≤ t ≤ Tf ,



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 11

x(T0) = 0nx , T0 = 0, Tf = 2,

W (T0, Tf , x(Tf ), u(Tf ), ξ) = x2(Tf ),

x0(Tf ) = 1, x1(Tf ) = 0, −1010 ≤ u(·) ≤ 1010

and initial control u(·) ≡ 0.

Problem 6: Rocket motion (nx = 5, nu = 2, nξ = 0)

f(x(t), u(t), ξ)T = [x1(t), u0(t), x3(t), u1(t) − 9.81, u0(t)2 + u1(t)2], T0 ≤ t ≤ Tf ,

x(T0)
T = [−1, 0, 0, 0, 0], T0 = 0, Tf = 4,

W (T0, Tf , x(Tf ), u(Tf ), ξ) =
√

x4(Tf ),

x0(Tf ) = x1(Tf ) = x2(Tf ) = x3(Tf ) = 0, −1010

nu
≤ u(·) ≤ 1010

nu

and initial control u(·)T ≡ (0, 1).

Problem 7: (nx = 3, nu = 1, nξ = 1)

f(x(t), u(t), ξ)T = ξ0[x1(t), x2(t), u0(t)], T0 ≤ t ≤ Tf ,

x(T0)
T = [16, 0, 0], T0 = 0, Tf = 1,

W (T0, Tf , x(Tf ), u(Tf ), ξ) = (Tf−T0)ξ, x(Tf ) = 0nx , −1 ≤ u(·) ≤ 1, 0 ≤ ξ0 ≤ 1010,

initial control u(·) ≡ 0 and initial design parameter ξ = 1.

Problem 8: Control of aircraft motion (nx = 4, nu = 2, nξ = 1)

f(x(t), u(t), ξ)T = ξ0[x2(t), x3(t),−x3(t)+u0(t)sin(u1(t)), x2(t)+u0(t)cos(u1(t))], T0 ≤ t ≤ Tf ,

x(T0)
T = [10, 0, 0, 0], T0 = 0, Tf = 5,

W (T0, Tf , x(Tf ), u(Tf ), ξ) = (Tf − T0)ξ,

x(Tf ) = 0nx , 0 ≤ u0(·) ≤ 1, −3.14 ≤ u1(·) ≤ 3.14, 0 ≤ ξ0 ≤ 1010,

initial control u(·) ≡ 0nu and initial design parameter ξ = 1.

Problem 9: Rocket dynamics with minimal duration (nx = 5, nu = 2, nξ = 1)

f(x(t), u(t), ξ)T = ξ0[x1(t), u0(t), x3(t), u1(t) − 9.81, u0(t)2 + u1(t)2], T0 ≤ t ≤ Tf ,

x(T0)
T = [−1, 0, 1, 0, 0], T0 = 0, Tf = 4,

W (T0, Tf , x(Tf ), u(Tf ), ξ) = (Tf − T0)ξ,

x0(Tf ) = x1(Tf ) = x2(Tf ) = x3(Tf ) = 0,
√

x4(Tf ) − 13 = 0,

−1010

nu
≤ u(·) ≤ 1010

nu
, 0 ≤ ξ0 ≤ 1010

initial control u(·)T ≡ [0, 5] and initial design parameter ξ = 1.

Problem 10: Satellite launching (nx = 3, nu = 1, nξ = 1)

f(x(t), u(t), ξ)T = ξ0[x1(t),−x0(t) + x2(t), u0(t)], T0 ≤ t ≤ Tf ,

x(T0)
T = [0.052, 0,−0.145], T0 = 0, Tf = 6.28,

W (T0, Tf , x(Tf ), u(Tf ), ξ) = (Tf−T0)ξ, x(Tf ) = 0nx , −0.3 ≤ u(·) ≤ 0.3, 0 ≤ ξ0 ≤ 1010

initial control u(·) ≡ 0 and initial design parameter ξ = 1.



12 E. G. BIRGIN AND Y. G. EVTUSHENKO

Problem 11: Stopping of a rotating body (nx = 2, nu = 1, nξ = 1)

f(x(t), u(t), ξ)T = ξ0[x1(t), u0(t)], T0 ≤ t ≤ Tf ,

x(T0)
T = [2, 1], T0 = 0, Tf = 8,

W (T0, Tf , x(Tf ), u(Tf ), ξ) = (Tf − T0)ξ, x(Tf ) = 0nx , −1 ≤ u(·) ≤ 1, 0 ≤ ξ0 ≤ 1010

initial control u(·) ≡ 0 and initial design parameter ξ = 1.

In the problem statements, vi is the i-th scalar entrance of vector v = [v0, v1, . . . , vm−1]T ∈
IRm and cm is a constant vector in IRm with all its entrances equal to c ∈ IR.

All the test problems have only equality constraints on final state variables xN

and box type constraints, a ≤ u ≤ b, with a, b ∈ IRnu(N+1). In order to satisfy
the equality constraints h(xN ) = 0, we applied the classical quadratic loss penalty
function strategy: we added the term ρ‖h(xN )‖22 to the objective function of (6)
and solved the box constrained subproblems

minimize W (T0, Tf , xN , uN , ξ) + ρ‖h(xN )‖22,

for increasing values of ρ ∈ {10, 100, 100, . . .} until we get ‖h(x)‖2 ≤ 10−5. In this
case, the computation of h and the partial derivative hxN

is included in the function
for the computation of the penalized goal function. Since the bounds for the control
variables are considered explicitly in the minimization process, the function for the
computation of q, qxi

, qui
and qξ is not necessary. Problems in group 3 were handled

as suggested in (20)–(22). In this way, we have added the bound constraint (22) to
these problems. Sometimes, to avoid local minimizers of the new design parameter
ξnξ , with ξnξ = 0 (excluding the particular case in which the initial state satisfy the
constraints on the final state), it is necessary to introduce a small constant δ ∈ IR
and replace (22) by

0 < δ ≤ ξnξ < +∞. (25)

If ξnξ = δ at the solution, we decrease δ and start the minimization process again.
We report the results of applying this strategy only once, with δ = 10−16 in Prob-
lem 9, and with δ = 0.2 in Problems 10 and 11.

In order to discretize all the test problems, we have used the Fourth-Order Runge-
Kutta method with integration stepsize ∆t = 0.05, except for Problem 2 where we
have used ∆t = 0.03. The stopping criterion was ‖gP (xk)‖2 ≤ ǫ with ǫ = 10−6,
ǫ = 10−5, and ǫ = 10−3, for Groups 1, 2 and 3, respectively.

All the experiments were run in a SPARCstation Sun Ultra 1, with an Ultra-
SPARC 64 bits processor, 167-MHz clock and 128-MBytes of RAM memory. SPG
codes are in C/C++ language and were compiled with g++ compiler (GNU project
C and C++ compiler v2.7) using the optimization compiler option -O4. For the
SPG methods, we used γ = 10−4, λmin = 10−16, λmax = 1016 (except for Problem
1 where we used λmax = 10), σ1 = 0.1, σ2 = 0.9 and λ0 = 1/‖gP (x0)‖2. In order
to select the parameter K, we tested SPG2 in Problem 8, with K varying from 10
to 15. We chose K = 13 because it produced, for Problem 8, the solution with the
smallest ‖h(xN )‖2. However, several tests have shown that the solutions and the
computational efforts do not change substantially for several values of K greater
than 5.



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 13

TABLE 2: Problems sets.

Group Problem n nocp

1.a 201 804
1.b 101 404

1 1.c 101 404
2 31 124
3 161 483

4 41 123
2 5 41 164

6 162 567

7 21 85
8 203 607

3 9 163 568
10 127 509
11 161 484

Tables 3 and 4 show, for problems in Groups 2 and 3, respectively, the perfor-
mance of SPG1 for the solution of each subproblem. Tables 5 and 6 show the
same results for SPG2. We have reported the number of iterations (IT), the num-
ber of function-gradient evaluations (FGE), the number of line searches (LS), the
CPU time in seconds (Time), the best function value (ϕ(x)), the quadratic loss
(‖h(xN )‖22), and the 2-norm of the continuous projected gradient (‖gP (x)‖2). Fi-
nally, Tables 7 and 8 summarize the performance of SPG methods for the complete
set of problems.

In all cases, except for Problems 3 and 9, the solutions encountered coincide, with
negligible differences, with solutions reported in [20]. The difference in the solution
of Problem 3 is due to a possible print error in [20]. Another possibility for these
differences is the choice of different integration methods and stepsizes. With only
one exception, SPG methods found solutions with negligible differences in terms of
function value. In Problem 9, SPG2 found the best solution with ϕ(x) = 0.609295,
while SPG1 found a stationary point with ϕ(x) = 1.705849 (the same value as
reported in [20]). Both methods satisfied the stopping criterion in all cases and
there was no significant difference between their performances.



14 E. G. BIRGIN AND Y. G. EVTUSHENKO

TABLE 3: Intermediate solutions of SPG1 for problems of group 2.

Problem ρ IT FGE LS Time ϕ(x) ‖h(x)‖2

2 ‖gP (x)‖2

101 14 15 0 0.02 2.967166e+00 2.206227e−04 8.462335e−06
102 1 4 1 0.00 2.971137e+00 2.204263e−06 8.020546e−06

4 103 1 5 1 0.00 2.971534e+00 2.204067e−08 8.092395e−06
104 1 6 1 0.00 2.971573e+00 2.204047e−10 8.100691e−06
105 1 7 1 0.00 2.971577e+00 2.204045e−12 8.101532e−06

101 5 6 0 0.00 3.464720e+01 2.706461e−01 8.151036e−06
102 7 8 0 0.00 3.965662e+01 3.123877e−03 1.687929e−07

5 103 6 8 1 0.02 4.022061e+01 3.172508e−05 2.563081e−07
104 6 9 1 0.00 4.027773e+01 3.177458e−07 3.601456e−07
105 6 10 1 0.00 4.028345e+01 3.177954e−09 4.147059e−07
106 6 11 1 0.00 4.028403e+01 3.178004e−11 4.738505e−07

101 9 10 0 0.05 1.961230e+01 6.234586e−04 6.384220e−07
102 12 16 2 0.07 1.962353e+01 6.256737e−06 6.794644e−06

6 103 12 17 2 0.07 1.962465e+01 6.258942e−08 7.262530e−06
104 12 18 2 0.05 1.962477e+01 6.259195e−10 7.598892e−06
105 12 19 2 0.08 1.962478e+01 6.259266e−12 8.043283e−06



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 15

TABLE 4: Intermediate solutions of SPG1 for problems of group 3.

Problem ρ IT FGE LS Time ϕ(x) ‖h(x)‖2

2 ‖gP (x)‖2

101 12092 16004 2715 8.58 7.941602e+00 2.906713e−03 7.837191e−04
102 5404 7279 1163 3.85 7.994073e+00 2.970346e−05 9.570142e−04

7 103 6800 9256 1521 4.97 7.999407e+00 2.974761e−07 7.868055e−04
104 4123 5590 992 3.07 7.999964e+00 4.033835e−09 9.085447e−04
105 2828 3880 746 2.08 8.000033e+00 4.317425e−11 9.928138e−04

101 341 456 60 3.72 1.020345e+01 4.286572e−03 5.798237e−04
102 224 298 35 2.35 1.028079e+01 4.335458e−05 9.658054e−04

8 103 53 63 7 0.50 1.028859e+01 4.342526e−07 9.960121e−04
104 381 570 68 4.50 1.028937e+01 4.342951e−09 9.951110e−04
105 48 62 7 0.53 1.028945e+01 4.343177e−11 9.984938e−04

101 252 488 59 1.85 1.697346e+00 4.244078e−04 7.124376e−04
102 197 322 52 1.28 1.704994e+00 4.324331e−06 2.836419e−04

9 103 77 124 21 0.45 1.705763e+00 4.430674e−08 8.598459e−04
104 168 269 42 1.03 1.705841e+00 4.455920e−10 7.390506e−04
105 86 139 19 0.52 1.705849e+00 4.250948e−12 9.379793e−04

101 31 32 0 0.10 1.256000e+00 5.567425e−04 9.014210e−04
102 20 33 5 0.12 1.256000e+00 5.311064e−04 8.818797e−04

10 103 710 1265 198 3.80 1.418484e+00 3.304439e−05 9.977746e−04
104 3439 6563 903 19.60 1.476615e+00 2.979178e−07 9.773216e−04
105 2136 4221 577 12.55 1.481943e+00 2.957625e−09 9.617200e−04
106 2682 5231 719 15.95 1.482473e+00 2.947335e−11 9.051665e−04

101 557 1046 150 2.80 4.095464e+00 3.271233e−03 8.446307e−04
102 1005 1992 270 5.40 4.155792e+00 3.493484e−05 9.859478e−04

11 103 928 1867 254 5.12 4.162059e+00 3.495614e−07 9.844122e−04
104 998 1964 277 5.30 4.162686e+00 3.580196e−09 9.544532e−04
105 475 910 130 2.48 4.162751e+00 3.621512e−11 9.980898e−04



16 E. G. BIRGIN AND Y. G. EVTUSHENKO

TABLE 5: Intermediate solutions of SPG2 for problems of group 2.

Problem ρ IT FGE LS Time ϕ(x) ‖h(x)‖2

2 ‖gP (x)‖2

101 14 15 0 0.02 2.967166e+00 2.206227e−04 8.462335e−06
102 1 4 1 0.00 2.971137e+00 2.204263e−06 8.020546e−06

4 103 1 5 1 0.02 2.971534e+00 2.204067e−08 8.092395e−06
104 1 6 1 0.00 2.971573e+00 2.204047e−10 8.100691e−06
105 1 7 1 0.02 2.971577e+00 2.204045e−12 8.101532e−06

101 5 6 0 0.00 3.464720e+01 2.706461e−01 8.151036e−06
102 7 8 0 0.00 3.965662e+01 3.123877e−03 1.687929e−07

5 103 6 8 1 0.00 4.022061e+01 3.172508e−05 2.563081e−07
104 6 9 1 0.00 4.027773e+01 3.177458e−07 3.601456e−07
105 6 10 1 0.00 4.028345e+01 3.177954e−09 4.147059e−07
106 6 11 1 0.00 4.028403e+01 3.178004e−11 4.738505e−07

101 9 10 0 0.03 1.961230e+01 6.234586e−04 6.384220e−07
102 12 16 2 0.07 1.962353e+01 6.256737e−06 6.794644e−06

6 103 12 17 2 0.07 1.962465e+01 6.258942e−08 7.262531e−06
104 12 18 2 0.08 1.962477e+01 6.259195e−10 7.598893e−06
105 12 19 2 0.07 1.962478e+01 6.259266e−12 8.043284e−06



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 17

TABLE 6: Intermediate solutions of SPG2 for problems of group 3.

Problem ρ IT FGE LS Time ϕ(x) ‖h(x)‖2

2 ‖gP (x)‖2

101 10278 13437 2508 7.17 7.941438e+00 2.923215e−03 8.404570e−04
102 8467 10812 1820 5.77 7.994078e+00 2.964787e−05 5.415757e−04

7 103 8979 11478 2000 6.10 7.999407e+00 2.969850e−07 9.076313e−04
104 4403 5711 1052 3.12 7.999974e+00 3.943387e−09 9.539757e−04
105 2828 3725 724 1.97 8.000042e+00 4.423599e−11 7.832583e−04

101 578 748 128 5.87 1.020343e+01 4.288731e−03 4.883267e−04
102 386 505 82 4.00 1.028079e+01 4.338337e−05 9.769583e−04

8 103 177 230 35 1.82 1.028859e+01 4.339628e−07 4.413159e−04
104 46 58 8 0.45 1.028937e+01 4.339369e−09 6.674503e−04
105 44 59 8 0.45 1.028944e+01 4.342371e−11 5.973882e−04

101 13836 26253 3500 101.20 6.024155e−01 3.490189e−04 9.798078e−04
102 178 338 51 1.37 6.086081e−01 3.423467e−06 8.323752e−04

9 103 105 200 30 0.82 6.092257e−01 3.573099e−08 8.967019e−04
104 169 330 56 1.33 6.092885e−01 3.762289e−10 9.619322e−04
105 76 159 26 0.65 6.092949e−01 3.852315e−12 9.951342e−04

101 31 32 0 0.10 1.256000e+00 5.567425e−04 9.014210e−04
102 18 23 4 0.07 1.256000e+00 5.319981e−04 8.823535e−04

10 103 842 1338 238 4.03 1.418450e+00 3.310608e−05 9.916578e−04
104 3628 6227 1049 18.82 1.476621e+00 2.980395e−07 9.211830e−04
105 2733 4749 791 14.40 1.481954e+00 2.920001e−09 9.487892e−04
106 2050 3598 589 11.05 1.482480e+00 2.935649e−11 9.673148e−04

101 1102 1915 347 4.93 4.095515e+00 3.288448e−03 7.641996e−04
102 1345 2560 449 6.53 4.155787e+00 3.492347e−05 9.883468e−04

11 103 1144 2204 343 5.67 4.162045e+00 3.526807e−07 9.583805e−04
104 1277 2567 415 6.55 4.162674e+00 3.539575e−09 9.759158e−04
105 1420 2825 433 7.20 4.162737e+00 3.505302e−11 9.864841e−04



18 E. G. BIRGIN AND Y. G. EVTUSHENKO

TABLE 7: Performance of SPG1.

Problem IT FGE LS Time ϕ(x) ‖gP (x)‖2

1.a 434 558 77 2.62 2.141775e+01 2.332212e−07

1.b 87 95 6 0.20 2.621363e+00 6.558450e−07

1.c 43 44 0 0.12 4.340875e+00 4.100793e−07

2 48 50 1 0.02 9.519459e−01 7.612754e−07

3 1 19 1 0.08 −1.958250e+00 4.569610e−08

4 18 37 4 0.02 2.971577e+00 8.101532e−06

5 36 52 4 0.02 4.028403e+01 4.738505e−07

6 57 80 8 0.32 1.962478e+01 8.043283e−06

7 31249 42009 7137 22.55 8.000033e+00 9.928138e−04

8 1047 1449 177 11.60 1.028945e+01 9.984938e−04

9 780 1342 193 5.13 1.705849e+00 9.379793e−04

10 9018 17345 2402 52.12 1.482473e+00 9.051665e−04

11 3963 7779 1081 21.10 4.162757e+00 9.986710e−04

TABLE 8: Performance of SPG2.

Problem IT FGE LS Time ϕ(x) ‖gP (x)‖2

1.a 500 654 96 3.43 2.141775e+01 3.202524e−07

1.b 87 95 6 0.22 2.621363e+00 6.557571e−07

1.c 43 44 0 0.12 4.340875e+00 4.100793e−07

2 49 52 2 0.03 9.519459e−01 6.363696e−07

3 1 12 1 0.08 −1.997609e+00 4.456312e−08

4 18 37 4 0.06 2.971577e+00 8.101532e−06

5 36 52 4 0.00 4.028403e+01 4.738505e−07

6 57 80 8 0.32 1.962478e+01 8.043284e−06

7 34955 45163 8104 24.13 8.000042e+00 7.832583e−04

8 1231 1600 261 12.59 1.028944e+01 5.973882e−04

9 14364 27280 3663 105.37 6.092949e−01 9.951342e−04

10 9302 15967 2671 48.47 1.482480e+00 9.673148e−04

11 6288 12071 1987 30.88 4.162737e+00 9.812947e−04



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 19

5 CONCLUSIONS

In this work we have shown how to apply the methodology introduced in [13] to the
Runge-Kutta family of integration methods. An equivalent approach can be applied
to other integration methods like, for example, Newton-Cotes and Adams-Moulton
(see [32] and its numerous references [8, 14, 15, 16, 35]). The same remark must be
made with respect to the optimization techniques. Instead of SPG methods, Sub-
routine 2.1 can be combined with other optimization algorithms like TNBOX ([17])
and LANCELOT ([9]), based on trust regions and truncated Newton approach.
See [10] for a comparison between these two codes for box constrained minimiza-
tion and see [5] for a comparison between TNBOX and SPG methods. See also
[31] for a comparison between spectral gradient and conjugate gradient methods
for unconstrained optimization. Moreover, instead of considering penalty function
methods, many other nonlinear programming methods can be used (augmented
Lagrangian, linearization, Newton like methods, interior point techniques, etc.).
There are many ways of taking constraints (5) into account. If we use sequential
minimization techniques (as penalty function methods), part of these constraints
(for example box constraints) can be considered explicitly in the optimization pro-
cess, while other constraints may be penalized. It is worth to mention that, in all
cases above, the auxiliary function (7) and the canonical formulas (8)–(11) can be
used for computing total derivatives and derivatives of any order.

We tested the performance of SPG methods for the solution of optimal control
problems because, as it is said in [5], “It is quite surprising that such a simple tool
can be competitive with rather elaborated algorithms which use extensively tested
subroutines and numerical procedures.” As our experimental results show, spectral
projected gradient methods and automatic differentiation are, in fact, very useful
tools for solving optimal control problems.

Finally, we have presented a set of problems and detailed information about the
performance of SPG methods. This information can be used for future comparisons
in the development of new software for solving optimal control problems. All the
used codes can be requested by e-mail.

ACKNOWLEDGEMENTS

The authors are thankful to Lúcio Tunes Santos for the careful reading of the
manuscript.

REFERENCES

1. B. M. Averick, J. J. Moré, C. H. Bischof, A. Carle and A. Griewank, Computing large sparse
Jacobian matrices using automatic differentiation, SIAM Journal in Scientific Computing
15 (1994), pp. 285–294.

2. M. C. Bartholomew-Biggs, L. Bartholomew-Biggs and B. Christianson, Optimization & auto-
matic differentiation in ADA: some practical experience, Optimization Methods and Software
4 (1994), pp. 47–73.



20 E. G. BIRGIN AND Y. G. EVTUSHENKO

3. J. Barzilai and J.M. Borwein, Two point step size gradient methods, IMA Journal of Nu-
merical Analysis 8 (1988), pp. 141–148.

4. D. Bertsekas, On the Goldstein-Levitin-Polyak gradient projection method, IEEE Transac-
tions on Automatic Control 21 (1976), pp. 174–184.

5. E. G. Birgin, J. M. Mart´inez and M. Raydan, Nonmonotone spectral projected gradient
methods on convex sets, RP 92/97 (Applied Mathematics Department, IMECC-UNICAMP,
Brazil, 1997).

6. E. G. Birgin, Automatic differentiation and applications, PhD Thesis (Applied Mathematics
Department, IMECC-UNICAMP, Brazil, 1998). (in Portuguese).

7. C. H. Bischof and A. Griewank, ADIFOR: A Fortran system for portable automatic differ-
entiation, Preprint MCS-P317-0792 (Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, Illinois, 1992).

8. J. C. Butcher, On Runge-Kutta processes of high order, Journal of Australian Mathematic
Society 4 (1964), pp. 179–194.

9. A. R. Conn, N. I. M. Gould and Ph. L. Toint, Global convergence of a class of trust region
algorithms for optimization with simple bounds, SIAM Journal on Numerical Analysis 25

(1988), pp. 433–460. See also SIAM Journal on Numerical Analysis 26 (1989), pp. 764–767.

10. M. A. Diniz-Ehrhardt, M. A. Gomes-Ruggiero and S. A. Santos, Comparing the numerical
performance of two trust-region algorithms for large-scale bound-constrained minimization,
International Workshop of Numerical Linear Algebra and Optimization (R. J. B. Sampaio
and J. Y. Yuan, Department of Mathematics, Federal University of Paraná, Brazil, 1997),
pp. 23–24. To appear in Investigación Operativa.

11. Y. G. Evtushenko, Numerical Optimization Techniques (Optimization Software Inc., Publi-
cations Division, New York, 1985).

12. Y. G. Evtushenko, Automatic differentiation viewed from optimal control theory, Automatic
Differentiation of Algorithms. Theory, Implementation and Application (A. Griewank and
G. F. Corliss, SIAM, Philadelphia, 1997), pp. 25–30.

13. Y. G. Evtushenko, Computation of exact gradients in distributed dynamic systems, Opti-
mization, Methods and Software 9 (1998), pp. 45-75.

14. E. Fehlberg, New high-order Runge-Kutta formulas with stepsize control for systems of first
and second-order differential equations, Z. Angew. Math. Mech. 44 (1964), T17–T29.

15. E. Fehlberg, New high-order Runge-Kutta formulas with an arbitrary small truncation error,
Z. Angew. Math. Mech. 46 (1964), pp. 1–16.

16. E. Fehlberg, Klassische Runge-Kutta formeln fünfter und siebenter ordnung mit
schrittweiten-kontrolle, Computing 4 (1964), pp. 93–106.

17. A. Friedlander, J. M. Mart´inez and S. A. Santos, A new trust region algorithm for bound
constrained minimization, Applied Mathematics and Optimization 30 (1994), pp. 235–266.

18. A. A. Goldstein, Convex programming in Hilbert space, Bulletin of the American Mathe-
matical Society 70 (1964), pp. 709–710.

19. N. I. Grachev and Y. G. Evtushenko, A library of programs for solving optimal control
problems, USSR Computational Mathematics and Mathematical Physics 19 (1980), pp. 99–
119.

20. N. I. Grachev and A. N. Filkov, Solution of optimal control problems in system DIOS,
(Computing Center of Russian Academy of Sciences, Moscow, 1986) (in Russian).

21. A. Griewank, On automatic differentiation, Mathematical Programming: Recent Develop-
ments and Applications (M. Iri and K. Tanabe, Kluwer Academic Publishers, 1989) pp.
83–108.

22. A. Griewank and G. F. Corliss, Automatic Differentiation of Algorithms. Theory, Imple-
mentation and Application, (A. Griewank and G. F. Corliss, SIAM, Philadelphia, 1991).

23. A. Griewank, ADOL-C. A package for the automatic differentiation of algorithms written in
C/C++, ACM TOMS 22 (1996), pp. 131–167.

24. L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for Newton’s
method, SIAM Journal on Numerical Analysis 23 (1986), pp. 707–716.



FAD AND SPG FOR OPTIMAL CONTROL PROBLEMS 21

25. M. Iri, Simultaneous computation of functions, partial derivatives and estimates of rounding
errors - Complexity and practicality, Japan Journal of Applied Mathematics 1 (1984), pp.
223–252.

26. M. Iri and K. Kubota, Methods of fast automatic differentiation and applications, Research
memorandum RMI, (Department of Mathematical Engineering and Instrumental Physics,
Faculty of Engineering, University of Tokyo, 1987), pp. 87–102.

27. M. Iri, History of automatic differentiation and rounding error estimation, Automatic Dif-
ferentiation of Algorithms. Theory, Implementation and Application (A. Griewank and G.
F. Corliss, SIAM, Philadelphia, 1991), pp. 3–16.

28. E. S. Levitin and B. T. Polyak, Constrained minimization problems, USSR Computational
Mathematics and Mathematical Physics 6 (1966), pp. 1–50.

29. E. Polak, Computation Methods in Optimization (Academic Press, New York and London,
1971).

30. M. Raydan, On the Barzilai and Borwein choice of steplength for the gradient method, IMA
Journal of Numerical Analysis 13 (1993), pp. 321–326.

31. M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained
minimization problem, SIAM Journal on Optimization 7 (1997), pp. 26–33.

32. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer-Verlag Inc., Berlin,
Heidelberg and New York, 1972).

33. K. L. Teo and Z. S. Wu, Computation Methods for Optimizing Distributed Systems (Academic
Press, Orlando, 1984).

34. K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computation Approach to Optimal Control
Problems (Longman Scientific & Technical, England, 1991).

35. E. B. Shanks, Solution of differential equations by evaluation of functions, Mathematical
Computation 20 (1966), pp. 21–38.


