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Abstract

In a recent paper, the authors introduced a method to estimate optical parameters
of thin films using transmission data. The associated model assumes that the film is
deposited on a completely transparent substrate. It has been observed, however, that
small absorption of substrates affect in a nonnegligible way the transmitted energy.
The question arises of the reliability of the estimation method to retrieve optical pa-
rameters in the presence of substrates of different thicknesses and absorption degrees.
In this paper, transmission spectra of thin films deposited on non-transparent sub-
strates are generated and, as a first approximation, the method based on transparent
substrates is used to estimate the optical parameters. As expected, the method is
good when the absorption of the substrate is very small, but fails when one deals
with less transparent substrates. To overcome this drawback, an iterative procedure
is introduced, that allows one to approximate the transmittance with transparent sub-
strate, given the transmittance with absorbent substrate. The updated method turns
out to be almost as efficient in the case of absorbent substrates as it was in the case
of transparent ones.
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Universitária, 05508-090, São Paulo SP, Brazil. This author was supported by PRONEX-Optimization
76.79.1008-00, FAPESP (Grants 01/04597-4 and 02/00094-0) and CNPq (Grant 300151/00-4). Corre-
sponding author. FAX: +55(11)3091-6134. e-mail: egbirgin@ime.usp.br

†Department of Applied Physics, Institute of Physics, University of Campinas, CP 6065, 13083-970
Campinas SP, Brazil. This author was supported by FAPESP and CNPq. e-mail: ivanch@ifi.unicamp.br

‡Department of Applied Mathematics IMECC-UNICAMP, University of Campinas, CP 6065, 13081-
970 Campinas SP, Brazil. This author was supported by PRONEX-Optimization 76.79.1008-00, FAPESP
(Grant 01/04597-4), CNPq and FAEP-UNICAMP. e-mail: martinez@ime.unicamp.br

1



1 Introduction

In a recent paper [1] we introduced a pointwise unconstrained minimization method
(PUMA) for estimating the thickness and the optical constants of thin films using trans-
mission data. We used a transformation of a box-constrained optimization problem that
came, after a suitable change of variables, from a convex-constrained optimization prob-
lem defined in [4, 5]. For solving the optimization problems we used spectral projected
gradient techniques [2, 3]. In [13] applications to the estimation of parameters of real
synthesized films are shown. This method assumes that the transmittance of a thin film
deposited on a thick substrate obeys a model given in [14] (formula A1). See, also, [7, 12].
In this model, the transmittance is a function of the wavelength λ, the refractive index of
the substrate s, the thickness of the film d, the refractive index of the film n(λ) and the
attenuation coefficient of the film κ(λ). The inverse problem addressed in [1] consists of
recovering the above parameters using transmission data.

The formulation [14] for computing transmissions does not use the thickness of the
substrate and assumes that the substrate is transparent. However, real substrates are not
completely transparent and it has been observed that this affects in a nonnegligible way
the amounts of transmitted and reflected energy.

Practical measurements are also affected by the fact that pure waves of a single wave-
length are not observed but transmission takes place with respect to a beam of waves of
different length, according to a slit of the order of 1 nanometer.

The question addressed in this paper is: How do the thickness and absorption of the
substrate and the size of the slit affect the estimates produced by PUMA? To answer
this question we simulated the transmission through the 5 films considered in [1] with
different conditions of substrate thickness and absorption and different slits. In this way,
for each film we obtain 8 different spectra. We use these data to estimate thickness,
refraction and absorption of the film using PUMA. The evaluation of results lead us to
introduce an iterative procedure that eliminates the influence of the substrate absorption
producing an estimation of the transmittance with transparent substrate using, as input,
the transmittance with absorbent substrate.

This paper is organized as follows. In Section 2 we describe the way in which we did
the simulations. In Section 3 we show the results of these simulations and we compare
the spectra obtained under different conditions of the substrate and the slit. In Section 4
we apply the method [1] to the estimation of thickness, film refraction and absorption
using all the spectra generated in the simulations. In Section 5 we introduce the iterative
procedure that eliminates substrate absorption and we apply it to the films generated
before. Conclusions are given in Section 6.

2 Description of the direct problem with transparent sub-

strate

Suppose that we have a multilayer system of m layers, defined by their (complex) refractive
indices ñ0, . . . , ñm−1. We write, for ν = 0, 1, . . . ,m− 1,

ñν = nν − iκν .
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The real part nν is the refraction coefficient and κν is called the attenuation coefficient.
We assume that the first and the last (semi-infinite) layers are transparent, so that ñ0 = n0

and ñm−1 = nm−1. Usually, the first layer is air, so that ñ0 = n0 = 1. In our application,
ñm−1 = 1 too. The interfaces between layers (assumed to be perfectly horizontal) are
given by x = L1, . . . , x = Lm−1. In the first semi-infinite transparent layer (x < L1), an
incident wave is defined, given by

u(x, t) = E0
T exp [i(wt − kx)],

where t represents time. This wave generates transmitted and reflected waves in all the
layers. (In the last layer the reflected wave is null.)

In layer ν, for ν = 0, 1, . . . ,m− 1, the transmitted and reflected waves are given by

uν
T (x, t) = Eν

T exp [i(wt − kνx)]

and
uν

R(x, t) = Eν
R exp [i(wt + kνx)].

The first can be interpreted as a summation of infinitely many “transmitted small waves”
and the second as a summation of “reflected small waves”. The coefficient k is related to
the wavelength λ by

k =
2π

λ
.

Moreover,

k0 = k and kν =
kñν

ñ0

for ν = 1, . . . ,m− 1. Since there are no reflected waves in the last semi-infinite layer, we
have that

Em−1
R = 0.

Using the continuity of the waves and their derivatives with respect to x at the inter-
faces L1, . . . , Lm−1, we get, for ν = 1, 2, . . . ,m− 1:

Eν−1
T exp (−ikν−1Lν) + Eν−1

R exp (ikν−1Lν) = Eν
T exp (−ikνLν) + Eν

R exp (ikνLν)

and

−kν−1E
ν−1
T exp (−ikν−1Lν)+kν−1E

ν−1
R exp (ikν−1Lν) = −kνE

ν
T exp (−ikνLν)+kνE

ν
R exp (ikνLν).

So, using kν = kñν/ñ0, we obtain:

(
1 1

−ñν−1 ñν−1

) (
exp(−ikν−1Lν) 0

0 exp(ikν−1Lν)

) (
Eν−1

T

Eν−1
R

)

=

(
1 1
−ñν ñν

) (
exp(−ikνLν) 0

0 exp(ikνLν)

) (
Eν

T

Eν
R

)
.

Therefore,

(
Eν

T

Eν
R

)
=

(
exp(ikνLν) 0

0 exp(−ikνLν)

)
1

2ñν

(
ñν + ñν−1 ñν − ñν−1

ñν − ñν−1 ñν + ñν−1

)
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×

(
exp(−ikν−1Lν) 0

0 exp(ikν−1Lν)

) (
Eν−1

T

Eν−1
R

)
.

Let us write, for ν = 1, . . . ,m− 1,

Aν =
1

2ñν

(
ñν + ñν−1 ñν − ñν−1

ñν − ñν−1 ñν + ñν−1

)
.

Then, (
Eν+1

T

Eν+1
R

)
=

(
exp(ikν+1Lν+1) 0

0 exp(−ikν+1Lν+1)

)

×Aν+1

(
exp(−ikν [Lν+1 − Lν ]) 0

0 exp(ikν [Lν+1 − Lν ])

)

×Aν

(
exp(−ikν−1Lν) 0

0 exp(ikν−1Lν)

) (
Eν−1

T

Eν−1
R

)
.

Let dν ≡ Lν+1 − Lν (ν = 1, . . . ,m − 2) be the thickness of layer ν. We define, for
ν = 1, . . . ,m− 2,

Mν = Aν+1

(
exp(−ikνdν) 0

0 exp(ikνdν)

)
.

Then, setting for simplicity and without loss of generality, L1 = 0,

(
Em−1

T

Em−1
R

)
=

(
exp(ikm−1Lm−1) 0

0 exp(−ikm−1Lm−1)

)
Mm−2 × . . .×M1A1

(
E0

T

E0
R

)
.

Define, now,

M ≡

(
M11 M12

M21 M22

)
= Mm−2 × . . .×M1A1.

and

M ′ ≡

(
M ′

11 M ′
12

M ′
21 M ′

22

)
=

(
exp(ikm−1Lm−1) 0

0 exp(ikm−1Lm−1)

)
M.

Using Em−1
R = 0 we obtain:

E0
R = −

M ′
21

M ′
22

E0
T = −

M21

M22
E0

T

and

Em−1
T = (M ′

11 −
M ′

12M
′
21

M ′
22

)E0
T = exp(ikm−1Lm−1)(M11 −

M12M21

M22
)E0

T .

Finally, define

r0,m−1 = −
M21

M22

and

t0,m−1 = exp(ikm−1Lm−1)(M11 −
M12M21

M22
). (1)

According to (1), the transmitted wave in the final layer is

(M11 −
M12M21

M22
)E0

T exp [i(wt − km−1(x− Lm−1)].
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For energy computations, since |exp(ikm−1Lm−1)| = 1, the presence of this factor in
the computation of t0,m−1 is irrelevant. The transmitted energy from layer n0 to layer
nm−1 is defined by

Transmitted energy = nm−1|E
m−1
T |2

and the reflected energy in layer n0 is:

Reflected energy = n0|E
0
R|

2.

Consequently, the transmittance T (λ) and the reflectance R(λ) are:

T (λ) =
nm−1

n0
|M11 −

M12M21

M22
|2 (2)

and

R(λ) = |
M21

M22
|2.

In many real situations the transmission of a pure wave of a definite wavelength cannot
be measured. Instead, we measure an average of transmissions generated by a beam of
waves that pass through a small slit. So, instead of T (λ) we may take the view that we
observe the integral

Average slit transmitance =
1

2∆λ

∫ λ+∆λ

λ−∆λ
T (λ)dλ,

where ∆λ measures the half-ize of the slit.
If the last finite layer (called substrate from here on) is transparent, and we think

T (λ) as depending only on the thickness of this layer, we obtain a periodic function with
period λ/(2nm−2). This period is, usually, much less than the typical substrate thicknesses
considered in applications. In many cases the period is far less than the measuring error
of the thickness of the substrate. Therefore, a reasonable approximation of the observed
transmission is the average of transmissions over that period. This gives:

Average thickness transmittance =
2nm−2

λ

∫ L̄m−1+λ/(2nm−2)

L̄m−1

T (λ)dLm−1. (3)

Clearly, this integral does not depend on Lm−1.
The integral (3) (for m = 4) can be computed analytically. See [9] (pp. 22-23).

Swanepoel [14] (citing [12] and [7]) gave a practical organization of the calculation of this
integral in the 4-layer case, where all except the second layer (the film) are transparent.
Assume that the first layer is air, the second is a thin absorbing film, the third is a
transparent substrate and the fourth is, again, air. We call d the thickness of the film,
κ its attenuation coefficient, n its refraction coefficient, s the refraction coefficient of the
substrate and λ the wavelength. In this case, (3) reduces to the following calculations:

T̂ = Average thickness transmittance =
Az

B − Cz + Dz2
(4)

where
A = 16s(n2 + κ2) (5)
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B = [(n + 1)2 + κ2][(n + 1)(n + s2) + κ2] (6)

C = [(n2 − 1 + κ2)(n2 − s2 + κ2)− 2κ2(s2 + 1)]2 cosϕ

−κ[2(n2 − s2 + κ2) + (s2 + 1)(n2 − 1 + κ2)]2 sin ϕ (7)

D = [(n− 1)2 + κ2][(n− 1)(n − s2) + κ2] (8)

ϕ = 4πnd/λ, z = exp(−αd), α = 4πκ/λ. (9)

3 Direct problem and simulations with general substrate

We want to simulate the spectral response (transmittance) of a film with the following
characteristics:

• Thickness: d

• Refractive index: n(λ)

• Attenuation coefficient: κ(λ).

• The film is deposited on a substrate given by:

• Thickness: dS

• Refractive index: s(λ)

• Attenuation coefficient: κS(λ).

According to (2) we have:

T (λ) = T (λ, d, n(λ), κ(λ), dS , s(λ), κS(λ)).

For simulating the effect of a slit of size ∆ and the variations of the substrate thickness,
we compute:

Tobs(λ) =

∫ λ+∆

λ−∆

∫ dS+µ/(2s)

dS

T (µ, d, n(µ), κ(µ), δ, s(µ), κS (µ))dδdµ. (10)

The integral (10) must be computed numerically. To ensure high precision we per-
formed several experiments that lead us to a conservative choice of 1000 points for the
integration with respect to the slit and 2000 points for integrating with respect to the
substrate thickness. Therefore, for a given slit, substrate thickness and substrate attenu-
ation, we have a spectral response that can be compared with the one obtained using the
hypothesis of transparent substrate.

We simulated, using (10), the spectral responses of the five films considered in [1]. We
also simulated the transmittance using (4), which corresponds to a transparent substrate
and is the model used for the recovering procedure PUMA [1].

The five films considered are described below.

Film A: a-Si:H thin film deposited on a glass substrate. True thickness dtrue = 100 nm.
Refraction index given by formula (42) of [1] and absorption coefficient given by
formula (43) of [1]. Wavelength range : [540− 1530] nm.
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Film B: Similar film to A, with dtrue = 600 nm. Wavelength range : [620 − 1610] nm.

Film C: Hydrogenated amorphous germanium thin film deposited on a crystalline silicon
substrate. dtrue = 100 nm. Refraction index given by formula (44) of [1] and
absorption coefficient given by formula (45) of [1]. Wavelength range : [1250− 2537]
nm.

Film D: Similar film to C, with dtrue = 600 nm.

Film E: Metal oxide thin film deposited onto glass. True thickness dtrue = 80 nm. Re-
fraction index given by formula (46) of [1] and absorption coefficient given by formula
(47) of [1]. Wavelength range : [360 − 657] nm.

The transmissions of these films have been computed using the algorithm given in
Section 2 under the following conditions:

Case 1: Thin substrate (thin), Small slit (slit), Small attenuation (att).

Case 2: Thin substrate (thin), Small slit (slit), Large attenuation (ATT).

Case 3: Thin substrate (thin), Large slit (SLIT), Small attenuation (att).

Case 4: Thin substrate (thin), Large slit (SLIT), Large attenuation (ATT).

Case 5: Thick substrate (THICK), Small slit (slit), Small attenuation (att).

Case 6: Thick substrate (THICK), Small slit (slit), Large attenuation (ATT).

Case 7: Thick substrate (THICK), Large slit (SLIT), Small attenuation (att).

Case 8: Thick substrate (THICK), Large slit (SLIT), Large attenuation (ATT).

Case 9: Transparent substrate (computed using (4)).

In the classification above, the quantitative specification of the experiment conditions
are:

• Thin substrate (thin): 0.2 millimeters.

• Thick substrate (THICK): 2 millimeters.

• Small slit (slit): 0.5 nanometers.

• Large slit (SLIT): 2 nanometers.

• Small attenuation (att): Constant attenuation coefficient equal to 10−7.

• Large attenuation (ATT): Linearly decreasing attenuation coefficient being 10−5 at
λ = 500 nanometers, and 10−7 for λ ≥ 2000 nanometers.

Each film is now associated with 9 simulated spectra. We compare these spectra using
two tables. In the first table (Features), we give:
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• #max: The number of local maxima (excluding extrema of the interval in λ) of the
transmittance.

• #min: The number of local minima (excluding extrema of the interval in λ) of the
transmittance.

• argmax: The wavelength for which the global maximum of the transmittance occurs.

• max: Global maximum of the transmittance.

• argmin: The wavelength for which the global minimum of the transmittance occurs.

• min: Global minimum of the transmittance.

• average: Average transmittance over the whole spectrum considered.

Substrate information Film features
Case Description #max #min argmax max argmin min average

1 thin, slit, att 1 1 778 0.908 540 1.02E-4 0.4542
2 thin, slit, ATT 1 1 778 0.884 540 9.72E-5 0.4451
3 thin, SLIT, att 1 1 778 0.908 540 1.04E-4 0.4542
4 thin, SLIT, ATT 1 1 778 0.883 540 9.90E-5 0.4451
5 THICK, slit, att 1 1 778 0.906 540 1.01E-4 0.4531
6 THICK, slit, ATT 1 1 788 0.689 540 6.38E-5 0.3713
7 THICK, SLIT, att 1 1 778 0.906 540 1.03E-4 0.4531
8 THICK, SLIT, ATT 1 1 788 0.689 540 6.50E-5 0.3713
9 Swanepoel 1 1 778 0.909 540 1.02E-4 0.4543

Table 1: Film A - Features

Substrate information Film features
Case Description #max #min argmax max argmin min average

1 thin, slit, att 5 4 1422 0.916 620 1.02E-4 0.5329
2 thin, slit, ATT 5 4 1422 0.908 620 9.78E-5 0.5244
3 thin, SLIT, att 5 4 1422 0.916 620 1.04E-4 0.5329
4 thin, SLIT, ATT 5 4 1422 0.908 620 1.00E-5 0.5245
5 THICK, slit, att 5 4 1422 0.915 620 1.01E-4 0.5318
6 THICK, slit, ATT 5 4 1422 0.832 620 6.91E-5 0.4548
7 THICK, SLIT, att 5 4 1422 0.915 620 1.04E-4 0.5318
8 THICK, SLIT, ATT 5 4 1422 0.832 620 7.06E-5 0.4548
9 Swanepoel 5 4 1422 0.917 620 1.02E-4 0.5330

Table 2: Film B - Features

In Table 6 we display the distances between each spectrum and the spectrum defined
by Case 9. The distance between two spectra is defined as the average value, with respect
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Substrate information Film features
Case Description #max #min argmax max argmin min average

1 thin, slit, att 2 3 2537 0.471 1533 0.441 0.4523
2 thin, slit, ATT 1 2 2537 0.471 1495 0.436 0.4495
3 thin, SLIT, att 0 1 2537 0.471 1533 0.441 0.4523
4 thin, SLIT, ATT 0 1 2537 0.471 1495 0.436 0.4495
5 THICK, slit, att 0 1 2537 0.470 1533 0.440 0.4515
6 THICK, slit, ATT 0 1 2537 0.470 1263 0.386 0.4258
7 THICK, SLIT, att 0 1 2537 0.470 1533 0.440 0.4515
8 THICK, SLIT, ATT 0 1 2537 0.470 1263 0.386 0.4258
9 Swanepoel 0 1 2537 0.471 1533 0.441 0.4524

Table 3: Film C - Features

Substrate information Film features
Case Description #max #min argmax max argmin min average

1 thin, slit, att 3 2 2473 0.527 1456 0.437 0.4865
2 thin, slit, ATT 3 2 2473 0.527 1456 0.432 0.4836
3 thin, SLIT, att 3 2 2473 0.527 1456 0.437 0.4864
4 thin, SLIT, ATT 3 2 2473 0.527 1456 0.432 0.4837
5 THICK, slit, att 3 2 2473 0.527 1456 0.436 0.4857
6 THICK, slit, ATT 3 2 2498 0.526 1456 0.388 0.4589
7 THICK, SLIT, att 3 2 2473 0.527 1456 0.436 0.4857
8 THICK, SLIT, ATT 3 2 2498 0.526 1456 0.388 0.4589
9 Swanepoel 3 2 2473 0.527 1456 0.437 0.4866

Table 4: Film D - Features

to λ, of |Ti(λ) − Tj(λ)|, where Ti represents the transmittance in Case i and Tj is the
transmittance for Case j.

The analysis of Tables 1–6 suggest that, as expected, the transmittances corresponding
to Cases 1 and 3 are more similar to the transmittance generated assuming a transparent
substrate. On the other hand, the characteristics of the transmittances generated with
large and small slit seem to be very similar. To confirm this, we show, in Table 7, the
distances between the cases (·, slit, ·) and (·, SLIT, ·) for each one of the films considered.

As can be seen in Table 7, the differences of transmissions for different slits are far below
the usual measuring errors due to other factors. This seems to indicate that in models that
simulate this physical phenomenon the influence of the slit can be disregarded. It must
be noted, however, that this happens because one is considering averages with respect
to thickness, which have the property of simulating the perturbations due to the slit
and, perhaps, other perturbations such as the ones associated of slight deviation from the
normal of the incident light.
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Substrate information Film features
Case Description #max #min argmax max argmin min average

1 thin, slit, att 1 1 396 0.879 360 1.45E-3 0.7523
2 thin, slit, ATT 1 1 396 0.823 360 1.34E-3 0.7148
3 thin, SLIT, att 1 1 396 0.879 360 4.96E-3 0.7523
4 thin, SLIT, ATT 1 1 396 0.823 360 4.60E-3 0.7148
5 THICK, slit, att 1 1 396 0.874 360 1.44E-3 0.7488
6 THICK, slit, ATT 1 1 657 0.506 360 6.80E-4 0.4523
7 THICK, SLIT, att 1 1 396 0.874 360 4.93E-3 0.7488
8 THICK, SLIT, ATT 1 1 657 0.506 360 2.35E-3 0.4523
9 Swanepoel 1 1 396 0.880 360 1.24E-3 0.7527

Table 5: Film E - Features

Substrate information Distances
Case Description Film A Film B Film C Film D Film E

1 thin, slit, att 1.22E−04 1.27E−04 1.08E−04 1.17E−04 4.08E−04
2 thin, slit, ATT 9.23E−03 8.54E−03 2.83E−03 2.95E−03 3.79E−02
3 thin, SLIT, att 1.37E−04 1.89E−04 8.10E−05 8.49E−05 7.25E−04
4 thin, SLIT, ATT 9.25E−03 8.52E−03 2.82E−03 2.93E−03 3.81E−02
5 THICK, slit, att 1.22E−03 1.24E−03 8.18E−04 8.48E−04 3.89E−03
6 THICK, slit, ATT 8.30E−02 7.82E−02 2.66E−02 2.77E−02 3.00E−01
7 THICK, SLIT, att 1.23E−03 1.23E−03 8.17E−04 8.49E−04 4.18E−03
8 THICK, SLIT, ATT 8.30E−02 7.82E−02 2.66E−02 2.77E−02 3.00E−01

Table 6: Distances between transmittance with and without absorbent substrates

4 Estimation of film thickness and optical constants

In this section, we use PUMA to estimate thickness and optical parameters (attenuation
and refraction) of the films generated in the previous section. We proceed exactly in the
way described in our paper [1]. As a result, we obtain the estimations of thickness given
in Table 8. In all the cases, we used 100 points for our estimation. This seems to be the
minimum number of points that allows one to get reliable results.

Table 8, as well as the observation of the estimates of n(λ) and κ(λ) so far obtained,
confirms our suspicion that thick and absorbent substrates seriously affect the estimates
produced by PUMA. In general, in the cases (THICK, ·, ATT) we obtained poor estimates
of the thickness and the optical parameters. On the other hand, with thin and nearly
transparent substrates, the estimates are, in general, similar to the ones reported in [1],
where the data were generated using [14]. An exception worth mentioning is Film C, where
even in the cases (thin, ·, att) the estimates were not good. However, looking at Figure 7
of [1] we see that even when the data were generated using the transparent-substrate
assumption, it was difficult to distinguish the quadratic errors for thicknesses between 97
and 105 nm. Therefore, we are in the presence of an essential underdetermination of the
film thickness in this case.
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Film A Film B Film C Film D Film E
Case 1 - Case 3 3.829E−5 1.562E−4 7.893E−5 7.053E−5 3.270E−4
Case 2 - Case 4 3.726E−5 1.526E−4 7.830E−5 6.996E−5 3.042E−4
Case 5 - Case 7 1.957E−5 1.460E−4 6.693E−6 7.139E−6 3.233E−4
Case 6 - Case 8 1.454E−5 1.158E−4 6.218E−6 6.713E−6 1.570E−4

Table 7: Distances between (·, slit, ·) and (·, SLIT, ·)

Substrate information Estimated thickness (nm)
Case Description Film A Film B Film C Film D Film E

1 thin, slit, att 100 600 104 600 80
2 thin, slit, ATT 99 598 104 599 75
3 thin, SLIT, att 100 599 99 600 80
4 thin, SLIT, ATT 99 597 96 599 72
5 THICK, slit, att 100 599 100 600 82
6 THICK, slit, ATT 91 562 73 588 50
7 THICK, SLIT, att 100 599 99 600 82
8 THICK, SLIT, ATT 88 561 90 588 40

Table 8: Thickness estimation using PUMA

5 An iterative scheme that eliminates substrate absorption

The experiments of the previous section motivated us to introduce an iterative algorithm
that eliminates the substrate absorption. Because of the good behavior of the algorithm
based on the transparent model [1] we want to use this algorithm as a subroutine for the
general procedure.

In principle, we want to approximate the integral (10). However, since numerical
evidence shows that the effect of the slit is not relevant (when we take into account the
thickness indetermination!) we can replace (10) by the single integral

I(λ) =

∫ dS+λ/(2s)

dS

T (λ, d, n(λ), κ(λ), δ, s(λ), κS (λ))dδ. (11)

In [9], pp. 22-23, it has been proved that, when κS(λ) = 0, this integral is

I(λ) =
T1(λ)T2(λ)

1−R1(λ)R2(λ)
, (12)

where T1(λ) is the transmittance from the first layer to the substrate, T2(λ) is the trans-
mittance from the substrate to the last semi-infinite layer, R1(λ) is the reflectance on the
backside of the film corresponding to a wavelength λ/s(λ) and R2(λ) is the reflectance on
the backside of the substrate. Therefore,

T1(λ) =
A1x

B1 − C1x + D1x2
, (13)
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where

α = 4πκ(λ)/λ,

ϕ = 4πn(λ)d/λ,

x = exp(−αd),

A1 = 16s(λ)(n(λ)2 + κ(λ)2),

B1 = [(n(λ) + 1)2 + κ(λ)2][(n(λ) + s(λ))2 + κ(λ)2],

C1 = [(n(λ)2 − 1 + κ(λ)2)(n(λ)2 + κ(λ)2 − s(λ)2)− 4κ(λ)2s(λ)]2 cos(ϕ)

−κ(λ)[2(n(λ)2 − s(λ)2 + κ(λ)2) + 2s(λ)(n(λ)2 − 1 + κ(λ)2)]2 sin(ϕ),

D1 = [(n(λ)− 1)2 + κ(λ)2][(n(λ)− s(λ))2 + κ(λ)2],

T2(λ) =
4s(λ)

(s(λ) + 1)2
, (14)

and

R2(λ) = 1− T2(λ) =
(s(λ)− 1)2

(s(λ) + 1)2
. (15)

It can be proved that the formulae A1 of [14] exactly represent the expression (12). Know-
ing I(λ), T1(λ), T2(λ) and R2(λ) (12)-(15), R1(λ) can be computed as

R1(λ) =
1

R2(λ)
[1− T1(λ)T2(λ)/I(λ)]. (16)

A good approximation for (11) has been given by Cisneros [6] (see, also, Chapter 11
of [8]). In principle, it is possible to adapt the philosophy of [1] to the model given by
formulae A1-A10 of [6]. In this case the whole automatic differentiation procedure would
be redone, the objective function would be changed and the nice properties associated
with formula A1 of [14] might be lost.

Therefore, we preferred to introduce a different procedure that allows us to use PUMA
exactly in the way it is coded, in an iterative way. The idea is to eliminate the influence
of the substrate absorption from the data by means of a sequence of simple steps that
involve a few applications of PUMA.

Let us define T1(λ), T2(λ), R1(λ), R2(λ) as in (12)-(16). Then, in the general case, a
good approximation for (11) is

J(λ) =
T1(λ)T2(λ)θ(λ)

1−R1(λ)R2(λ)θ(λ)2
, (17)

where
θ(λ) = exp(−4πκS(λ)dS/λ). (18)

Assume that κS(λ) (and, hence, θ(λ)) is known. Assume that the measured transmit-
tance function is Tobs(λ). Our procedure begins by using PUMA to estimate d, κ(λ) and
n(λ). Using these estimations we compute, for all λ in the grid, values a(λ), b(λ) such that

a(λ) = T1(λ)T2(λ), (19)
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b(λ) = R1(λ)R2(λ), (20)

and
a(λ)θ(λ) = Tobs(λ)(1 − b(λ)θ(λ)2), (21)

in a way that will be specified below. Using these a(λ) and b(λ) we compute, for all λ in
the grid,

T̃ (λ) =
a(λ)

1− b(λ)
. (22)

The function T̃ (λ) is a first approximation to the transmittance with elimination of the
substrate absorption. Then the procedure restarts using T̃ (λ) as “observed transmit-
tances”. The algorithmic description of this procedure is given below.

Algorithm 1:

Assume that the observed transmittances Tobs(λ) are given for all λ ∈ G (the grid).
Set the first approximation T̃0(λ) = Tobs(λ). Suppose that θ(λ) is known for all λ ∈ G.
Set k ← 0.

Step 1. Estimate d, κ(λ), n(λ)
Use PUMA to estimate d, κ(λ), n(λ) using T̃k(λ) as “observed transmittances”.

Step 2. Define a new transmittance without substrate absorption

Step 2.1. Compute ak(λ), bk(λ)
Compute T̂ (λ) using formulae (5)-(10) (A1 of [14]). Using d, κ(λ) and n(λ) obtained

in the previous step, compute

ak(λ) = T1(λ)T2(λ), bk(λ) = 1− ak/T̂ (λ). (23)

Step 2.2. Compute approximations of a(λ) and b(λ)
For all λ ∈ G, compute ãk(λ), b̃k(λ) as the solution a(λ), b(λ) of:

Minimize (a(λ)− ak(λ))2 + (b(λ)− bk(λ))2 (24)

subject to
a(λ) θ(λ) = Tobs(λ)(1 − b(λ) θ(λ)2, (25)

0 ≤ a(λ) ≤ 1, 0 ≤ b(λ) ≤ 1, a(λ) + b(λ) ≤ 1. (26)

Step 2.3. Compute an approximation of the transmittance without substrate absorption

For all λ ∈ G, compute

T̃k+1(λ) =
ãk(λ)

1− b̃k(λ)
.

Step 3. Stop or begin a new iteration.

If the distance between T̃k+1(λ) and T̃k(λ) is very small, stop. Else, set k → k + 1 and
go to Step 1.
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Clearly, when the stopping criterion, say

1

#G

∑

λ∈G

|T̃k+1(λ)− T̃k(λ)|

T̃k(λ)
≤ ε,

is satisfied, then, by (23) and (25), the obtained optical parameters d, n(λ), κ(λ) satisfy
approximately

Tobs(λ) =
T1(λ)T2(λ)θ(λ)

1− θ(λ)2R1(λ)R2(λ)

and the phenomenological constraints of [1]. Therefore, they can be accepted as solutions
of the estimation problem.

Table 9 shows the distance between the transmittances computed using Algorithm 1
and the transmittances without substrate absorption, and Table 10 shows the estimated
thicknesses using these transmittances.

Substrate information Distances
Case Description Film A Film B Film C Film D Film E

1 thin, slit, att 2.66E−05 2.66E−05 7.28E−05 6.44E−05 2.54E−05
2 thin, slit, ATT 9.30E−04 1.19E−03 1.31E−03 1.36E−03 4.44E−04
3 thin, SLIT, att 2.87E−05 1.56E−04 1.24E−05 1.21E−05 3.47E−04
4 thin, SLIT, ATT 9.42E−04 1.20E−03 1.29E−03 1.34E−03 7.50E−04
5 THICK, slit, att 9.94E−06 9.74E−06 6.57E−06 5.67E−06 2.83E−05
6 THICK, slit, ATT 9.03E−03 1.23E−02 1.29E−02 1.31E−02 4.89E−03
7 THICK, SLIT, att 2.69E−05 1.55E−04 2.05E−06 3.30E−06 3.49E−04
8 THICK, SLIT, ATT 9.00E−03 1.22E−02 1.29E−02 1.31E−02 4.90E−03

Table 9: Distances beteentransmittance with transparent substrate and Transmittance
generated by Algorithm 1

Substrate information Estimated thickness (nm)
Case Description Film A Film B Film C Film D Film E

1 thin, slit, att 100 600 112 600 80
2 thin, slit, ATT 100 600 112 599 82
3 thin, SLIT, att 100 600 100 600 82
4 thin, SLIT, ATT 100 600 103 599 80
5 THICK, slit, att 100 600 100 600 82
6 THICK, slit, ATT 98 591 115 587 82
7 THICK, SLIT, att 100 600 100 600 82
8 THICK, SLIT, ATT 98 592 116 587 82

Table 10: Thickness estimation using Algorithm 1
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6 Conclusions

We have simulated the transmittance of the 5 films analyzed in [1] with different conditions
of substrate thickness and absorption. We have verified that, in the case with large
absorption and thickness in the substrate, the theoretical transmittance differs significantly
from the transmittance of the film deposited on a completely transparent substrate. This
is shown in Table 6 of this paper. Moreover, these differences have an important influence
on the estimation of thickness, absorption and refraction of the film. The good news is that
the slit has almost no influence, so it may be disregarded when one deals with this type of
phenomenon. The reason is that the formulae for measured transmittances (without the
slit) are averages over the substrate thicknesses and this average tends to simulate, also,
the influence of the slit. The elimination of the slit as an influential factor is important
because, with the slit, the transmittance can be computed only using expensive numerical
integration procedures.

In order to eliminate, as much as possible, the absorption of the substrate, we have
introduced an iterative process, based on a fixed point projection idea, which, in the limit,
produces the transmittance on a transparent substrate given the observed transmittance.
Applying this process we obtained new “transmittances on transparent substrates” which
are compared with the theoretical transmittances with transparent substrate in Table 9.
Here we can observe that the new transmittances are much closer to the transparent-
substrate ones than the transmittances given by “observations”. So, the “filtered” trans-
mittances can be used to estimate the optical parameters of the film. In all cases, the
application of PUMA to the filtered transmittances is much more successful than its ap-
plication to the observed ones. In this paper we assumed that the absorption coefficient
of the substrate is known. In future works we plan to estimate this coefficient within
the optimization procedure. Moreover, it would be interesting to apply the philosophy
of PUMA directly to approximations of the transmittance on non-transparent substrates,
like the one introduced in [6].

The most important challenge that is being addressed now is the estimation of optical
constants in cases where the constraints do not need to be satisfied exactly. A scheme
based on “soft” and “hard” constraints allows one to use nonlinear programming tech-
niques based on the inexact restoration philosophy [10, 11].
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