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Abstract

The problem of estimating the thickness and the optical constants of thin

films using transmission data only is very challenging from the mathemati-

cal point of view, and has a technological and an economic importance. In

many cases it represents a very ill-conditioned inverse problem with many

local-nonglobal solutions. In a recent publication we proposed nonlinear

programming models for solving this problem. Well-known software for lin-

early constrained optimization was used with success for this purpose. In

this paper we introduce an unconstrained formulation of the nonlinear pro-

gramming model and we solve the estimation problem using a method based

on repeated calls to a recently introduced unconstrained minimization algo-

rithm. Numerical experiments on computer-generated films show that the

new procedure is reliable.
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1 Introduction

For most modern applications of thin dielectric or semiconductor films, the

optical properties of interest cover a photon energy range around the fun-

damental absorption edge of the material. Moreover, as the applications

make use of multiple coherent reflections at the interfaces, the thickness of

the films is an important design and characterization parameter. Optical

transmittance provides accurate and rapid information on the spectral range

where the material goes from complete opacity to some degree of trans-

parency [1, 2]. As a consequence, the problem of retrieving the optical

constants (ñ(λ) = n(λ) + iκ(λ)) and the thickness (d) of thin films, from

transmission data only, is of particular importance. Some useful approxi-

mate solutions have been found in cases where the transmittance displays an

interference pattern in a highly transparent spectral region [3, 4, 5]. Up to

now, however, the general solution of the problem has been elusive, because

the system of equations is highly undetermined. Recently, we reported a new

method, based on a pointwise constrained optimization approach, which al-

lows to solve the general case [6, 7]. The method defines a nonlinear program-

ming problem, the unknowns of which are the coefficients to be estimated,

with linear constraints that represent prior knowledge about the physical so-

lution. The retrieval of the correct thickness and optical constants of the films

does not rely on the existence of interference fringes. The new method was

successful in retrieving d and ñ(λ) from very different transmission spectra

of computer made and real world films [6, 7]. The main inconvenient of the

pointwise constrained optimization approach [6, 7] is that is a rather complex

large-scale linearly constrained nonlinear programming problem whose solu-

tion can be obtained only by means of sophisticated and not always available

computer codes that can deal effectively with the sparsity of the matrix of
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constraints [8, 9].

We consider then the problem of estimating the absorption coefficient,

the refractive index and the thickness of thin films, using transmission data

only. Given the wavelength λ, the refractive index of the substrate s and the

unknowns d (thickness), n(λ) (refractive index) and κ(λ) (attenuation coeffi-

cient), the theoretical transmission is given by a well-known formula [2, 4, 5].

Having measurements of the transmission at (many) different wavelengths

we want to estimate the above mentioned unknowns. At a first glance, this

problem is highly undetermined since, for each wavelength, the single equa-

tion

Theoretical transmission = Measured transmission (1)

has three unknowns d, n(λ), κ(λ) and only d is repeated for all values of λ.

The driving idea in [6, 7] was to incorporate prior knowledge on the func-

tions n(λ) and κ(λ) in order to decrease the degrees of freedom of (1) up to

a point that only physically meaningful estimated parameters are admitted.

The idea of assuming a closed formula for n and κ depending of few

coefficients has been already reported [3, 4, 5]. The methods originated from

this idea are efficient when the transmission curve exhibits a fringe pattern

representing rather large spectral zones were κ(λ) is almost null. In other

cases, the satisfaction of (1) is very rough or the curves n(λ) and κ(λ) are

physically unacceptable.

In [6, 7], instead of imposing a functional form to n(λ) and κ(λ), the

phenomenological constraints that restrict the variability of these functions

were stated explicitly so that the estimation problem took the form:

Minimize
∑

λ

[Theoretical transmission(λ)−Measured transmission(λ)]2

subject to Physical Constraints.
(2)
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In this way, well behaved functions n(λ) and κ(λ) can be obtained without

severe restrictions that may damage the quality of the fitting (1).

The main contribution of the present paper is to establish a method for

solving the estimation problem where (2) is replaced by an unconstrained

optimization problem. We solved this problem using a very simple algorithm

introduced recently by Raydan [10]. This method realizes a very effective

idea for potentially large-scale unconstrained minimization. It consists of

using only gradient directions with steplengths that ensure rapid convergence.

The reduction of (2) to an unconstrained minimization problem needed the

calculation of very complicate derivatives of functions, which could not be

possible without the use of automatic differentiation techniques. Here we

used the procedures for automatic differentiation described in [11].

2 Unconstrained formulation of the estima-

tion problem

The transmission T of a thin absorbing film deposited on a thick transparent

substrate (see [4, 5]) is given by:

T =
Ax

B − Cx + Dx2
, (3)

where

A = 16s(n2 + κ2), (4)

B = [(n + 1)2 + κ2][(n + 1)(n + s2) + κ2], (5)

C = [(n2 − 1 + κ2)(n2 − s2 + κ2)− 2κ2(s2 + 1)]2 cosϕ
−κ[2(n2 − s2 + κ2) + (s2 + 1)(n2 − 1 + κ2)]2 sin ϕ,

(6)

D = [(n− 1)2 + κ2][(n− 1)(n− s2) + κ2], (7)

ϕ = 4πnd/λ, x = exp(−αd), α = 4πκ/λ. (8)

In formulae (4)–(8) the following notation is used:
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(a) λ is the wavelength;

(b) s = s(λ) is the refractive index of the transparent substrate (assumed

to be known);

(c) n = n(λ) is the refractive index of the film;

(d) κ = κ(λ) is the attenuation coefficient of the film (α is the absorption

coefficient);

(e) d is the thickness of the film.

A set of experimental data (λi, T
meas(λi)), λmin ≤ λi < λi+1 ≤ λmax,

for i = 1, . . . , N , is given, and we want to estimate d, n(λ) and κ(λ). This

problem seems highly underdetermined. In fact, for known d and given λ,

the following equation must hold:

T (λ, s(λ), d, n(λ), κ(λ)) = Tmeas(λ). (9)

This equation has two unknowns n(λ) and κ(λ) and, therefore, in general, its

set of solutions is a curve in the two-dimensional (n(λ), κ(λ)) space. There-

fore, the set of functions (n, κ) that satisfy (9) for a given d is infinite and,

roughly speaking, is represented by a nonlinear manifold of dimension N

in IR2N .

However, physical constraints reduce drastically the range of variability

of the unknowns n(λ), κ(λ). For example, in the neighborhood of the funda-

mental absorption edge (normal dispersion), these physical constraints are:

PC1: n(λ) ≥ 1 and κ(λ) ≥ 0 for all λ ∈ [λmin, λmax];

PC2: n(λ) and κ(λ) are decreasing functions of λ;

PC3: n(λ) is convex;
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PC4: there exists λinfl ∈ [λmin, λmax] such that κ(λ) is convex if λ ≥ λinfl

and concave if λ < λinfl.

Observe that, assuming PC2, PC1 is satisfied under the sole assump-

tion n(λmax) ≥ 1 and κ(λmax) ≥ 0. The constraints PC2, PC3 and PC4

can be written, respectively, as

n′(λ) ≤ 0 and κ′(λ) ≤ 0 for all λ ∈ [λmin, λmax], (10)

n′′(λ) ≥ 0 for all λ ∈ [λmin, λmax], (11)

κ′′(λ) ≤ 0 for all λ ∈ [λmin, λinfl], and (12)

κ′′(λ) ≥ 0 for all λ ∈ [λinfl, λmax]. (13)

Clearly, the constraints

n′′(λ) ≥ 0 for all λ ∈ [λmin, λmax] and n′(λmax) ≤ 0

imply that

n′(λ) ≤ 0 for all λ ∈ [λmin, λmax].

Moreover,

κ′′(λ) ≥ 0 for all λ ∈ [λinfl, λmax] and κ′(λmax) ≤ 0

imply that

κ′(λ) ≤ 0 for all λ ∈ [λinfl, λmax].

Finally,

κ′′(λ) ≤ 0 for all λ ∈ [λmin, λinfl] and κ′(λmin) ≤ 0

imply that

κ′(λ) ≤ 0 for all λ ∈ [λmin, λinfl].

8



Therefore, PC2 can be replaced by

n′(λmax) ≤ 0, κ′(λmax) ≤ 0, and κ′(λmin) ≤ 0. (14)

Summing up, the assumptions PC1–PC4 will be satisfied if, and only if,

n(λmax) ≥ 1, κ(λmax) ≥ 0, (15)

n′(λmax) ≤ 0, κ′(λmax) ≤ 0, (16)

n′′(λ) ≥ 0 for all λ ∈ [λmin, λmax], (17)

κ′′(λ) ≥ 0 for all λ ∈ [λinfl, λmax], (18)

κ′′(λ) ≤ 0 for all λ ∈ [λmin, λinfl], and (19)

κ′(λmin) ≤ 0. (20)

So, the continuous least squares solution of the estimation problem is the

solution (d, n(λ), κ(λ)) of

Minimize
∫ λmax

λmin

|T (λ, s(λ), d, n(λ), κ(λ))− Tmeas(λ)|2dλ (21)

subject to the constraints (15)–(20).

Our idea in this work is to eliminate, as far as possible, the constraints of

the problem, by means of a suitable change of variables. Roughly speaking,

we are going to put the objective function (21) as depending on the sec-

ond derivatives of n(λ) and κ(λ) plus functional values and first derivatives

at λmax. Moreover, positivity will be guaranteed expressing the variables as

squares of auxiliary unknowns. In fact, we write

n(λmax) = 1 + u2, κ(λmax) = v2, (22)

n′(λmax) = −u2

1, κ′(λmax) = −v2

1 , (23)
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n′′(λ) = w(λ)2 for all λ ∈ [λmin, λmax], (24)

κ′′(λ) = z(λ)2 for all λ ∈ [λinfl, λmax], and (25)

κ′′(λ) = −z(λ)2 for all λ ∈ [λmin, λinfl]. (26)

At this point, in order to avoid a rather pedantic continuous formulation

of the problem, we consider the real-life situation, in which data are given by

a set of N equally spaced points on the interval [λmin, λmax]. So, we define

h = (λmax − λmin)/(N − 1), and

λi = λmin + (i− 1)h for i = 1, . . . , N.

Consequently, the measured transmission at λi will be called Tmeas
i . More-

over, we will use the notation ni, κi, wi, and zi for the estimates of n(λi),

κ(λi), w(λi), and z(λi), for all i = 1, . . . , N . The discretization of the differ-

ential relations (22–26) gives:

nN = 1 + u2, vN = v2, (27)

nN−1 = nN + u2

1h, κN−1 = κN + v2

1h, (28)

ni = w2

i h
2 + 2ni+1 − ni+2 for i = 1, . . . , N − 2, (29)

κi = z2

i h
2 + 2κi+1 − κi+2, if λi+1 ≥ λinfl, and (30)

κi = −z2

i h
2 + 2κi+1 − κi+2, if λi+1 < λinfl. (31)

Finally, the objective function (21) is approximated by a sum of squares,

giving the optimization problem

Minimize
N

∑

i=1

[T (λi, s(λi), d, ni, κi)− Tmeas
i ]2 (32)

subject to

κ1 ≥ κ2. (33)
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Since ni and κi depend on u, u1, v ,v1, w, z, and λinfl through (27–31),

problem (32) takes the form

Minimize f(d, λinfl, u, u1, v, v1, w1, . . . , wN−2, z1, . . . , zN−2) (34)

subject to (33).

We expect that the constraint (33) will be inactive at a solution of (34–

33), so we are going to consider the unconstrained problem (34). The con-

straint (33) can also be explicitly considered in the numerical procedure, by

adding a penalty term ρ max{0, κ2− κ1}2. Although our code is prepared to

do that, this was never necessary in the experiments. The unknowns that

appear in (34) have a different nature. The thickness d is a dimensional

variable (measured in nanometers in our problems) that can be determined

using the observations Tmeas
i for (say) λi ≥ λbound, where λbound, an upper

bound for λinfl, reflects our prior knowledge of the problem. For this reason,

our first step in the estimation procedure will be to estimate d using data

that correspond to λi ≥ λbound. For accomplishing this objective we solve the

problem

Minimize f̄(u, u1, v, v1, w, z) ≡
∑

λi≥λbound

[T (λi, s(λi), d, ni, κi)− Tmeas
i ]2 (35)

for different values of d and we take as estimated thickness the one that

gives the lowest functional value. In this case the constraint (33) is irrelevant

since it is automatically satisfied by the convexity of κ and the fact that the

derivative of κ at λmin is nonpositive. From now on we consider that d is

fixed, coming from the procedure above.

The second step consists of determining λinfl, together with the un-

knowns u, u1, v, v1, w, z. For this purpose observe that, given d and λinfl

11



the problem

Minimize
N

∑

i=1

[T (λi, s(λi), d, ni, κi)− Tmeas
i ]2 (36)

is (neglecting (33)) an unconstrained minimization problem whose variables

are u, u1, v, v1, w, and z (2N variables). We solve this problem for several

trial values of λinfl and we take as estimates of n and κ the combination of

variables that gives the lowest value. For minimizing this function and for

solving (35) for different trial thickness, we use the unconstrained minimiza-

tion solver that will be described in the next section.

3 Description of the unconstrained minimiza-

tion algorithm

As we saw in the previous section, the unconstrained minimization prob-

lems (35) and (36) have the form

Minimize f(u, u1, v, v1, w1, . . . , wN−2, z1, . . . , zN−2). (37)

In order to simplify the notation, in this section we will write

x = (u, u1, v, v1, w1, . . . , wN−2, z1, . . . , zN−2).

Partial derivatives of f are usually necessary in optimization algorithms,

since they provide the first-order information on the objective function that

allows computational algorithms to follow downhill trajectories. In this case,

derivatives are very hard to compute. For this reason it was necessary to use

an automatic differentiation procedure (reverse mode) for performing this

task. See [11] for details.

In principle, any unconstrained optimization algorithm can be used to

solve (37) (see [12, 13]). Since the problem has, potentially, a large num-

ber of variables, our choice must be restricted to methods that are able to
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cope with that situation. A recent paper by Raydan [10] induced us to use

the Spectral Gradient Method (SGM), an implementation of the Barzilai-

Borwein method for quadratics, introduced in [10]. In fact, Raydan showed,

using a well known set of classical test problems, that SGM outperforms

conjugate gradient algorithms (see [14, 13]) for large scale unconstrained

optimization. Raydan’s spectral gradient method is extremely easy to im-

plement, a fact that contributed to support our decision, since it enables us

to become independent of black-box like imported software. Our description

of SGM here is, essentially, the one of Raydan with a small difference in the

choice of the step αk when bk ≤ 0.

We denote g(x) = ∇f(x). The algorithm starts with x0 ∈ IRn and uses

an integer M ≥ 0, a small parameter ε > 0, a sufficient decrease param-

eter γ ∈ (0, 1), and safeguarding parameters 0 < σ1, < σ2 < 1. Initially,

α0 ∈ [ε, 1/ε] is arbitrary. Given xk ∈ IRn, and αk ∈ [ε, 1/ε], Algorithm 3.1

describes how to obtain xk+1 and αk+1, and when to terminate the process.

Algoritmo 3.1

Step 1: Detect whether the current point is stationary.

If ‖g(xk))‖ = 0, terminate the generation of the sequence, declaring

that xk is stationary.

Step 2: Backtracking.

Step 2.1: Set λ← αk.

Step 2.2: Set x+ = xk − λg(xk).

Step 2.3: If

f(x+) ≤ max
0≤j≤min{k,M−1}

{f(xk−j)}+ γ〈x+ − xk, g(xk)〉, (38)
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then define xk+1 = x+, sk = xk+1 − xk, and yk = g(xk+1)− g(xk).

Else, define

λnew ∈ [σ1λ, σ2λ], (39)

set λ← λnew, and go to Step 2.2.

Step 3: Compute spectral steplength.

Compute bk = 〈sk, yk〉.
If bk ≤ 0, set αk+1 = αmax,

else, compute ak = 〈sk, sk〉, and

αk+1 = min {αmax, max {αmin, ak/bk}}.

In practice the computation of λnew uses one-dimensional quadratic in-

terpolation and it is safeguarded with (39).

4 Numerical results

In order to test the reliability of the new unconstrained optimization ap-

proach we used the computer-generated transmission of gedanken films de-

posited onto glass or crystalline silicon substrates. The expressions of sglass(λ)

and sSi(λ), the refractive indices of the glass and the silicon substrates re-

spectively, are shown in the Appendix.

In all the simulations, we assume that the wavelength and the thickness

are measured in nanometers. The transmission T true(λ) for each film was

first computed in the range λ ∈ [λmin, λmax] using a known thickness dtrue, a

known refractive index ntrue(λ), and a known absorption coefficient αtrue(λ).

In order to consider realistic situations, including experimental inaccuracy,

the true transmission T true(λ) was rounded to four decimals. We performed

numerical experiments using 100 transmission points. The precision obtained
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in d, n(λ), and α(E) rounding the transmission data to four decimal places

after the decimal point and without rounding was essentially the same.

Three different materials: hydrogenated amorphous silicon (a-Si:H), hy-

drogenated amorphous germanium (a-Ge:H), and a gedanken metal oxide,

were simulated. The numerical experiments consider three thicknesses: 80,

100 and 600nm. The trial films are “deposited” on a glass or on a c-Si sub-

strate. Note that the transmission formula (3) being used assumes that the

substrate is perfectly transparent. As a consequence of this limitation, the

useful spectral range 350-2000nm for glass, and 1250-2600nm for c-Si sub-

strates have been retained in the numerical experiments. The expressions

of αtrue(E) and ntrue(λ) used to generate the transmission spectra are shown

in the Appendix. Their dependence on photon energy (E) and wavelength,

respectively, are displayed in Fig. 1. The description of the five gedanken

experiments and the retrieved numerical results follow.

Film A: This computer-generated film simulates an a-Si:H thin film de-

posited on a glass substrate with dtrue = 100nm. The computed trans-

mission T true(λ) in the 540-1530nm wavelength range, and the optical con-

stants ntrue(λ) and αtrue(E) are shown as dashed lines in Fig. 2. The retrieved

values of T true(λ), ntrue(λ), and αtrue(E) are represented in the same figure

as open circles. The retrieval of the film thickness is shown in Fig. 3. A

few comments are in order. First, the transmission spectrum does not show

any fringe pattern in the calculated spectral range, as expected for a 100nm

thin film. A well defined maximum at approximately λ = 780nm and no

well defined minima are apparent from Fig. 2. In spite of this, the “true”

thickness is retrieved with a surprising precision. Second, within most of the

analyzed spectral range ntrue(λ) and nretr(λ) are in very good agreement. At

short wavelengths a small difference appears (of up to 0.05) between ntrue(λ)
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and the retrieved n(λ). Third, within a factor of two or three, the absorp-

tion coefficient is correctly retrieved in a 3.5 orders of magnitude dynamical

range. The retrieval of true values, however, fails for α < 500cm−1. Re-

member that the simulation refers to a 100nm thick film. We consider the

overall retrieval of the thickness and the optical constants, to constitute an

outstanding result.

Film B: This computer-generated film is identical to Film A except for

its thickness dtrue = 600nm. The transmission spectrum displays a well

structured fringe pattern, as shown in Fig. 4. The retrieved values T retr(λ),

nretr(λ), and αretr(E) are also indicated in Fig. 4 (open circles). Fig. 5 shows

the results of the minimization process for steps of 10nm and 1nm. The

true thickness has been perfectly retrieved. In fact, the overall retrieval is

almost perfect in this case. In particular, the absorption coefficient has been

correctly retrieved for a dynamical range of more than 5 orders of magni-

tude, down to α ≈ 1cm−1. The results shown in Figs. 2 and 4 confirm the

well known fact that the thicker the film, the easier it is to retrieve a small

absorption coefficient.

Film C: This computer-generated film simulates a dtrue = 100nm hy-

drogenated amorphous germanium thin film deposited on a crystalline sil-

icon substrate. The computed transmission T true(λ), as well as ntrue(λ)

and αtrue(E) are shown as dashed lines in Fig. 6. T true(λ) has been cal-

culated in the (relatively narrow) spectral region 1250-2537nm were c-Si is

transparent. As in the case of Film A, there is not a well defined fringe

pattern. However, two important differences between Film A and Film C

have to be noted here: (i) the index of refraction difference between film

and substrate is much larger in the former than in the latter case, and (ii)
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the spectral region computed for Film C does not include large absorption

coefficient values. In other words, Film C is more “transparent” in the

wavelength range considered in the retrieval process. The transmission of

Film C displays a well defined minimum at λ ≈ 1520nm but a neighboring

maximum does not appear in the computed spectral range. The result of the

film thickness retrieval process appears in Fig. 7. In this case, the overall

retrieval process is not as good as in the preceding cases. In particular the

retrieval of the absorption coefficient is poor. We believe this to be due to

the thinness of the film allied to the fact that the spectral region under con-

sideration does not include large absorption coefficients, i.e., α > 100cm−1.

This constitutes the worst imaginable situation, a very thin non-absorbing

film. In spite of this, the “true” thickness has been retrieved (see Fig. 7), as

well as the index of refraction (see Fig. 6). We conclude that the algorithm

under discussion fails to retrieve small absorption coefficients of very thin

films when the transmission spectrum contains data referring only to almost

transparent regions.

Film D: This computer-generated film is identical to Film C except for its

thickness dtrue = 600nm. The transmission spectrum as well as the “true”

and retrieved optical constants are shown in Fig. 8. Fig. 9 displays the

results of the minimization process leading to the “true” 600nm thickness.

Note that for this thicker a-Ge:H film deposited onto c-Si the retrieval of d

and n(λ) is perfect (see Fig. 8), as well as the “true” absorption coefficient

down to 1cm−1. However, the retrieval of α fails for E < 0.7eV. In the

small α region of the spectrum, these findings mimic those obtained with

Film B (Fig. 4).
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Film E: The last numerical example simulates a metal oxide film (dtrue =

80nm) deposited onto glass. The computed transmission spectrum in the

360-657nm wavelength range used for the retrieval of the thickness and the

optical constants of the material is shown in Fig. 10. Fig. 10 also displays the

retrieved values of n and α. The film thickness was perfectly retrieved, as

shown in Fig. 11. Let us note at this point the following: (i) the film thinness

and the similar n values of both film and substrate inhibit the appearance

of a fringe pattern, (ii) in spite of this fact the optical constants and d are

very well retrieved, and (iii) additional numerical experiments show that for

50 < d < 75nm thick films, the present algorithm fails to retrieve d, n, and α

with a precision better than around 10%.

Table I summarizes the findings of all the reported numerical experiments.

We finish this section providing details of our numerical procedure.

For our calculations we need initial estimates of κ(λ) and n(λ). As

initial estimate of κ(λ) we used a piecewise linear function the values of

which are 0.1 at the smallest wavelength of the spectrum, 0.01 at λmin +

0.2(λmax − λmin) and 10−10 at λmax. The initial estimates of n(λ) are linear

functions varying between 5 (λmin) and 2 (λmax) with step 1 (these values

were chosen because of the previous knowledge of the simulated materials).

We excluded the constant functions because preliminary tests showed us

they lead the method to local minimizers. So, we have six possibilities for

the initial estimate of n(λ): the decreasing linear functions defined by the

pairs of points [(λmin, 3); (λmax, 2)], [(λmin, 4); (λmax, 2)], [(λmin, 5); (λmax, 2)],

[(λmin, 4); (λmax, 3)], [(λmin, 5); (λmax, 3)], and [(λmin, 5); (λmax, 4)]. The re-

ported computed n(λ) corresponds to the best performance.

The general scheme to obtain the optimal parameters is as follows. First,

we need to break down the spectrum into two parts: [λmin, λbound] and
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[λbound, λmax], where λbound is a known upper bound of λinfl. To estimate

the thickness we use the points with abscissa belonging to [λbound, λmax]. The

procedure consist in running Algorithm 3.1 for different values of d between

dmin = 1

2
dkick and dmax = 3

2
dkick with step 10 (dmin, dmin + 10, dmin + 20, . . .),

where dkick is a rough initial estimate of the true thickness. In this way, we

obtain dtrial, the thickness value for which the smallest quadratic error oc-

curs. Then we repeat the procedure with dmin = dtrial−10, dmax = dtrial +10

and step 1 obtaining, finally, the estimated thickness dbest.

To estimate the inflection point we proceed in an analogous way, using

the whole spectrum and the thickness fixed at dbest, trying different possible

inflection points (obviously between λmin and λbound) and taking as estimated

inflection point the one which gives the smallest quadratic error. In all the

runs just described, we allow only 3000 and 5000 iterations of Algorithm 3.1,

when the dtrial step is equal to 10 and 1 respectively. The final step of the

method consists on fixing dbest and λinfl, and running Algorithm 3.1 once

more allowing 50000 iterations.

All the experiments were run in a SPARCstation Sun Ultra 1, with an

UltraSPARC 64 bits processor, 167-MHz clock, and 128-MBytes of RAM

memory. We used the language C++ with the g++ compiler (GNU project

C and C++ compiler v2.7) and the optimization compiler option -O4. In

spite of the many executions of the unconstrained minimization algorithm

that are necessary to solve each problem, the total CPU time used under the

mentioned computer environment never exceeded 5 minutes.

5 Conclusions

The analysis of the numerical results allow us to draw the following conclu-

sions.
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1. The proposed procedure is highly reliable for estimating the true thick-

ness in all films when four digits transmission data are used. The

method provides a very good retrieval of the true transmission in cases

where no approximate methods are useful, i.e., very thin films (d >

75nm) or absorbing layers.

2. The algorithm being discussed here fails to retrieve the true thickness

and the true absorption coefficient from the transmission spectrum of

very thin transparent films. Additional numerical experiments, not

being discussed here, indicate a defective retrieval of the thickness and

the optical constants of d < 75nm thin films from optical transmission

data.

3. In some cases the quadratic error as a function of the guessed thickness

(Fig. 5) is a function with several local-nonglobal minimizers. The

strategy of separating the variable d from the other variables of the

optimization problem appears to be correct, since it tends to avoid

spurious convergence to those local minimizers.

4. The comparison of the present results with those previously obtained

using the algorithm described in [5, 6] seems to confirm that the new

method is, at least, as efficient as the previous constrained optimization

approach. In addition, the resulting piece of software is more portable

and easier to manipulate.

5. As one of the referees pointed out, further time reductions can be ex-

pected from considering spectral preconditioning schemes (see [15]).

This will be done in future works.
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Appendix

Analytical expressions used to compute the substrates and the simulated

optical constants of semiconductor and dielectric films:

sglass(λ) =
√

1 + (0.7568− 7930/λ2)−1. (40)

sSi(λ) = 3.71382− 8.69123 10−5λ− 2.47125 10−8λ2 + 1.04677 10−11λ3. (41)

a-Si:H

Index of refraction:

ntrue(λ) =
√

1 + (0.09195− 12600/λ2)−1. (42)

Absorption coefficient:

ln(αtrue(E)) =











6.5944 10−6 exp(9.0846E)− 16.102, 0.60 < E < 1.40;
20E − 41.9, 1.40 < E < 1.75;√

59.56E − 102.1− 8.391, 1.75 < E < 2.20.
(43)

a-Ge:H

Index of refraction:

ntrue(λ) =
√

1 + (0.065− (15000/λ2)−1. (44)
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Absorption coefficient:

ln(αtrue(E)) =











6.5944 10−6 exp(13.629E)− 16.102, 0.50 < E < 0.93;
30E − 41.9, 0.93 < E < 1.17;√

89.34E − 102.1− 8.391, 1.17 < E < 1.50.
(45)

Metal oxide

Index of refraction:

ntrue(λ) =
√

1 + (0.3− (10000/λ2)−1. (46)

Absorption coefficient:

ln(αtrue(E)) = 6.5944 10−6 exp(4.0846E)− 11.02, 0.5 < E < 3.5. (47)

In the expressions above, the wavelength λ is in nm, the photon energy E =

1240/λ is in eV, and the absorption coefficient α is in nm−1.
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Tables

Film Spectra dtrue dretr Quadratic error

A 540-1530 100 100 6.338394× 10−6

B 620-1610 600 600 2.425071× 10−5

C 1250-2537 100 100 6.094629× 10−8

D 1250-2537 600 600 6.353207× 10−8

E 360-657 80 80 5.085419× 10−7

Table I: Thickness estimation.
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Figure captions

Figure 1: Optical constants adopted for the simulation of thin films. See

the corresponding analytical expressions in the Appendix.

Figure 2: “True” (dashed lines) and retrieved values (open circles) of the

optical transmission, the refractive index and the absorption coefficient of a

numerically generated thin film of thickness d = 100nm simulating an a-Si:H

layer deposited on glass (Film A). Note the good agreement found for the

optical constants despite the thinness of the film.

Figure 3: Quadratic error of the minimization process as a function of

trial thickness for Film A. On the left side the trial thickness step is 10nm

whereas on the right hand side of the figure the refined trial step is 1nm.

Note the excellent retrieval of the film thickness after 5000 iterations.

Figure 4: “True” (dashed lines) and retrieved values (open circles) of the

transmission, the refractive index and the absorption coefficient of a nu-

merically generated film of thickness d = 600nm simulating an a-Si:H layer

deposited on glass (Film B). Note the very good agreement found for the

optical constants and the transmission.

Figure 5: Quadratic error of the minimization process as a function of

trial thickness for Film B. On the left side the trial thickness step is 10nm

whereas on the right hand side of the figure the refined trial step is 1nm

(5000 iterations). Note the excellent retrieval of the film thickness and the

local-nonglobal minimizers.
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Figure 6: “True” (dashed lines) and retrieved values (open circles) of the

transmission, the refractive index and the absorption coefficient of a numer-

ically generated d = 100nm thick film simulating an a-Ge:H layer deposited

on a crystalline silicon substrate (Film C). Note that in the spectral region

where the c-Si substrate is transparent the a-Ge:H is weakly absorbing. A

good retrieval is found for the index of refraction and for the transmission,

which does not display any fringe pattern. However, the algorithm failed

(within an order of magnitude) to retrieve the correct absorption coefficient

in the 1 < α < 100cm−1 interval.

Figure 7: Quadratic error of the minimization process as a function of

trial thickness for Film C. On the left side the trial thickness step is 10nm

whereas on the right hand side of the figure the refined trial step is 1nm

(5000 iterations). The “true” thickness of the film has been retrieved.

Figure 8: “True” and retrieved values of the transmission, the refractive

index and the absorption coefficient of a numerically generated thin film of

thickness d = 600nm simulating an a-Ge:H layer deposited on a crystalline

silicon substrate (Film D). Note the overall good agreement found for the

optical constants and the transmission. The retrieval of the “true” absorption

coefficient for 1 < α < 100cm−1 is excellent.

Figure 9: Quadratic error of the minimization process as a function of

trial thickness for Film D. On the left side the trial thickness step is 10nm

whereas on the right hand side of the figure the refined trial step is 1nm

(5000 iterations). Note the excellent retrieval of the film thickness and the

local-nonglobal minimizers.
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Figure 10: “True” and retrieved values of the transmission, the refractive

index and the absorption coefficient of a numerically generated thin film

of thickness d = 80nm simulating a metal oxide layer deposited on glass

(Film E). The overall retrieval of the optical constants and the transmission

is excellent. Note that: (i) the transmission spectrum does not contain any

interference fringe pattern, and (ii) the “true” absorption coefficient has been

correctly retrieved for a four orders of magnitude dynamical range. However,

the retrieval of α fails for E < 2.45eV.

Figure 11: Quadratic error of the minimization process as a function of

trial thickness for Film E. On the left side the trial thickness step is 10nm

whereas on the right hand side of the figure the refined trial step is 1nm

(5000 iterations). The “true” 80nm thickness of the metal oxide layer was

retrieved with no error.
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