
Outer Trust-Region Method for Constrained Optimization∗

Ernesto G. Birgin † Emerson V. Castelani ‡ André L. M. Martinez ‡

J. M. Mart́ınez ‡

January 24, 2011

Abstract

Given an algorithm A for solving some mathematical problem based on the iterative solution

of simpler subproblems, an Outer Trust-Region (OTR) modification of A is the result of adding a

trust-region constraint to each subproblem. The trust-region size is adaptively updated according

to the behavior of crucial variables. The new subproblems should not be more complex than the

original ones and the convergence properties of the OTR algorithm should be the same as those of

Algorithm A. In the present work, the OTR approach is exploited in connection with the “greediness

phenomenon” of Nonlinear Programming. Convergence results for an OTR version of an Augmented

Lagrangian method for nonconvex constrained optimization are proved and numerical experiments

are presented.

Key words: Nonlinear programming, Augmented Lagrangian method, trust regions.

AMS Subject Classification: 90C30, 49K99, 65K05.

1 Introduction

Penalty and Lagrangian methods for nonconvex constrained optimization may be negatively affected

by the behavior of the objective function f at infeasible points. If this function takes very low values

(perhaps going to −∞) in the non-feasible region, iterates of the subproblem solver may be attracted

by undesirable minimizers, especially at the first outer iterations, and overall convergence fails to occur.

This phenomenon was called ”greediness” in [1], where it was suggested that it may be controlled by

means of a Proximal Augmented Lagrangian approach. In [2] (pages 418–419) the suggested remedy

was to use external penalty functions with exponents bigger than 2. None of these approaches avoids

the effect of f(xk) → −∞ for an infeasible sequence xk. In contrast, the OTR approach introduced in

the present paper is able to eliminate the undesired region at early outer iterations of an Augmented

Lagrangian method, making it possible to find local and global solutions of the original problem. Other

potential applications of OTR are surveyed in [3].

∗This work was supported by PRONEX-CNPq/FAPERJ (E-26/111.449/2010-APQ1), FAPESP (Grants 2006/53768-0

and 2005/57684-2) and CNPq.
†Department of Computer Science IME-USP, University of São Paulo, Rua do Matão 1010, Cidade Universitária, 05508-

090, São Paulo SP, Brazil. e-mail: egbirgin@ime.usp.br. Corresponding author.
‡Department of Applied Mathematics, IMECC-UNICAMP, University of Campinas, CP 6065, 13081-970 Campinas SP,

Brazil.

1

This paper is organized as follows. The basic OTR algorithm is presented in Section 2, where a basic

OTR property is proved. Convergence results are proved in Section 3. Numerical experiments are given

in Section 4. Section 5 contains final remarks and lines for future research.

Notation. ‖ · ‖ denotes the Euclidean norm, although many times it may be replaced by an arbitrary

norm on R
n. We denote by PB(x) the Euclidean projection of x onto B.

2 Algorithm

The problem considered in this section is:

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, x ∈ Ω. (1)

The set Ω will be given by lower-level constraints of the form h(x) = 0, g(x) ≤ 0. Lower-level constraints

are supposed to be simpler than “upper-level” ones, in such a way that effective specific methods exist

for the solution of constrained subproblems with (only) lower-level constraints. For example, in the

most simple case, Ω will take the form of an n-dimensional box. We will assume that the functions

f : Rn → R, h : Rn → R
m, g : Rn → R

p, h : Rn → R
m, g : Rn → R

p have continuous first derivatives on

R
n.

Given ρ > 0, λ ∈ R
m, µ ∈ R

p
+, x ∈ R

n the Powell-Hestenes-Rockafellar (PHR) Augmented La-

grangian [4, 5, 6] Lρ(x, λ, µ) is given by:

Lρ(x, λ, µ) := f(x) +
ρ

2

{ m
∑

i=1

[

hi(x) +
λi

ρ

]2

+

p
∑

i=1

[

max

(

0, gi(x) +
µi

ρ

)]2}

. (2)

The main algorithm presented in this paper is an OTR modification of the PHR algorithm introduced

in [7]. The subproblems solved in the Augmented Lagrangian algorithm of [7] always include box con-

straints. In Algorithm 2.1 below the trust regions are defined by the infinity norm; therefore the outer

trust-region constraint merely adds a box to the constraints of the subproblems without increasing their

complexity.

Algorithm 2.1. The parameters, that define the algorithm, are: τ ∈ [0, 1[, η > 1, λmin < λmax,

µmax > 0, β1 > 0, β2 > 0, Rtol > 0. We assume that x0 ∈ R
n be an arbitrary initial point that coincides

with the initial reference point x̄0. We define R0 = max{Rtol, ‖h(x0)‖∞, ‖g(x0)+‖∞}. At the first outer

iteration we use a penalty parameter ρ1 > 0 and safeguarded Lagrange multipliers estimates λ̄1 ∈ R
m

and µ̄1 ∈ R
p such that λ̄1

i ∈ [λmin, λmax] ∀i = 1, . . . ,m and µ̄1
i ∈ [0, µmax] ∀i = 1, . . . , p. Let ∆1 > 0 be

an arbitrary ℓ∞ trust-region radius. For all k ∈ {1, 2, . . .} we define Bk = {x ∈ R
n | ‖x− x̄k−1‖∞ ≤ ∆k}.

Finally, let {εk} be a sequence of positive numbers that tends to zero.

Step 1. Set k ← 1.

Step 2. Compute xk ∈ Bk such that there exist vk ∈ R
m, wk ∈ R

p satisfying

‖PBk
[xk − (∇Lρk

(xk, λ̄k, µ̄k) +
∑m

i=1 v
k
i∇hi(x

k) +
∑p

i=1 w
k
i∇gi(x

k))]− xk‖ ≤ εk, (3)

‖h(xk)‖ ≤ εk, wk ≥ 0, g(xk) ≤ εk, g
i
(xk) < −εk ⇒ wk

i = 0 for all i = 1, . . . , p, (4)

Lρk
(xk, λ̄k, µ̄k) ≤ Lρk

(x̄k−1, λ̄k, µ̄k). (5)

2

Step 3. For all i = 1, . . . , p, compute V k
i := max{gi(xk),−µ̄k

i /ρk}, and define

Rk := R(xk) := max{‖h(xk)‖∞, ‖V k‖∞}. (6)

Step 4. If Rk 6= min{R0, . . . , Rk}, define x̄k := x̄k−1. Else, define x̄k := xk.

Step 5. For all i = 1, . . . ,m, compute λk+1
i := λ̄k

i +ρkhi(x
k) and λ̄k+1

i ∈ [λmin, λmax]. For all i = 1, . . . , p,

compute µk+1
i := max{0, µ̄k

i + ρkgi(x
k)}, and µ̄k+1

i ∈ [0, µmax].

Step 6. If k > 1 and Rk > τRk−1, define ρk+1 := ηρk. Else, define ρk+1 := ρk.

Step 7. Choose ∆k+1 > 0 in such a way that

∆k+1 ≥ β1/Rk and ∆k+1 ≥ β2ρk+1. (7)

Set k ← k + 1 and go to Step 2.

Remarks. 1. The conditions (3–4) say that xk is an approximate KKT point of the subproblem Minimize

Lρk
(x, λ̄, µ̄k) subject to h(x) = 0, g(x) ≤ 0, x ∈ Bk. Therefore, at each outer iteration we aim to minimize

(approximately) the augmented Lagrangian subject to the lower level constraints defined by the set Ω and

the trust-region constraint x ∈ Bk. 2. At Step 7 the trust-region radius is updated. The first inequality

in rule (7) imposes that the trust-region radius must tend to infinity if the feasibility-complementarity

measure Rk tends to zero. The second inequality in rule (7) says that, if the penalty parameter is taking

care of feasibility, it makes no sense to take care of feasibility using the trust region restriction. 3. The

choice of ∆k, subject to (7), is crucial for the good behavior of the algorithm. This choice restricts

the distance between the reference point and the solution, and prepares multiplier estimates based on

current active constraint information. In greedy cases, the step restriction avoids jumps in the direction

of unconstrained undesired minimizers. The trust-region restriction is more effective than the proximal

strategy of [1] because it tends to definitely exclude the unconstrained minimum from the domain.

The following lemma says that, if the feasibility-complementarity measure Rk tends to zero along a

subsequence, then Rk tends to zero along the full sequence generated by Algorithm 2.1. This result will

be used in the convergence theory of Section 3.

Lemma 2.1. Let {xk} be a bounded sequence generated by Algorithm 2.1 and suppose that there exists

an infinite set of indices K such that limk∈K Rk = 0. Then, limk→∞ Rk = 0 and limk→∞ ∆k = 0.

Proof. If {ρk} is bounded we have that Rk ≤ τRk−1 for all k large enough, so the thesis is proved. Let

us assume, from now on, that limk→∞ ρk = ∞. By (5), dividing both sides by ρk, we have that, for all

k ∈ N,

1

ρk
f(xk) +

1

2

{ m
∑

i=1

[

hi(x
k) +

λ̄k
i

ρk

]2

+

p
∑

i=1

[

max

(

0, gi(x
k) +

µ̄k
i

ρk

)]2}

≤ 1

ρk
f(x̄k−1) +

1

2

{ m
∑

i=1

[

hi(x̄
k−1) +

λ̄k
i

ρk

]2

+

p
∑

i=1

[

max

(

0, gi(x̄
k−1) +

µ̄k
i

ρk

)]2}

. (8)

By the definition of x̄k−1 we can write {x̄0, x̄1, x̄2, . . .} = {xk0 , xk1 , xk2 , . . .}, where k0 ≤ k1 ≤ k2 ≤

Moreover, since limk∈K Rk = 0, we have that limj→∞ Rkj
= 0. Clearly, this implies that limj→∞ ‖h(xkj)‖2+

3

∑p
i=1 max{0, g(xkj)}2 = 0. Thus, limk→∞ ‖h(x̄k−1)‖2 +

∑p
i=1 max{0, g(x̄k−1)}2 = 0. Therefore, the

right-hand side of (8) tends to zero when k tends to infinity. Therefore,

lim
k→∞

1

2

{ m
∑

i=1

[

hi(x
k) +

λ̄k
i

ρk

]2

+

p
∑

i=1

[

max

(

0, gi(x
k) +

µ̄k
i

ρk

)]2}

= 0.

Since ρk →∞ and µ̄k, λ̄k are bounded, this implies that

lim
k→∞

‖h(xk)‖ = 0 (9)

and limk→∞ max{0, gi(xk)} = 0 ∀ i = 1, . . . , p. Then,

lim
k→∞

V k
i = 0 ∀ i = 1, . . . , p. (10)

By (9) and (10) we obtain the first part of the thesis. ∆k → 0 follows from Rk → 0 and the first inequality

in (7). �

3 Convergence

In this section we prove that Algorithm 2.1 is globally convergent in the same sense as Algorithm 3.1 of

[7]. In Lemma 3.1 we show that, at each iteration of Algorithm 2.1 one obtains an approximate KKT

point of the problem of minimizing the upper-level Lagrangian (with multipliers λk+1, µk+1) subject

to the lower-level constraints and the trust-region constraint. In Lemma 3.2 we prove that the same

approximate KKT property holds, asymptotically, eliminating the trust-region constraint, if ρk tends to

infinity.

Lemma 3.1. Assume that {xk} be a sequence generated by Algorithm 2.1. Then, for all k = 1, 2, . . . we

have that xk ∈ Bk and

‖PBk
[xk − (∇f(xk) +∇h(xk)λk+1 +∇g(xk)µk+1 +∇h(xk)vk +∇g(xk)wk)]− xk‖ ≤ εk, (11)

where wk ≥ 0, wk
i = 0 whenever g

i
(xk) < −εk, gi(x

k) ≤ εk for all i = 1, . . . , p and ‖h(xk)‖ ≤ εk.

Proof. It follows from (3–4) and the definitions of (λk+1, µk+1) given at Step 5 of Algorithm 2.1. �

Lemma 3.2. Assume that {xk} be a bounded sequence generated by Algorithm 2.1 and that limk→∞ ρk =

∞. Then, there exists c > 0 such that for all k large enough we have that

‖∇f(xk) +∇h(xk)λk+1 +∇g(xk)µk+1 +∇h(xk)vk +∇g(xk)wk)‖ ≤ cεk,

where wk ≥ 0, wk
i = 0 whenever g

i
(xk) < −εk, gi(x

k) ≤ εk for all i = 1, . . . , p, and ‖h(xk)‖ ≤ εk.

Proof. Define

gk = ∇f(xk) +∇h(xk)λk+1 +∇g(xk)µk+1 +∇h(xk)vk +∇g(xk)wk. (12)

Then, by (11), ‖PBk
(xk − gk) − xk‖ ≤ εk for all k = 1, 2, By the equivalence of norms in R

n, there

exists c1 > 0 such that ‖PBk
(xk − gk) − xk‖∞ ≤ c1εk for all k = 1, 2, Now, by the definition of Bk,

[PBk
(xk − gk)]i = max{x̄k−1

i −∆k,min{x̄k−1
i + ∆k, x

k
i − gki }}. Therefore, for all k ∈ N, i ∈ {1, . . . , n},

4

|max{x̄k−1
i −∆k,min{x̄k−1

i +∆k, x
k
i − gki }} − xk

i | ≤ c1εk. Thus, −c1εk ≤ max{x̄k−1
i −∆k,min{x̄k−1

i +

∆k, x
k
i − gki }} − xk

i ≤ c1εk. Dividing by ρk we get

−c1εk + xk
i

ρk
≤ max

{

x̄k−1
i

ρk
− ∆k

ρk
,min

{

x̄k−1
i

ρk
+

∆k

ρk
,
xk
i

ρk
− gki

ρk

}}

≤ c1εk + xk
i

ρk
. (13)

Since {x̄k−1} and {xk} are bounded, we have that x̄k−1
i /ρk and xk

i /ρk tend to zero. By the second

inequality in (7), this implies that for k large enough that (x̄k−1
i −∆k)/ρk ≤ −β2/2, (x̄

k−1
i +∆k)/ρk ≥

β2/2, and |(±c1εk + xk
i)/ρk| ≤ β2/3. Therefore, for k large enough, (13) implies (−c1εk + xk

i)/ρk ≤
(xk

i − gki)/ρk ≤ (c1εk + xk
i)/ρk. Then,

−c1εk/ρk ≤ −gki /ρk ≤ c1εk/ρk. (14)

Multiplying both sides of (14) by ρk, we have that, for k large enough, |gki | ≤ c1εk. By (12) and the

equivalence of norms on R
n this implies the desired result. �

We finish this section proving that the main global convergence theorem given in [7] holds also for

our OTR Algorithm 2.1. Theorem 3.1 condenses results of feasibility and optimality. If the penalty

parameter is bounded, every limit point is feasible. Moreover, every cluster point is a stationary point of

the sum of squares of infeasibilities, unless the lower level constraints fail to satisfy the Constant Positive

Linear Dependence (CPLD) constraint qualification [7]. Non-fulfillment of CPLD is unlike to occur in

practice, since the lower level constraints use to be simple. From the point of view of optimality, we

prove that every feasible limit point that satisfies the CPLD constraint qualification necessarily fulfills

the KKT conditions. In practical terms, the results of Theorem 3.1 mean that Algorithm 2.1 generally

finds feasible points or local minimizers of the infeasibility, and that feasible limit points are, very likely,

local minimizers.

Theorem 3.1. Assume that x∗ be a cluster point of a bounded sequence generated by Algorithm 2.1.

Then:

1. At least one of the following two possibilities holds: (a) the point x∗ fulfills the KKT conditions of

the problem Minimize ‖h(x)‖2 + ‖g(x)+‖2 s.t. h(x) = 0, g(x) ≤ 0; or (b) the CPLD constraint

qualification is not fulfilled at x∗ for the lower level constraints h(x) = 0, g(x) ≤ 0. Moreover, if

{ρk} is bounded, x∗ is feasible.

2. Assume that x∗ be a feasible cluster point of (1). Then, at least one of the following two possibilities

holds: (a) the point x∗ fulfills the KKT conditions of (1); or (b) the CPLD constraint qualification

is not satisfied at x∗ for the constraints h(x) = 0, g(x) ≤ 0, h(x) = 0, g(x) ≤ 0.

Proof. Consider the first part of the thesis. If {ρk} is bounded, it turns out that ρk is not increased from

some iteration on, therefore the feasibility of every limit point follows from Step 6 of Algorithm 2.1. By

Lemma 3.2, if {ρk} is unbounded, Algorithm 2.1 may be considered a particular case of Algorithm 3.1 of

[7] for k large enough. Therefore, the thesis follows from Theorem 4.1 of [7].

Let us prove the second part of the thesis. In this case, by Lemma 2.1, we have that limk→∞ Rk = 0.

Therefore, by the first inequality in (7), limk→∞ ∆k = ∞. As in Lemma 3.2, we define: gk = ∇f(xk) +

∇h(xk)λk+1 + ∇g(xk)µk+1 + ∇h(xk)vk + ∇g(xk)wk. Then, by (11), ‖PBk
(xk − gk) − xk‖ ≤ εk for all

k = 1, 2, By the equivalence of norms in R
n, there exists c1 > 0 such that ‖PBk

(xk−gk)−xk‖∞ ≤ c1εk

5

for all k = 1, 2, By the definition of Bk, [PBk
(xk−gk)]i = max{x̄k−1

i −∆k,min{x̄k−1
i +∆k, x

k
i −gki }}.

Therefore, for all k ∈ N, i ∈ {1, . . . , n},

|max{x̄k−1
i −∆k,min{x̄k−1

i +∆k, x
k
i − gki }} − xk

i | ≤ c1εk. (15)

Thus, −c1εk+xk
i ≤ max{x̄k−1

i −∆k,min{x̄k−1
i +∆k, x

k
i −gki }} ≤ c1εk+xk

i . Therefore, by the boundedness

of {xk}, there exists c2, c3 ∈ R such that −c2 ≤ max{x̄k−1
i −∆k,min{x̄k−1

i +∆k, x
k
i − gki }} ≤ c3. Since

∆k → ∞ and {x̄k−1} is bounded, this can only occur if, for k large enough, x̄k−1
i − ∆k < xk

i − gki <

x̄k−1
i +∆k. Therefore, by (15), |gki | ≤ c1εk for k large enough. This implies that, for k large enough, the

sequence {xk} may be thought as generated by Algorithm 3.1 of [7]. Therefore, the thesis of Theorem

4.2 of [7] holds. This implies the desired result. �

Remark. Boundedness of the penalty parameter also holds using the same arguments of [7]. Moreover,

in the context of global optimization, if one assumes that at each outer iteration one is able to find an

approximate global minimizer of the subproblem in the sense of [8], we may prove convergence to global

minimizers of Algorithm 2.1 (see [3] for details).

4 Numerical Experiments

4.1 OTR Algorithm as an Algencan Modification

We coded an implementation of Algorithm 2.1, which will be called Algencan-OTR from now on, based

onAlgencan 2.2.1 (see [7] and theTango Project web page (http://www.ime.usp.br/∼egbirgin/tango/).
The default parameters of Algencan 2.2.1 were selected in order to define a matrix-free method (free of

computing, storing and factorizing matrices) for large-scale problems. However, in most of the small and

medium-size problems (and even large problems with sparse and structured Hessians), Algencan per-

forms better if the following non-default options are used: direct-solver, perform-acceleration-step

and scale-linear-systems. Option directsolver is related to the employment of a direct solver in-

stead of conjugate gradients for solving the Newtonian systems within the faces of the active-set bound-

constraint solver Gencan [9]. Gencan is used as a solver for the Augmented Lagrangian subproblems

in Algencan. The Newtonian system being solved (whose matrix is the Hessian of the Augmented

Lagrangian function) is described in [10]. Option perform-acceleration-step is related to the ac-

celeration step described in [11] intercalated with Augmented Lagrangian iterations when the method

seems to be approaching the solution. At the acceleration step one considers that the active constraints

at the solution have been identified and solves the KKT system by Newton’s method [11]. For those

two options, direct linear-system solvers MA27 or MA57 from HSL must be available. Finally, option

scale-linear-systems means that every time a linear system is solved, it will be scaled. To use this

option, the embedded scaling procedures of MA57 are used if this was the user choice for solving the

linear systems. Otherwise, subroutines MC30 or MC77 must be present to be used in connection with

subroutineMA27. In the numerical experiments we used subroutineMA57 (December 1st, 2006. Version

3.0.2).

As the number of outer iterations of Algencan and Algencan-OTR have different meanings, the

stopping criterion of Algencan 2.2.1 related to attaining a predetermined maximum allowed number

6

of outer iterations was disabled. All the other default parameters of Algencan 2.2.1 were used in the

numerical experiments as we now describe. Let ε > 0 be the desired tolerance for feasibility, complemen-

tarity and optimality. At iteration k, if k 6= 1 and (3–4) is satisfied replacing k by k − 1, εk by
√
ε, with

Rk ≤
√
ε, then we set εk := 0.1 εk−1. Otherwise, we set εk :=

√
ε. We stop Algorithm 2.1 at iteration k

if (3–4) is satisfied substituting εk by ε and Rk ≤ ε. We set ε := 10−8. As in [7], we set τ := 0.5, η := 10,

λmin := −1020, λmax := µmax := 1020, and we consider λ0 := 0 and µ0 := 0.

The description of the parameters and the algorithmic choices directly related to Algorithm 2.1 follow.

We set β1 := β2 := 10−8, Rtol := 0.1 and ∆1 :=∞. At Step 5, if Rk 6= min{R0, . . . , Rk}, we set λ̄k+1
i :=

λ̄k
i , for i = 1, . . . ,m, and µ̄k+1

i := µ̄k
i , for i = 1, . . . , p. Otherwise, if Rk = min{R0, . . . , Rk}, we set λ̄k+1

i :=

P[λmin,λmax](λ̄
k
i + ρk hi(x

k)), for i = 1, . . . ,m, and µ̄k+1
i := P[0,µmax](µ̄

k
i + ρk gi(x

k)), for i = 1, . . . , p. At

Step 7, if R(xk) > 100 R(x̄k), we set ∆̄k+1 := 0.5‖xk− x̄k‖∞ and ∆k+1 := max{∆̄k+1, β1/Rk, β2 ρk+1}.
Otherwise, we set ∆k+1 :=∞.

The algorithms were coded in double precision Fortran 77 and compiled with gfortran (GNU Fortran

(GCC) 4.2.4). The compiler optimization option -O4 was adopted. All the experiments were run on a

2.4GHz Intel Core2 Quad Q6600 with 4.0GB of RAM memory and Linux Operating System.

4.2 Implementation Features Related to Greediness

Algencan solves at each outer iteration the scaled problem:

Minimize f̂(x) subject to ĥ(x) = 0, ĝ(x) ≤ 0, x ∈ Ω = {x ∈ R
n | ℓ̂ ≤ x ≤ û}, (16)

where
f̂(x) ≡ sf f(x) and sf = 1/max(1, ‖∇f(x0)‖∞),

ĥi(x) ≡ shi
hi(x) and shi

= 1/max(1, ‖∇hi(x
0)‖∞), for i = 1, . . . ,m,

ĝi(x) ≡ sgi gi(x) and sgi = 1/max(1, ‖∇gi(x0)‖∞), for i = 1, . . . , p,

and ℓ̂i ≡ max(−1020, ℓi) and ûi ≡ min(1020, ui) for all i. The stopping criterion associated with success

considers the feasibility of the original (non-scaled constraints) and the complementarity and optimality

of the scaled problem (16). In the particular case in which m = p = 0, we set sf ≡ 1, as the desired

scaling result may be obtained choosing the proper optimality tolerance. No scaling on the variables is

implemented.

The Augmented Lagrangian function (2) for problem (16) and for the particular case (λ, µ) = 0 reduces

to Lρ(x, λ, µ) = f̂(x) + (ρ/2)C(x), where C(x) =
∑m

i=1 ĥi(x)
2 +

∑p
i=1 max(0, ĝi(x))

2. So, if C(x) 6= 0,

the value of ρ that “keeps the Augmented Lagrangian well balanced” is given by ρ = 0.5|f̂(x)|/C(x). In

Algencan, assuming that we have (λ0, µ0) = 0, we set

ρ1 := min

{

max

{

10−8, 10
max(1, |f̂(x0)|)
max(1, C(x0))

}

, 108
}

. (17)

Moreover, trying to make the choice of the penalty parameter a little bit more independent of the initial

guess x0, x1 is computed as a rough solution of the first subproblem (limiting to 10 the number of

iterations of the inner solver) and ρ2 is recomputed from scratch as in (17) but using x1. Finally the

rules for updating the penalty parameter described at Step 6 of Algorithm 2.1 are applied for k ≥ 3.

The two implementation features described above aim to reduce the chance of Algencan being

attracted to infeasible points at early iterations by, basically, ignoring the constraints. However, as any

7

arbitrary choice of scaling and/or initial penalty parameter setting, problems exist for which the undesired

phenomenon still occur.

4.3 Examples

In the present subsection we show some examples that show some drawbacks of the algorithmic choices

described in the previous subsection. For the numerical experiments of the present subsection we use

Algencan 2.2.1 with its AMPL interface.

Problem A: Min −
∑n

i=1(x
8
i − xi) s.t.

∑n
i=1 x

2
i ≤ 1. Let n = 10 and consider the initial point x0 = 1

n
x̄,

where the x̄i’s are uniformly distributed random numbers within the interval [0.9, 1.1], generated by the

intrinsic AMPL function Uniform01() with seed equal to 1. Observe that x0 is feasible, sf = sg1 =

1.0D+00 and ρ1 = 1.0D+01. In its first iteration for solving the first Augmented Lagrangian subproblem,

the inner solver Gencan takes a huge step along the minus gradient direction arriving to the point

x1 ≈ 4.0D+02 (1, . . . , 1)T at which the objective function being minimized (the Augmented Lagrangian)

assumes a value smaller than −1020. Gencan stops at that point guessing that the subproblem is

unbounded. The scaled objective function at x1 is, approximately, -6.5D+21 and the sup-norm of the

scaled constraints is, approximately, 1.6D+06. The re-initiated value of ρ2 (computed using (17)) is

1.0D+08. Neither this value, nor the increasing values of ρk that follow, are able to remove Algencan

from that point. As a consequence, Algencan stops after a few outer iterations at an infeasible point.

Problem B: Min − exp[(
∑n

i=1 x
2
i + 0.01)−1] s.t.

∑n
i=1 xi = 1. Let n = 10 and consider the same initial

point used in Problem A. The behavior of Algencan is mostly the same. In this case we have sf =

6.6D-06, sh1
= 1.0D+00 and ρ1 = 1.0D+01. The scaled objective function value and sup-norm of the

constraints at the initial point are -5.6D-02 and 1.4D-03, respectively. Gencan stops after 2 iterations

guessing that the subproblem is unbounded, at a point with scaled objective function and sup-norm

of the constraints values -1.2D+34 and 9.0D-01, respectively. The penalty parameter is re-initiated as

ρ2 = 1.0D+08 but the sup-norm of the constraints alternate between 9.0D-01 and 1.1D+00 at successive

iterates. At the end, with ρ14 = 1.0D+21, Algencan stops at an infeasible point.

Problem C:Min−x exp(−xy) s.t. −(x+1)3+3(x+1)2+y = 1.5, (x, y)T ∈ [−10, 10]2. Consider the initial
point x0 = (−1, 1.5)T . For this problem we have sf = 8.9D-02 and sg1 = 1.0D+00, and ρ1 = 1.0D+01.

The point x0 is feasible and the scaled objective function value is f̂(x0) = 4.0D-01. When solving the first

subproblem, Gencan proceeds by doing 7 internal Newtonian iterations until that, at iteration 8, trying

to correct the inertia of the Hessian of the Augmented Lagrangian, it adds approximately 8.0D-01 to its

diagonal. An extrapolation is done in the computed direction and the method arrives to a point at which

the value of the Augmented Lagrangian is smaller that −1020. Gencan stops at that point claiming

the subproblem seems to be unbounded. The penalty parameter is re-initiated with ρ2 = 1.0D+08 but

Algencan gets stuck at that point and stops after 10 iterations at an infeasible point.

We will see now that, in the three problems above, the artificial box constraints of Algencan-OTR

prevent the method to be attracted by the deep valleys of infeasible points where the objective function

appears to be unbounded. Detailed explanations follows:

Problem A: Recall that x0 is feasible for this problem. Due to this fact, only a point xk such that

8

Rk ≤ Rtol = 0.1 would be accepted as a new reference point. In other words, while Rk > Rtol, we will

have x̄k = x̄0 = x0. The solution of the first subproblem (the one that made Algencan to be stuck at

an infeasible point) is rejected by Algencan-OTR. At the next iteration, Algencan-OTR uses ∆2 =

2.0D+02 which is still to large. In successive iterations Algencan-OTR uses ∆3 = 1.0D+02, ∆4 =

5.0D+01, ∆5 = 2.5D+01, ∆6 = 1.2D+01, ∆7 = 6.2D+00, ∆8 = 3.1D+00. At outer iteration 8, using ∆8 =

3.1D+00, Gencan finds a solution x8 of the subproblem such that R8 = 2.D-02. This point is accepted

as the new reference point, the Lagrange multipliers are updated and, in two additional iterations (using

∆9 = ∆10 =∞), Algencan-OTR arrives to a solution x∗ such that x∗

i ≈ -3.16227766016870D-01 for

all i.

Problem B: For this problem we have R0 = 1.D-03. Using ∆1 =∞, the solution of the first subproblem

(with R1 = 9.D-01) is not accepted as a new reference point. The arbitrary ∆-box constraint is reduced

and, using ∆2 = 4.9D-02, the solution of the second subproblem with R2 = 1.D-02 is accepted. From

that point on, with ∆k =∞, Algencan-OTR finds the solution in four additional iterations, arriving,

at iteration 6, at x∗ such that x∗

i = 0.1 for all i and f(x∗) = -8.8742D+03.

Problem C: Once again, the initial point is feasible. The point x1, with f̂(x1) = -8.159724D+32 and

R1 = 4.D+02, is rejected. With ∆2 = 5.75D+00 Gencan converges to x2 with f̂(x2) = -2.115861D+00

and R2 = 3.D-02, so, x̄2 = x2 is accepted as the new reference point. From that point on, Algencan-

OTR iterates two more times with ∆3 = ∆4 =∞ and converges to x∗ ≈ (1.3186D+00,-2.1632D+00)T

for which f(x∗) = -2.2849D+01.

The attraction to spurious minimizers or to regions where the subproblem is unbounded is intensified

when the global solution of the subproblems is pursued. We will consider now an adaptation of Algencan

for stochastic global minimization. When solving the Augmented Lagrangian box-constrained subproblem

at iteration k, Algencan considers xk−1 as initial guess. When pursuing a global minimizer, we modified

Algencan to consider several random initial guesses (in addition to xk−1) for solving the subproblem,

in order to enhance the probability of finding a global solution. In particular Ntrials = 100 random points

generated by a normal distribution with mean xk−1
i and standard deviation 10 × max{1, |xk−1

i |}, for

i = 1, . . . , n, are used. When generating a random initial guess z, components zi such that zi /∈ [ℓ̂i, ûi]

are discarded. For this reason, when max{ûi−xk−1
i , xk−1

i − ℓ̂i} < max{1, |xk−1
i |}, a uniform distribution

within the interval [ℓ̂i, ûi] is used instead of the normal distribution. We will call this version of Algencan

as Algencan-Global from now on. The corresponding version of Algencan-OTR, that considers the

random initial points within [ℓ̃i, ũi] ≡ Bk ∩ [ℓ̂i, ûi] instead of [ℓ̂i, ûi] will be called Algencan-OTR-

Global.

Let us show a problem in which Algencan finds a solution while Algencan-Global does not.

With this example we aim to show that the greediness problem is inherent to the global optimization

process and that it is much more harmful that in the local minimization case.

Problem D: Min c5x
5 + c4x

4 + c3x
3 + c2x

2 + c1x + c0 s.t. x2 = 1, where c0 = 2, c1 = 1.56, c2 = −2,
c3 = −1.2916, c4 = 0.5 and c5 = 0.225. The problem has a local minimizer x∗ = 1 such that f(x∗) = 1

and a global minimizer x∗∗ = −1 such that f(x∗∗) = 0. Consider the initial point x0 = 2. The iterates

of Algencan are x1 = 1.0932D+00, x2 = 1.0074D+00, x3 = 1.0005D+00, and x4 = 1.0000D+00,

i.e., Algencan converges to the local minimizer x∗ in four iterations. Consider now the application of

9

Algencan-Global to Problem D. At the first iteration, we find an infeasible point in a deep valley

(with negatives values for x) from which the higher degrees of the polynomial objective function prevent

the method to escape. Finally, a description of the Algencan-OTR-Global performance follows. Let

us start noting that R0 = 7.5D-01 (corresponding to the scaled version of the problem with sf = 8.3D-02

and sh1
= 2.5D-01) and ρ1 = 1.0D+01. Gencan is run starting from 100 different initial guesses. It

improves previously obtained solutions 7 times and it ends up with f̂(x1) = -2.877505D+21 and R1 =

5.D+08. The point x1 is not accepted as a reference point and a new outer iterations is done with ρ2 =

1.0D+02 and ∆2 = 2.1D+04. This time x2 ≈ -1.00266 is such that R2 = 1.D-03. The point is accepted

as a reference point and ∆3 =∞. In the next iteration the global solution x∗∗ = −1 is found.

4.4 Massive Comparison

We chose, as test problems, examples included in the Cuter collection [12] and we divided the numerical

experiments of the present subsection into two parts: local and global minimization. In both cases we will

evaluate the influence of the adaptive artificial box constraint by comparing the performance of Algen-

can versus Algencan-OTR and Algencan-Global versus Algencan-OTR-Global, respectively.

For the massive numerical experiments related to local minimization we used all the nonlinear pro-

gramming problems from the Cuter collection, excluding only unconstrained and bound-constrained

problems. This corresponds to 733 problems. We compared Algencan and Algencan-OTR using

performance profiles and the number of inner iterations as a performance measurement. A CPU time

limit of 10 minutes per problem/method was used. The efficiencies of Algencan and Algencan-OTR

are 77.90% and 71.49%, respectively, while the robustness indices are 82.67% and 83.36%, respectively.

Both methods found feasible points with equivalent functional values in 584 problems. (We say that f1

and f2 are equivalent if [|f1 − f2| ≤ max{10−10, 10−6 min{|f1|, |f2|}}] or [f1 ≤ −1020 and f2 ≤ −1020].)
Both methods failed to find a feasible point in 100 problems. They found feasible points with different

functional values in 35 problems. In those problems, the objective function value found by Algencan was

smaller in 15 cases and the one found by Algencan-OTR was smaller in 20 cases. Finally, Algencan

found a feasible point in 7 problems in which Algencan-OTR did not; while the opposite happened

in other 7 problems. Within the set of 7 problems for which only Algencan-OTR found a feasible

point, only in problem DITTERT Algencan presented greediness. So, we can conclude that greediness

is not a big problem of Algencan 2.2.1 when solving the problems from the Cuter collection, thanks

to the recently introduced algorithmic choices described in Section 4.2. The artificial bound constraints

of Algencan-OTR probably improved the quality of the solution found by Algencan-OTR in a few

cases.

For the global minimization experiments we selected all the NLP problems from the Cuter collection

with no more than 10 variables. This corresponds to 260 problems. We compared Algencan-Global

and Algencan-OTR-Global using performance profiles and the number of inner iterations as a perfor-

mance measurement. A CPU time limit of 30 minutes per problem/method was used. The performance

profile curves of both methods are very similar. The efficiencies of Algencan-Global and Algencan-

OTR-Global were 89.62% and 88.46%, respectively; while their robustness rates were both equal to

95.38%. A detailed analysis follows.

Both methods found the same minimum in 244 problems and both methods stopped at infeasible points

10

in other 8 problems. So, the two methods performed differently (regarding their final point) only in 8

problems. Table 1 shows some details of those problems. In the table, f(x∗) and R(x∗) are the objective

function value and the feasibility-complementarity measurement (6), respectively. SC is the stopping

criterion and the meanings are: C – convergence, T – CPU time limit achieved, and I – too large penalty

parameter. Basically, we have that: (i) both methods found different local minimizers in 5 problems, (ii)

Algencan-OTR-Global found a feasible point in a problem (HS107) in which Algencan-Global

did not (only by a negligible amount), and (iii) Algencan-OTR-Global found a solution in 2 problems

in which Algencan-Global presented greediness and failed to find a feasible point. Concluding the

robustness analysis, we can say that Algencan-OTR-Global successfully found a solution in the two

problems HS24 and HS56 in which Algencan-Global presented greediness, whereas this advantage

was compensated by the fact of Algencan-Global having found 4 better minimizers out of the 6 cases

in which both methods converged to different solutions (considering as feasible the nearly-feasible solution

found by Algencan-Global for problem HS107).

Problem
Algencan-Global Algencan-OTR-Global

f(x∗) R(x∗) SC f(x∗) R(x∗) SC

CRESC50 5.9339763626815067E−01 0.0E+00 T 5.9357981462855491E−01 1.4E−09 T

DIXCHLNG 1.6288053006804543E−21 8.9E−13 C 4.2749285786956551E+02 7.8E−13 C

EQC -1.0380294895991835E+03 1.0E−10 T -1.0403835102461048E+03 1.0E−10 T

HS107 5.0549933321413228E+03 1.0E−08 I 5.0550117605040141E+03 1.2E−09 T

HS24 -1.9245010614395141E+59 1.7E+20 I -1.0000000826918698E+00 9.6E−12 C

HS56 -9.9999999999999995E+59 1.0E+20 I -3.4559999999999844E+00 6.9E−14 C

QC -1.0778351725254695E+03 0.0E+00 T -1.0776903884481490E+03 1.0E−10 T

SNAKE 2.9758658959064692E−09 0.0E+00 C -7.0445051551086390E−06 3.7E−10 C

Table 1: Additional information for the eight problems at which Algencan-Global and Algencan-

OTR-Global showed a different performance.

We do not have enough information to decide whether this (4 × 2) score (associated with having

found different solutions) is a consequence of pure chance or if it can be related to the reduced box

within which Algencan-OTR-Global randomly picks the initial guesses up for the stochastic global

minimization of the subproblems. In problems DIXCHLNG and SNAKE both methods satisfied the

stopping criterion related to success and converged to different local solutions (in one case the solution

found by Algencan-Global was better and in the other case the solution found by Algencan-OTR-

Global was better). In the other four cases both methods stopped by attaining the CPU time limit or

due to a too large penalty parameter.

The 8 problems in which both methods stopped at infeasible points were: ARGAUSS, CRESC132,

CSFI1, ELATTAR,GROWTH,HS111LNP, TRIGGER andYFITNE. In none of these problems the

lack of feasibility was related to greediness. Algencan-OTR-Global successfully solved the problems

HS24 and HS56, in which Algencan-Global presented greediness. Moreover, Algencan (without

the globalization strategy of Algencan-Global) successfully solved these two problems, evidencing

that the greediness phenomenon is, in these two cases, directly related to the globalization strategy (as

illustrated in Problem D).

11

5 Conclusions

Several reasons can be given to justify the introduction of outer trust-region constraints in numerical algo-

rithms. Care is needed, however, to guarantee reliability of OTR modifications. On one hand, theoretical

convergence properties of the original algorithms should be preserved. On the other hand the practical

performance of the OTR algorithm should not be inferior than the one of its non-OTR counterpart. In

this paper, we showed that both requirements are satisfied in the case of the constrained optimization

problem, with respect to a well established Augmented Lagrangian algorithm. Numerical experiments

corroborate the hypothesis that OTR be a useful tool for dealing with the greediness phenomenon.

References

1. Castelani, E.V., Martinez, A.L., Mart́ınez, J.M., Svaiter, B.F.: Addressing the greediness phe-

nomenon in Nonlinear Programming by means of Proximal Augmented Lagrangians. Comput. Optim.

Appl. 46, 229–245 (2010).

2. Bertsekas, D.P.: Nonlinear Programming (2d Ed.). Athena Scientific, Belmont–MA (1999).

3. Birgin, E.G., Castelani, E.V., Martinez, A.L., Mart́ınez, J.M.: Outer Trust-Region method for Con-

strained Optimization. Technical Report MCDO251110, Department of Applied Mathematics, State

University of Campinas (2010).

4. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.):

Optimization, pp. 283–298, Academic Press, New York, NY (1969).

5. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969).

6. Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming.

SIAM J. Control Optim. 12, 268–285 (1974).

7. Andreani, R., Birgin, E.G., Mart́ınez, J.M., Schuverdt, M.L.: On Augmented Lagrangian Methods

with general lower-level constraints. SIAM J. Optimiz. 18, 1286–1309 (2007).

8. Birgin, E.G., Floudas, C.A., Mart́ınez, J.M.: Global minimization using an Augmented Lagrangian

method with variable lower-level constraints. Math. Program. 125, 139–162 (2010).

9. Birgin, E.G., Mart́ınez, J.M.: Large-scale active-set box-constrained optimization method with spec-

tral projected gradients. Comput. Optim. Appl. 23, 101–125 (2002).

10. Mart́ınez, J.M., Santos, L.T.: Some new theoretical results on recursive quadratic programming

algorithms. J. Optim. Theory Appl. 97, 435–454 (1998).

11. Birgin, E.G., Mart́ınez, J.M.: Improving ultimate convergence of an Augmented Lagrangian method.

Optim. Method. Softw. 23, 177–195 (2008).

12. Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr and SifDec: A Constrained and Unconstrained

Testing Environment, revisited. ACM T. Math. Software 29, 373–394 (2003).

12

