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Abstract

Minimization of the order-value function is part of a large family of problems involving
functions whose value is calculated by sorting values from a set or subset of other functions.
The order-value function has as particular cases the minimum and maximum functions of a
set of functions and is well suited for applications involving robust estimation. In this paper,
a first order method with quadratic regularization to solve the problem of minimizing the
order-value function is proposed. An optimality condition for the problem and theoretical
results of iteration complexity and evaluation complexity for the proposed method are pre-
sented. The applicability of the problem and method to a parameter estimation problem
with outliers is illustrated.

Keywords: Order-value optimization, regularized models, complexity, algorithms, applica-
tions.

Mathematics Subject Classification: 90C30, 65K05, 49M37, 90C60, 68Q25.

1 Introduction

Generalized order-value functions, systematized in [15], are functions whose value f(x), for a
given x in the domain, depends on order relations on a set of the form {fi(x)}i∈I . One such
function is the order-value function of order p defined in [3, 4]. Given m functions f1, . . . , fm,
the value of the pth order-value function f at a point x in the domain corresponds to the value
at the pth position when the values f1(x), f2(x), . . . , fm(x) are ordered from smallest to largest.
For the particular choices p = 1 and p = m, we have that f(x) = min{f1(x), f2(x), . . . , fm(x)}
and f(x) = max{f1(x), f2(x), . . . , fm(x)}, respectively. It is important to note that, even if all
fi are differentiable, it is almost certain that f will be non-differentiable.
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If x is a vector of portfolio positions and fi(x) represents the expected loss for choosing x
under scenario i, then the order-value function is the discrete value-at-risk (VaR) function, which
is widely used in risk analysis; see [14]. If each function fi represents the precision with which
a certain model that depends on unknown parameters x fits the ith observation, minimizing
the pth order-value function is equivalent to fitting the model’s x parameters by discarding
the poorest fitted m − p observations. In general, the order-value function is well suited for
applications involving robust estimation, i.e., estimation techniques that are not affected by
slight deviations in the data or from the idealized premises.

In [3], it was introduced a steepest descent type method for the minimization of the pth
order-value function restricted to a closed and convex set. Convergence to points that satisfy a
weak optimality conditions was proven. In [4], stronger optimality conditions and a nonlinear
programming reformulation with equilibrium constraints of the problem were given. In [5], it
was introduced a quasi-Newton method that generalizes the method proposed in [3]. In [6], it
was proposed a global optimization strategy that combines multistart and a tunneling approach.
In [17], it was proved that the minimization of the order-value function is an NP-hard problem
in the strong sense in the case that constraints are given by a polytope.

In 2006, [16] introduced the idea of computational complexity in continuous optimization.
Since then, algorithms with complexity results have been developed for a wide variety of con-
tinuous optimization problems. See, for example, [8, 9]. In 2022, the first book [12] specifically
dedicated to the subject was released. This paper contributes to this line of research by propos-
ing a method that possesses complexity results for the problem of minimizing the order-value
function with box constraints.

The rest of this paper is organized as follows. In Section 2, the problem of minimizing the
order-value function and the proposed regularized method are defined. Section 3 is devoted to
the definition of an adequate optimality condition and to prove the well-definiteness, conver-
gence, and complexity results of the method. Illustrative numerical experiments are given in
Section 4. Conclusions and final remarks are given in the last section.

Notation. The symbol ∥ · ∥ denotes the Euclidean norm. For i = 1, . . . , n, ei ∈ Rn denotes the
ith column of the identity matrix in Rn×n.

2 Quadratically regularized first-order method

Let fi : Rn → R for i = 1, . . . ,m be given. For a given p ∈ {1, 2, . . . ,m}, the pth-order-value
function f : Rn → R is defined as

f(x) ≡ fip(x)(x), (1)

where the indices {i1(x), i2(x), . . . , im(x)} = {1, 2, . . . ,m} are such that

fi1(x)(x) ≤ fi2(x)(x) ≤ · · · ≤ fim(x)(x), (2)

that is, f is such that f(x) corresponds to the value fi(x) which, when the values f1(x), f2(x), . . . ,
fm(x) are ordered from smallest to largest, is ranked in the pth position. In the present work,
we consider the order-value optimization (OVO) problem given by

Minimize f(x) subject to x ∈ Ω, (3)
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where Ω ≡ {x ∈ Rn | ℓ ≤ x ≤ u}, ℓ, u ∈ Rn and ℓi < ui for i = 1, . . . , n.
We introduce hereafter a first-order method to tackle problem (3) which, at each step,

minimizes a quadratically regularized linear model of f(x). The specification of the algorithm
requires the following definitions. Given δ > 0, for all x ∈ Ω, we define

I(x, δ) ≡ {i ∈ {1, 2, . . . ,m} | f(x)− δ ≤ fi(x) ≤ f(x) + δ} . (4)

For further reference, we define, for all x ∈ Ω, I(x) ≡ I(x, 0). In addition to δ > 0, for given
σ > 0 and x̄ ∈ Ω, we also define

Ψ(x; x̄, δ, σ) ≡ max
i∈I(x̄,δ)

{
∇fi(x̄)T (x− x̄)

}
+

σ

2
∥x− x̄∥2. (5)

The proposed method follows below.

Algorithm 2.1: Let δ > 0, σmin > 0, α ∈ (0, 1), γ > 1, and x0 ∈ Ω be given. Initialize k ← 0.

Step 1. Initialize j ← 0 and choose σk,j ≥ σmin.

Step 2. Compute xk,jtrial as a solution to

Minimize Ψ(x;xk, δ, σk,j) subject to x ∈ Ω. (6)

Step 3. Consider condition
f(x) ≤ f(xk)− α∥x− xk∥2. (7)

If (7) with x ≡ xk,jtrial does not hold, then set σk,j+1 = γσk,j , update j ← j + 1, and go
to Step 2.

Step 4. Define xk+1 = xk,jtrial, σk = σk,j , jk = j, update k ← k + 1 and go to Step 1.

3 Convergence and complexity

In this section, we introduce an optimality condition C(δ, ϵ) for problem (3) that depends on
the parameter δ and an optimality tolerance ϵ. In the sequence, we show that Algorithm 2.1 is
well defined and present complexity results for obtaining an iterate that satisfies the optimality
condition C(δ, ϵ) for prescribed values of δ > 0 and ϵ > 0.

The three theorems that follow (Theorems 3.1, 3.2, and 3.3) show that if x∗ is a local
minimizer of (3), then it is also a local minimizer of minimizing Ψ(x;x∗, 0, 0), Ψ(x;x∗, 0, σ), and
Ψ(x;x∗, δ, σ) subject to x ∈ Ω for any δ > 0 and σ > 0, respectively. These results will be used
in the construction of the optimality condition C(δ, ϵ) for problem (3).

Assumption A1. Functions f1, f2, . . . , fm are continuously differentiable for all x ∈ Ω.

Theorem 3.1. Suppose that Assumption A1 holds. Let x∗ be a local minimizer of (3) and
consider the problem minimize Ψ(x;x∗, 0, 0) subject to x ∈ Ω, i.e.

Minimize max
i∈I(x∗)

{
∇fi(x∗)T (x− x∗)

}
subject to x ∈ Ω. (8)

Then, x∗ is a solution to (8).
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Proof. Assume that the thesis is not true. Then there exists x ∈ Ω such that

max
i∈I(x∗)

{
∇fi(x∗)T (x− x∗)

}
< max

i∈I(x∗)

{
∇fi(x∗)T (x∗ − x∗)

}
= 0.

This means that ∇fi(x∗)T (x− x∗) < 0 for all i ∈ I(x∗). By Assumption A1, fi is differentiable
for all i ∈ I(x∗), then we have that

lim
t→0

fi(x
∗ + t(x− x∗))− fi(x

∗)

t
= ∇fi(x∗)T (x− x∗) < 0,

for all i ∈ I(x∗). Therefore, there exists t̄i > 0 such that fi(x
∗ + t(x − x∗)) < fi(x

∗) for all
t ∈ (0, t̄i]. Taking t̄ = mini∈I(x∗){t̄i}, we obtain that

fi(x
∗ + t(x− x∗)) < fi(x

∗) = f(x∗) for all i ∈ I(x∗) and t ∈ (0, t̄]. (9)

Moreover, for all j ∈ {1, 2, . . . ,m} \ I(x∗), if t is sufficiently small, by the continuity of the
functions f1, . . . , fm, one has that

fi(x
∗ + t(x− x∗)) < fj(x

∗ + t(x− x∗)) whenever i ∈ I(x∗) and f(x∗) < fj(x
∗)

and

fi(x
∗ + t(x− x∗)) > fj(x

∗ + t(x− x∗)) whenever i ∈ I(x∗) and f(x∗) > fj(x
∗).

This implies that, for all t small enough, there exists i ∈ I(x∗) such that

f(x∗ + t(x− x∗)) = fi(x
∗ + t(x− x∗)).

Therefore, for all t small enough, by (9), f(x∗+ t(x−x∗)) < f(x∗). Since x and x∗ belong to Ω,
which is convex, x∗+ t(x−x∗) ∈ Ω for all t ∈ [0, 1] and, in particular, for all t sufficiently small.
Hence, x∗ can not be a local minimizer of (3).

Theorem 3.2. Suppose that Assumption A1 holds. Let x∗ be a local minimizer of (3), σ ≥ 0,
and consider the problem minimize Ψ(x;x∗, 0, σ) subject to x ∈ Ω, i.e.

Minimize max
i∈I(x∗)

{
∇fi(x∗)T (x− x∗)

}
+

σ

2
∥x− x∗∥2 subject to x ∈ Ω. (10)

Then, x∗ is a solution to (10).

Proof. Assume that the thesis is not true. Then there exists x ∈ Ω such that

max
i∈I(x∗)

{
∇fi(x∗)T (x− x∗)

}
+

σ

2
∥x− x∗∥2 < max

i∈I(x∗)

{
∇fi(x∗)T (x∗ − x∗)

}
+

σ

2
∥x∗ − x∗∥2 = 0,

that is,

max
i∈I(x∗)

{
∇fi(x∗)T (x− x∗)

}
< −σ

2
∥x− x∗∥2 ≤ 0.

In other words, there exists x ∈ Ω such that Ψ(x;x∗, 0, 0) < 0. But this is impossible because,
by the Theorem 3.1, x∗ is a solution to (8) and Ψ(x∗;x∗, 0, 0) = 0.
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Theorem 3.3. Suppose that Assumption A1 holds. Let x∗ be a local minimizer of (3), σ ≥ 0,
δ ≥ 0, and consider the problem minimize Ψ(x;x∗, δ, σ) subject to x ∈ Ω, i.e.

Minimize max
i∈I(x∗,δ)

{
∇fi(x∗)T (x− x∗)

}
+

σ

2
∥x− x∗∥2 subject to x ∈ Ω. (11)

Then, x∗ is a solution to (11).

Proof. Assume that the thesis is not true. Then there exists x ∈ Ω such that

max
i∈I(x∗,δ)

{
∇fi(x∗)T (x− x∗)

}
+

σ

2
∥x− x∗∥2 < 0.

Therefore, for all i ∈ I(x∗, δ),

∇fi(x∗)T (x− x∗) +
σ

2
∥x− x∗∥2 < 0,

which, since I(x∗) ⊆ I(x∗, δ), implies that

∇fi(x∗)T (x− x∗) +
σ

2
∥x− x∗∥2 < 0,

for all i ∈ I(x∗). But, by Theorem 3.2 this is impossible.

The following theorem (Theorem 3.4), which requires some technical lemmas and assump-
tions, is the theorem that motivates the definition of the optimality condition C(δ, ϵ) for prob-
lem (3).

Definition 3.1. Let c : Rn → Rm be continuously differentiable and consider the feasible set
C = {z ∈ Rn | c(z) ≤ 0}. We say that z ∈ C verifies the Mangasarian-Fromovitz Constraint
Qualification (MFCQ) if there exists d ∈ Rn such that

∇ci(z)Td < 0 for all i ∈ {1, . . . ,m} such that ci(z) = 0.

Definition 3.2. Given q ∈ N, we define the unit simplex
∑

q ⊂ Rq by

∑
q =

{
λ ∈ Rq |

∑q
j=1 λj = 1 and λj ≥ 0 for j = 1, . . . , q

}
.

Lemma 3.1. Consider the problem

Minimize max
i∈I

φi(x) subject to x ∈ Ω, (12)

where I ⊂ N is a finite set of indices and φi : Rn → R is continuously differentiable for all i ∈ I.
Assume that x∗ ∈ Ω is a local minimizer of (12). Then, there exist µ ∈

∑
|I| and νℓ, νu ∈ Rn

+

such that
∑

i∈I µi∇φi(x
∗) +

∑n
i=1(ν

u
i − νℓi )e

i = 0.
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Proof. Let x∗ be a local minimizer of (12). Then, (x∗,maxi∈I φi(x
∗)) ∈ Rn+1 is the solution to

Minimize y subject to φi(x) ≤ y for all i ∈ I and x ∈ Ω.

Let d ∈ Rn+1 be given by

dj =


−1, if x∗j = ℓj ,

1, if x∗j = uj ,

0, otherwise,

for j = 1, . . . , n plus

dn+1 = max
i∈I

{
[∇φi(x

∗)]T (d1, . . . , dn)
}
+ 1.

This d shows that (x∗,maxi∈I φi(x
∗)) satisfies MFCQ. Thus, the thesis follows using the KKT

conditions for the problem above.

The corollary below will be used later in the complexity results.

Corollary 3.1. Suppose that Assumption A1 holds. Then, for every k and j = 0, . . . , jk, there
exist µ ∈

∑
|I(xk,δ)| and νℓ, νu ∈ Rn

+ such that

xk,jtrial − xk =
1

σk,j

 n∑
i=1

(
νℓi − νui

)
ei −

∑
i∈I(xk,δ)

µi∇fi(xk)

 . (13)

Proof. The thesis follows from Lemma 3.1 considering φi(x) ≡ ∇fi(xk)T (x−xk)+ (σk,j/2)∥x−
xk∥2. Assumption A1 is used to guarantee the existence of ∇fi(xk) for i = 1, . . . ,m.

Theorem 3.4. Suppose that Assumption A1 holds. Assume that x∗ is a local minimizer of (3).
Given δ ≥ 0, there exist µ ∈

∑
|I(x∗,δ)| and νℓ, νu ∈ Rn

+ such that

∑
i∈I(x∗,δ)

µi∇fi(x∗) +
n∑

i=1

(
νui − νℓi

)
ei = 0. (14)

Proof. Let x∗ a local minimizer of (3) and δ ≥ 0. By Theorem 3.3, x∗ is a solution to

Minimize Ψ(x;x∗, δ, σ) subject to x ∈ Ω,

for any σ > 0. Then, by Lemma 3.1, there exist µ ∈
∑

|I(x∗,δ)| and νℓ, νu ∈ Rn
+ such that

∑
i∈I(x∗,δ)

µi∇
[
∇fi(x∗)T (x− x∗) +

σ

2
∥x− x∗∥2

]∣∣∣
x=x∗

+

n∑
i=1

(
νui − νℓi

)
ei = 0,

from which (14) follows.

Theorem 3.4 leads to the definition of the following approximate necessary optimality con-
dition.
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Definition 3.3. We say that x satisfies the approximate optimality condition C(δ, ϵ) if there
exist µ ∈

∑
|I(x,δ)| and νℓ, νu ∈ Rn

+ such that∥∥∥∥∥∥
∑

i∈I(x,δ)

µi∇fi(x) +
n∑

i=1

(
νui − νℓi

)
ei

∥∥∥∥∥∥ ≤ ϵ. (15)

From here to the end of the section, we are devoted to show an upper bound for the cost of
Algorithm 2.1, in terms of iterations and function evaluations, to, given ϵ > 0, find an iterate xk

that satisfies the approximate optimality condition C(δ, ϵ). We will also show that Algorithm 2.1
is well defined in the sense that the inner loop defined by Steps 2 and 3 terminates in a finite
number of steps that does not depend on either k or ϵ. A few assumptions and technical lemmas
precede the main results.

Assumption A2. For all k and j = 0, . . . , jk, the associated Lagrange multipliers νℓ and νu of
Corollary 3.1 are bounded by a constant cν which depends neither on k nor on j.

Note that MFCQ guarantees that, for every k and j ∈ {0, . . . , jk}, the associated Lagrange
multipliers νℓ and νu of Corollary 3.1 are bounded by a constant; while Assumption A2 says
that there exists a constant for all k and j ∈ {0, . . . , jk} which depends neither on k nor on j.

Assumption A3. ∥∇f1(x)∥, ∥∇f2(x)∥, . . . , ∥∇fm(x)∥ are bounded from above by a constant c∇
for all x ∈ Ω.

Lemma 3.2. Suppose that Assumptions A1, A2, and A3 hold. Then, for all k and j = 0, . . . , jk,
there exist cx > 0, which depends neither on k nor on j, such that

∥xk,jtrial − xk∥ ≤ cx/σk,j . (16)

Proof. By Corollary 3.1 and Assumption A3 we have that

∥xk,jtrial − xk∥ ≤ 1

σk,j

[
n∑

i=1

∣∣∣νℓi − νui

∣∣∣+ c∇

]
.

By Assumption A2, (16) holds with cx = 2n cν + c∇.

Assumption A4. All the gradients ∇fi satisfy a Lipschitz condition, that is, there exists L > 0
such that, for i = 1, . . . ,m and all x, y ∈ Ω,

∥∇fi(y)−∇fi(x)∥ ≤ L∥y − x∥. (17)

As a consequence of Assumption A4, for i = 1, . . . ,m and all x, y ∈ Ω,∣∣fi(y)− [
fi(x) +∇fi(x)T (y − x)

]∣∣ ≤ L

2
∥y − x∥2. (18)

In particular, for i = 1, . . . ,m and all x, y ∈ Ω,

fi(y) ≤ fi(x) +∇fi(x)T (y − x) +
L

2
∥y − x∥2. (19)

See, for example, [9].
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Lemma 3.3. ([3, Lemma 2.1]) Let a1, . . . , ar ∈ R, b1, . . . , br ∈ R, β > 0, and {i1, . . . , ir} =
{1, . . . , r} be such that a1 ≤ · · · ≤ ar, bj ≤ aj − β for j = 1, . . . , r, and bi1 ≤ · · · ≤ bir . Then,
biq ≤ aq − β for q = 1, . . . , r.

Proof. By hypothesis, we have that, for any q ∈ {1, . . . , r},

biq ≤ aiq − β
biq ≤ biq+1 ≤ aiq+1 − β

...
biq ≤ biq+1 ≤ · · · ≤ bir ≤ air − β.

Therefore, biq ≤ min{aiq , aiq+1 , . . . , air} − β. Since the set {aiq , aiq+1 , . . . , air} has r − q + 1
elements, then there exist q̃ ∈ {1, . . . , q} such that aq̃ ∈ {aiq , aiq+1 , . . . , air}. Thus,

biq ≤ aq̃ − β ≤ aq − β,

as we wanted to prove.

Lemma 3.4. Suppose that Assumptions A1 and A4 hold. For every k and j = 0, . . . , jk, if
σk,j ≥ L+ 2α, then

fi(x
k,j
trial) ≤ fi(x

k)− α∥xk,jtrial − xk∥2, (20)

for all i ∈ I(xk, δ).

Proof. By (19), which is implied by Assumption A4, if i ∈ I(xk, δ), then

fi(x
k,j
trial) ≤ fi(x

k) +∇fi(xk)T (xk,jtrial − xk) +
L

2
∥xk,jtrial − xk∥2

= fi(x
k) +∇fi(xk)T (xk,jtrial − xk) +

σk,j
2
∥xk,jtrial − xk∥2 −

σk,j
2
∥xk,jtrial − xk∥2 + L

2
∥xk,jtrial − xk∥2.

But the objective function of (6), defined in (5), vanishes if x = xk. Therefore,

∇fi(xk)T (xk,jtrial − xk) +
σk,j
2
∥xk,jtrial − xk∥2 ≤ 0 for all i ∈ I(xk, δ).

Thus,

fi(x
k,j
trial) ≤ fi(x

k)−
σk,j
2
∥xk,jtrial − xk∥2 + L

2
∥xk,jtrial − xk∥2 for all i ∈ I(xk, δ).

So, if σk,j ≥ L+ 2α, then we have that

fi(x
k,j
trial) ≤ fi(x

k)− α∥xk,jtrial − xk∥2 for all i ∈ I(xk, δ).

The next theorem, together with the fact that, for all k, the initial value of the regularization
parameter is equal to σmin > 0 and, whenever a new value is calculated, its value is multiplied
by γ > 1, is what shows that the loop defined by Steps 2 and 3 is executed a finite number of
times per iteration.
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Theorem 3.5. Suppose that Assumptions A1, A3 and A4 hold. Then, for all k and j =
0, . . . , jk, if

σk,j ≥ max
{
L+ 2α, 9c2x/(2δ)

}
(21)

then xk,jtrial satisfies (7).

Proof. Assume that σk,j ≥ L+2α. By the Cauchy-Schwarz inequality, Assumptions A3 and A4,
and (16) in Lemma 3.2,∣∣∣fi(xk,jtrial)− fi(x

k)
∣∣∣ ≤ c2x

σk,j
+

Lc2x
2σ2

k,j

for i = 1, . . . ,m.

Note that L ≤ σk,j . Then,∣∣∣fi(xk,jtrial)− fi(x
k)
∣∣∣ ≤ 3 c2x

2σk,j
for i = 1, . . . ,m.

Therefore, if σk,j ≥ max{L+ 2α, 9 c2x/(2 δ)}, then we have that∣∣∣fi(xk,jtrial)− fi(x
k)
∣∣∣ ≤ δ

3
for i = 1, . . . ,m. (22)

Thus, for j = 1, . . . , p,

fij(xk)(x
k,j
trial) ≤ fij(xk)(x

k) +
δ

3
≤ f(xk) +

δ

3

and, for j = p, . . . ,m,

fij(xk)(x
k,j
trial) ≥ fij(xk)(x

k)− δ

3
≥ f(xk)− δ

3
.

This means that p elements of the set {f1(xk,jtrial), f2(x
k,j
trial), . . . , fm(xk,jtrial)} are less than or equal to

f(xk)+δ/3 and that m−p+1 elements of that set are greater than or equal to f(xk)−δ/3. Then,
at least one element satisfies both inequalities and, as a consequence, f

ip(x
k,j
trial)

(xk,jtrial) = f(xk,jtrial)

satisfies both inequalities, i.e.

f(xk)− δ

3
≤ f(xk,jtrial) ≤ f(xk) +

δ

3
. (23)

By (23) and the definition of I(·, ·) in (4), ip(x
k,j
trial) ∈ I(xk, δ). Let us write

I(xk, δ) = {i1, . . . , ir} = {i′1, . . . , i′r},

where
fi1(x

k) ≤ · · · ≤ fir(x
k) and fi′1(x

k,j
trial) ≤ · · · ≤ fi′r(x

k,j
trial).

Let j be such that fj(x
k) < f(xk)− δ. Then, by (22), fj(x

k,j
trial) ≤ fj(x

k)+ δ/3 < f(xk)−2δ/3 <
f(xk). This means that the indices j ̸∈ I(xk, δ) such that fj(x

k) < f(xk) are the same as the
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indices j ̸∈ I(xk, δ) such that fj(x
k,j
trial) < f(xk). Analogously, the indices j ̸∈ I(xk, δ) such that

fj(x
k) > f(xk) are the same as the indices j ̸∈ I(xk, δ) such that fj(x

k,j
trial) > f(xk). Therefore,

if q ∈ {1, . . . , r} is such that ip(x
k) = iq, then ip(x

k,j
trial) = i′q.

By Lemma 3.4,
fij (x

k,j
trial) ≤ fij (x

k)− α∥xk,jtrial − xk∥2

for j = 1, . . . , r. Therefore, by Lemma 3.3 taking β = α∥xk,jtrial − xk∥2, aj = fij (x
k) and

bj = fij (x
k,j
trial) for j = 1, . . . , r, we have that

fi′j (x
k,j
trial) ≤ fij (x

k)− α∥xk,jtrial − xk∥2

for j = 1, . . . , r. In particular, it holds for the index q ∈ {1, . . . , r} of the previous paragraph

such that ip(x
k) = iq and ip(x

k,j
trial) = i′q. Therefore,

f(xk,jtrial) ≤ f(xk)− α∥xk,jtrial − xk∥2

as we wanted to prove.

The theorem below shows that Algorithm 2.1 requires O(δ−2ϵ−2) iterations and O(| log(δ)|)
functional evaluations per iteration to find a point that satisfies the C(δ, ϵ) optimality condition
of problem (3).

Theorem 3.6. Suppose that Assumptions A1, A3 and A4 hold and there exists flow ∈ R such
that f(x) ≥ flow for all x ∈ Ω. Then, σk is such that

σk ≤ γmax{L+ 2α, 9c2x/(2δ)}, (24)

where cx is a constant that depends on cν and c∇, and at most⌊
1 + logγ

(
σk
σmin

)⌋
(25)

functional evaluations are done to get (7). Moreover, the number of iterations k at which C(δ, ϵ)
is not satisfied by xk is bounded above by⌊(

γ2max{L+ 2α, 9c2x/(2δ)}2

α

)(
f(x0)− flow

ϵ2

)⌋
. (26)

Proof. Applying Theorem 3.5, (24) and (25) follow from (21) and the fact that, at Step 3,
Algorithm 2.1 updates the regularization parameter by multiplying its value by γ if (7) does not
hold.

For the second part, let K ⊂ N be the set of indices k such that C(δ, ϵ) is not satisfied

by xk+1. By the mechanism of Algorithm 2.1, xk+1 = xk,jtrial, where xk,jtrial is a solution to (6) and
satisfies (7). Then, on the one hand, by Corollary 3.1, for each k ∈ K, there exist µ ∈

∑
|I(xk,δ)|

and νℓ, νu ∈ Rn
+ such that

xk+1 − xk =
1

σk

 n∑
i=1

(
νℓi − νui

)
ei −

∑
i∈I(xk,δ)

µi∇fi(xk)

 ,
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i.e.

∥xk+1 − xk∥ = 1

σk

∥∥∥∥∥∥
∑

i∈I(xk,δ)

µi∇fi(xk) +
n∑

i=1

(
νui − νℓi

)
ei

∥∥∥∥∥∥ ,
and, by (24) and the fact that C(δ, ϵ) does not hold at xk+1, it holds

∥xk+1 − xk∥ ≥ ϵ

γmax{L+ 2α, 9 c2x/(2δ)}
.

On the other hand, since for each k ∈ K, xk+1 satisfies (7), we have that

f(xk+1) ≤ f(xk)− α

(
ϵ

γmax{L+ 2α, 9 c2x/(2δ)}

)2

.

Summing for all k ∈ K,∑
k∈K

(
f(xk)− f(xk+1)

)
≥ |K|α

(
ϵ

γmax{L+ 2α, 9 c2x/(2δ)}

)2

.

Since f(x) ≥ flow for all x ∈ Rn,

f(x0)− flow ≥ |K|α
(

ϵ

γmax{L+ 2α, 9 c2x/(2δ)}

)2

,

from which (26) follows.

Algorithm 2.1 defines at each iteration k a regularization parameter σk ≥ σmin > 0, i.e.,
bounded away from zero. Specifically, the first trial σk,0 is an arbitrary value not smaller than
σmin that is then successively multiplied by γ. In practice, it may be adequate the first trial σk,0
at iteration k > 1 to be a fraction of σk−1. In this case, each σk ≥ σk

min, but it may be the case
that σk

min → 0. For such a modified version of Algorithm 2.1, with a slightly different analysis
than the one performed in Theorem 3.6, similar complexity bounds can also be obtained; see [7,
§4].

4 Numerical illustration

In this section we intend to illustrate how the OVO problem, and in particular the method
proposed to solve it, can be used to fit an epidemiological model in the case in which observations
contain outliers.

Algorithm 2.1 was implemented in Fortran. As suggested in Lemma 3.1, subproblem (6) of
Step 2 is reformulated as

Minimize y subject to ∇fi(xk)T (x−xk)+
1

σk,j
∥x−xk∥2 ≤ y for all i ∈ I(xk, δ) and x ∈ Ω. (27)

Problem (27) is a smooth nonlinear programming problem and we chose to solve it with Algen-
can. Algencan [2, 10, 11] is a safeguarded augmented Langrangian method introduced in [1, 2].

11



Its convergence theory, properties and usage are described in detail in [10]. Complexity re-
sults and an extensive numerical comparison with another state-of-the-art method for nonlinear
programming can be found in [11]. In this work we use Algencan with all its default parameters.

Codes were implemented in Fortran 90. Tests were conducted on a computer with a 3.9 GHz
AMD Ryzen 5 5600G processor and 32GB 3200 MHz DDR3 RAM memory, running Windows 11
Pro and a Windows Subsystem for Linux with Debian GNU/Linux 11. Code was compiled by
the GNU Fortran compiler (version 10.2.1) with the -O3 optimization directive enabled.

The considered epidemiological model was developed in [13] with the purpose of modeling a
serological data set of 8870 people before the introduction of measles, mumps and rubella vaccine
in United Kingdom. The model aims to describe the rate at which susceptible individuals acquire
infection by the diseases mentioned above at different ages. The data in Table 1, taken from [13],
show the estimated proportion of seropositive in the unvaccinated segment of the sample divided
into 29 age groups.

Age group Proportion seropositive Age group Proportion seropositive
(years) Measles Mumps Rubella (years) Measles Mumps Rubella
[1, 2) 0.207 0.115 0.126 [17, 19) 0.898 0.895 0.869
[2, 3) 0.301 0.147 0.171 [19, 21) 0.959 0.911 0.844
[3, 4) 0.409 0.389 0.184 [21, 23) 0.957 0.920 0.852
[4, 5) 0.589 0.516 0.286 [23, 25) 0.937 0.915 0.907
[5, 6) 0.757 0.669 0.400 [25, 27) 0.918 0.950 0.935
[6, 7) 0.669 0.768 0.503 [27, 29) 0.939 0.909 0.921
[7, 8) 0.797 0.786 0.524 [29, 31) 0.967 0.873 0.896
[8, 9) 0.818 0.798 0.634 [31, 33) 0.973 0.880 0.890
[9, 10) 0.866 0.878 0.742 [33, 35) 0.943 0.915 0.949
[10, 11) 0.859 0.861 0.664 [35, 40) 0.967 0.906 0.899
[11, 12) 0.908 0.844 0.735 [40, 45) 0.946 0.933 0.955
[12, 13) 0.923 0.881 0.815 [45, 55) 0.961 0.917 0.937
[13, 14) 0.889 0.895 0.768 [55, 65) 0.968 0.898 0.933
[14, 15) 0.936 0.882 0.842 [65,+∞) 0.968 0.839 0.917
[15, 17) 0.889 0.869 0.760

Table 1: Proportion of seropositive for measles, mumps and rubella by age group.

The model we wish to fit to the data in Table 1 is given by

y(t, x) = 1− exp

{
x1
x2

te−x2t +
x1
x2

(
x1
x2
− x3

)(
e−x2t − 1

)
− x3t

}
, (28)

where x1, x2, x3 are non-negative unknown parameters. The amount of data is m = 29, and we
wish to estimate the parameters x1, x2, x3 of model (28) for each of the three diseases separately.
That is, we consider three independent problems. To transform the model parameter fitting
problem into an OVO type problem, we define

fi(x) =
1

2
(y(ti, x)− yi)

2 ,
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for i = 1, . . . ,m, where ti represents the left limit of an age range [tmin, tmax) and yi represents
the corresponding observation. (Considering ti = (tmin + tmax)/2 would also be another valid
alternative.) Figure 1 shows a graphical representation of the data in Table 1, with the defi-
nition of ti mentioned above. Since x1, x2, x3 are non-negative, we define Ω = {(x1, x2, x3) ∈
R3 | (x1, x2, x3) ≥ 0}.
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Figure 1: Observed proportion of seropositive for the three considered diseases.

In Algorithm 2.1, we considered δ = 5 × 10−4, σmin = 0.1, α = 10−8, and γ = 5. As
stopping criterion, we checked the satisfaction of the optimality condition C(δ, ϵ) in-between
Steps 3 and 4. It is worth noticing that, when solving the reformulation of subproblem (6) with

Algencan as mentioned above, Algencan returns, besides the solution xk,jtrial sought, estimations
of the associated Lagrange multipliers µ, νℓ, and νu required to check C(δ, ϵ). For the stopping
criterion, we considered ϵ = 10−4. The ϵ tolerance value is standard when using first order
methods. The value of the parameters σmin, α, and γ is quite standard in the literature of
methods using regularized models and the method is not very sensitive to variations in these
parameters. The choice of δ is more difficult. It is dimensional, problem dependent, and was
chosen by trial and error. As initial guess x0 ∈ Ω, we considered the solution reported in [13]
obtained by applying linear least squares, namely, x0 = (0.197, 0.287, 0.021) for measles, x0 =
(0.156, 0.250, 0.000) for mumps, and x0 = (0.063, 0.178, 0.020) for rubella.

To illustrate the result of tackling a parameter fitting problem in the presence of outliers using
the OVO approach, we contaminated the observations of the age groups [19, 21), [21, 23), [23, 25),
and [25, 27), replacing the corresponding observation with 0.5. The modified observations are
shown in Figure 2. Assuming that the number of outliers is unknown, we solved the OVO
problem (3) with p = m− o and o ∈ {1, 2, . . . , 10}, where o represents the presumed number of
outliers in the data. Table 2 and Figure 3 show the results. The table shows, for each value of
o, the optimal value of the OVO function (column f(x∗)) and, as a measure of Algorithm 2.1
performance, the number of iterations (column “#it”), the number of functional evaluations
(column “#fcnt”), and the CPU time in seconds (column “Time”) that were necessary to meet
the stopping criterion. The figures in the table show that the optimal value of the objective
function of the OVO problem is on the order of 10−3 when o ∈ {1, 2, 3} and drops by an order
of magnitude when o ≥ 4. This shows that this approach might be used to automatically detect
the number of outliers contained in the data. The numbers in the table also show that problems
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where the number of outliers is underestimated are much more difficult to solve. In the figure,
some of the curves appear overlapped, but as expected the models whose parameters were fitted
considering 1 ≤ o ≤ 3 fail to reproduce the observed data.

Figure 4 shows, on the left, the models adjusted when considering o ∈ {4, 5, 6}. It is not
entirely clear that the model found by considering o = 4 is “the best”; and comparing the
optimal values f(x∗) obtained in the three cases does not help to decide, since it is natural
that the more observations are left out, the better (smaller) is the optimal value found. That
suggests that, assuming model (28) is “correct”, there are already outliers in the observed data
available in [13]. Figure 4 shows on the right side the fitted models considering o = 10. In these
plots, the observations that the optimal solution of the OVO problem points out as outliers are
highlighted in red. It is clear that choosing these observations manually would be practically
impossible.
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Figure 2: Observed proportion of seropositive for the three considered diseases after the inclusion
of outliers.

o
measles mumps rubella

f(x∗) #it #fcnt Time f(x∗) #it #fcnt Time f(x∗) #it #fcnt Time

1 2.664e−02 259 459 0.13 2.149e−02 110 197 0.03 2.034e−02 413 885 0.34
2 2.650e−02 256 457 0.05 2.100e−02 104 174 0.03 1.933e−02 359 754 0.23
3 2.605e−02 219 354 0.06 2.088e−02 107 160 0.03 1.817e−02 372 746 0.21
4 3.193e−03 27 55 0.00 2.982e−03 5 19 0.00 3.165e−03 26 80 0.01
5 2.755e−03 12 31 0.00 2.481e−03 3 9 0.00 1.914e−03 6 22 0.00
6 1.199e−03 6 8 0.00 1.060e−03 6 14 0.00 1.782e−03 4 25 0.00
7 9.910e−04 7 18 0.00 1.981e−03 4 22 0.00 1.725e−03 2 6 0.00
8 5.496e−04 4 16 0.00 1.660e−03 5 6 0.00 1.300e−03 6 18 0.00
9 4.549e−04 1 10 0.00 1.491e−03 2 10 0.00 1.061e−03 3 6 0.00
10 3.620e−04 1 10 0.00 1.300e−03 1 2 0.00 6.666e−04 2 5 0.00

Table 2: Details of applying Algorithm 2.1 for solving the OVO problem with p = m − o and
o ∈ {1, 2, . . . , 10}.
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Figure 3: Models adjusted by solving the OVO problem with p = m− o and o ∈ {1, 2, . . . , 10}.

5 Final remarks

In this paper we introduced a method for the problem of minimizing the order-value function
with box constraints. The method is of first order and uses quadratic regularization. As lines
of future work we can mention the development of methods for problems with more general
constraints and methods using higher order models. More generally, proposing methods with
complexity results for other problems of the GOVO family is also a possible line of future work.

Disclosure statement: The authors report there are no competing interests to declare.
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Figure 4: On the left side, the models fitted with o ∈ {4, 5, 6}. On the right side, the models
fitted with o = 10, highlighting the observations that the optimal solution to the OVO problem
points to as outliers.

16



References

[1] R. Andreani, E. G. Birgin, J. M. Mart́ınez and M. L. Schuverdt, Augmented Lagrangian
methods under the Constant Positive Linear Dependence constraint qualification, Mathe-
matical Programming 111, pp. 5–32, 2008.

[2] R. Andreani, E. G. Birgin, J. M. Mart́ınez and M. L. Schuverdt, On Augmented Lagrangian
methods with general lower-level constraints, SIAM Journal on Optimization 18, pp. 1286–
1309, 2008.

[3] R. Andreani, C. Dunder and J. M. Mart́ınez, Order-Value Optimization: Formulation and
solution by means of a primal Cauchy method, Mathematical Methods of Operations Re-
search 58, pp. 387–399, 2003.

[4] R. Andreani, C. Dunder and J. M. Mart́ınez, Nonlinear-programming reformulation of the
order-value optimization problem, Mathematical Methods of Operations Research 61, pp.
365–384, 2005.

[5] R. Andreani, J. M. Mart́ınez, M. Salvatierra, and F. S. Yano, Quasi-Newton methods for
Order-Value Optimization and Value-at-Risk calculations, Pacific Journal of Optimization
2, pp. 11–33, 2006.

[6] R. Andreani, J. M. Mart́ınez, M. Salvatierra, and F. S. Yano, Global order-value optimiza-
tion by means of a multistart harmonic oscillator tunneling strategy, in Global Optimization:
From Theory to Implementation, L. Liberti and N. Maculan (eds.), Springer, Boston, MA,
2006, pp. 379–404.

[7] E. G. Birgin, J. L. Gardenghi, J. M. Mart́ınez, and S. A. Santos, On the use of third-
order models with fourth-order regularization for unconstrained optimization, Optimization
Letters 14, pp. 815–838, 2020.

[8] E. G. Birgin, J. L. Gardenghi, J. M. Mart́ınez, S. A. Santos, and Ph. L. Toint, Evaluation
complexity for nonlinear constrained optimization using unscaled KKT conditions and high-
order models, SIAM Journal on Optimization 26, pp. 951–967, 2016.

[9] E. G. Birgin, J. L. Gardenghi, J. M. Mart́ınez, S. A. Santos, and Ph. L. Toint, Worst-case
evaluation complexity for unconstrained nonlinear optimization using high-order regularized
models, Mathematical Programming 163, pp. 359–368, 2017.

[10] E. G. Birgin and J. M. Mart́ınez, Practical Augmented Lagrangian Methods for Constrained
Optimization, Society for Industrial and Applied Mathematics, Philadelphia, 2014.

[11] E. G. Birgin and J. M. Mart́ınez, Complexity and performance of an Augmented Lagrangian
algorithm, Optimization Methods and Software 35, pp. 885–920, 2020.

[12] C. Cartis, N. I. M. Gould, and Ph. L. Toint, Evaluation Complexity of Algorithms for
Nonconvex Optimization: Theory, Computation, and Perspectives, SIAM, Philadelphia,
PA, 2022.

17



[13] C. P. Farrington, Modelling forces of infection for measles, mumps and rubella, Statistics
in Medicine 9, pp. 953–967, 1990.

[14] P. Jorion, Value at Risk: The new benchmark for managing financial risk, 3rd. ed., McGraw-
Hill, 2009.

[15] J. M. Mart́ınez, Generalized Order-Value Optimization, TOP 20, pp. 75–98, 2012.

[16] Y. Nesterov and B. T. Polyak, Cubic regularization of Newton method and its global
performance, Mathematical Programming 108, 177–205, 2006.

[17] Z. Jiang, Q. Hu, and X. Zheng, Optimality condition and complexity of order-value opti-
mization problems and low order-value optimization problems, Journal of Global Optimiza-
tion 69, pp. 511–523, 2017.

18


	Introduction
	Quadratically regularized first-order method
	Convergence and complexity
	Numerical illustration
	Final remarks

