
Second-order negative-curvature methods for box-constrained and

general constrained optimization∗

R. Andreani † E. G. Birgin ‡ J. M. Mart́ınez † M. L. Schuverdt †

March 4, 2009.§

Abstract

A Nonlinear Programming algorithm that converges to second-order stationary points is intro-
duced in this paper. The main tool is a second-order negative-curvature method for box-constrained
minimization of a certain class of functions that do not possess continuous second derivatives. This
method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar)
type. Convergence proofs under weak constraint qualifications are given. Numerical examples show-
ing that the new method converges to second-order stationary points in situations in which first-order
methods fail are exhibited.

Key words: Nonlinear programming, Augmented Lagrangians, global convergence, optimality con-
ditions, second-order conditions, constraint qualifications.

1 Introduction

We are concerned with general nonlinear programming problems with equality and inequality constraints:

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, x ∈ Ω, (1)

where Ω = {x ∈ IRn | ℓ ≤ x ≤ u} and the functions f : IRn → IR, h : IRn → IRq, g : IRn → IRp are twice
continuously differentiable in IRn.

Most practical nonlinear optimization algorithms aim to encounter a local solution of the problem,
since global solutions are, in general, very difficult to find. In order to approximate a local minimizer, a
typical nonlinear optimization method produces a sequence of iterates {xk} that converges to a solution
or, at least, to a point that verifies an optimality condition.

A good optimality condition should be strong. In that case, its fulfillment will be a serious indication
that a local minimizer has been found. Usually, a first-order optimality condition takes the form:

(Not– CQ) or P, (2)

where P is a statement that involves first derivatives of functions and constraints and CQ is a constraint
qualification that involves, at most, first derivatives of the constraints. A local minimizer of a nonlinear
programming problem that satisfies a constraint qualification CQ necessarily fulfills the condition P.
Therefore, the strength of an optimality condition is linked to the weakness of the associated constraint

∗This work was supported by PRONEX-Optimization (PRONEX - CNPq / FAPERJ E-26 / 171.510/2006 - APQ1),
FAPESP (Grants 2006/53768-0 and 2005/57684-2) and CNPq.

†Department of Applied Mathematics, IMECC-UNICAMP, University of Campinas, CP 6065, 13081-970 Campinas SP,
Brazil. e-mail: {andreani|martinez|schuverd}@ime.unicamp.br

‡Department of Computer Science IME-USP, University of São Paulo, Rua do Matão 1010, Cidade Universitária, 05508-
090 São Paulo SP, Brazil. e-mail: egbirgin@ime.usp.br

§Page number of references [18, 21] corrected on March 12, 2010.

1

qualification. On the other hand, the optimality condition (2) will be practical when there exist algorithms
whose limit points necessarily satisfy (2).

In first-order optimality, the proposition P of (2) is represented by the Karush-Kuhn-Tucker (KKT)
conditions. The weakest practical constraint qualification associated with KKT seems to be the Constant
Positive Linear Dependence (CPLD) condition, introduced by Qi and Wei [34] and defined below.

Assume that x̄ is a feasible point of the nonlinear programming problem

Minimize f(x) subject to hi(x) = 0, i ∈ I, ḡj(x) ≤ 0, j ∈ J (3)

and that the active constraints at x̄ are, besides the equalities, ḡj(x) ≤ 0, j ∈ J0. Let I1 ⊆ I, J1 ⊆ J0.
We say that the gradients ∇hi(x̄)(i ∈ I1),∇ḡj(x̄)(j ∈ J1) are positively linearly dependent if

∑

i∈I1

λi∇hi(x̄) +
∑

j∈J1

µj∇ḡj(x̄) = 0,

where λi ∈ IR, ∀i ∈ I1, µj ≥ 0, ∀j ∈ J1 and
∑

i∈I1
|λi| +

∑
j∈J1

µj > 0. (Observe that (1) is a
particular case of (3), using an adequate description of the box Ω.) The CPLD condition says that,
when a subset of gradients of active constraints is positively linearly dependent at x̄, then the same set
of gradients remains linearly dependent for all x (feasible or not) in a neighborhood of x̄. Therefore,
CPLD is strictly weaker than the Mangasarian-Fromovitz (MFCQ) constraint qualification [28, 36]. A
trivial case in which CPLD holds, but MFCQ does not, is when the set of constraints is formed by
two identical equality constraints with nonnull gradient. In some sense, this is an unstable situation
since a small perturbation of a constraint may change completely the solution of the problem, or even
make the problem infeasible. However, in floating point computations, feasible perturbations affect the
two “repeated” constraints in exactly the same way, so that the problem remains stable, in spite of the
non-satisfaction of MFCQ.

The status of CPLD as a constraint qualification was elucidated in [2]. In [1] an Augmented Lagrangian
algorithm for minimization with arbitrary lower-level constraints was introduced and it was proved that
feasible limit points of sequences generated by this algorithm satisfy (2) if CQ = CPLD and P = KKT.
In (1), lower-level constraints are represented by x ∈ Ω, where Ω is a box. In [1] a more general situation,
in which Ω is defined by h(x) = 0, g(x) ≤ 0 is considered.

Second-order optimality conditions apply to feasible points that are known to be KKT points. These
conditions also take the form (2). As in the first-order case, the proposition P involves derivatives of
objective function and constraints and, in the constraint qualification CQ, only constraint derivatives
occur. In this paper, P will be the Weak Second Order Necessary Condition (SONC) defined below.

If x̄ is a KKT point of (3) with multipliers λi, i ∈ I, µj ≥ 0, j ∈ J , we say that x̄ satisfies SONC if

dT (∇2f(x̄) +
∑

i∈I

λi∇2hi(x̄) +
∑

j∈J

µj∇2ḡj(x̄))d ≥ 0

for all d ∈ IRn such that
∇hi(x̄)T d = 0,∇ḡj(x̄)T d = 0,∀ i ∈ I, j ∈ J.

In other words, SONC says that the Hessian of the Lagrangian at the KKT point x̄ is positive
semidefinite on the orthogonal subspace to the gradients of active constraints.

In [3] it was proved that a suitable constraint qualification associated with SONC is

MFCQ and WCR. (4)

Condition WCR (Weak Constant-Rank) says that the rank of the matrix formed by the gradients of
active constraints at x̄ remains constant in a neighborhood of x̄.

We will introduce an algorithm for solving problem (1) with convergence to first-order and second-
order stationary points defined by the optimality conditions above. The algorithm is a PHR-like Aug-
mented Lagrangian method [26, 33, 35]. This means that it is based on the sequential box-constrained

2

approximate minimization of the Augmented Lagrangian defined by:

Lρ(x, λ, µ) = f(x) +
ρ

2

{ q∑

i=1

[
hi(x) +

λi

ρ

]2

+

p∑

i=1

[
max

(
0, gi(x) +

µi

ρ

)]2}
(5)

for all x ∈ IRn, λ ∈ IRq, µ ∈ IRp, µ ≥ 0, ρ > 0. Note that lower-level constraints do not appear in the
definition of the Augmented Lagrangian.

By the PHR nature of the method, the objective function at each subproblem is not twice differen-
tiable. Therefore, we will need to define an algorithm for solving subproblems that preserves second-order
convergence properties in spite of second-derivative discontinuities. We will see that the convergence prop-
erties of the subproblem solver are strong enough to induce second-order convergence of the Augmented
Lagrangian method.

The Augmented Lagrangian PHR-like algorithm Algencan, described in [1] and available through
the Tango Project web site (http://www.ime.usp.br/∼egbirgin/tango/), represents the basic idea on
which is based the definition of the second order Augmented Lagrangian PHR-like algorithm, called
Algencan-Second from now on. Algencan uses, as a toolbox for box constrained optimization, the
solver Gencan, based on the active set strategy and on spectral projected gradient steps for leaving
faces [9, 10, 11]. The effectiveness of this well established method for large-scale problems leads us to
define a second-order method for box-constrained minimization as a minor modification of Gencan. The
second-order version of Gencan will be called Gencan-Second from now on.

In the unconstrained case, most methods using negative-curvature information are based on line-
search and trust-region ideas, see [23, 29, 31, 37, 39, 41] and the books [16, 22, 29, 32], among others.
In particular, the philosophy of the unconstrained second-order method given in [23] was quite useful
for defining a suitable Gencan modification. It is worth to mention that in [4] and [6] box-constraint
methods that use second-order information inspired in Gencan were also defined, but convergence to
second-order stationary points was not unconditionally established.

A few words on practical and theoretical motivation are in order. Optimization research takes place
in two “parallel worlds”: the Continuous one and the Floating-point world. The behavior of algorithms
in the Continuous World may be seen as a model for the floating-point behavior. In the Continuous world
one tries to prove convergence results, but it is not completely clear the way in which these results affect
the computational performance of the algorithms. We adopt a conservative point of view: Convergence
results should be as strong as possible, and (if possible) only reasonable assumptions on the problem
should be employed. The research on methods that converge to second-order critical points is motivated
by this “need of strength”. We implicitly believe that, in the Floating-point world, the chance of finding
global minimizers is enhanced if one guarantees convergence to points that satisfy the strongest possible
optimality conditions. This point of view is especially controversial in the case of second-order criticality.
Although convergence of first-order unconstrained minimization algorithms to saddle points may occur,
the set of initial points from which such convergence may take place is usually rare. As a consequence,
even if a first-order method converges to a saddle point starting from x0, such convergence may not occur
if the initial point x0 is slightly perturbed. Therefore, the chance of obtaining meaningful better results of
a second-order modified method with respect to its first-order counterpart in a massive comparison may
be very small. However, as statisticians use to say, events with probability zero occur and initial points
in a rare set may be originated, not in an individual user-decision but in an external model out of human
control. For this reason, we maintain our belief that methods converging to second-order stationary
points are useful.

Most papers on second-order methods for constrained optimization use the regularity (LICQ) con-
straint qualification. A few examples deserve to be mentioned. Byrd, Schnabel and Schultz [12] employ
a sequential quadratic programming (SQP) approach and second-order stationarity is obtained thanks
to the use of second-order correction steps. Coleman, Liu and Yuan [13] use the SQP approach with
quadratic penalty functions for equality constrained minimization. Conn, Gould, Orban and Toint [14]
employ a logarithmic barrier method for inequality constrained optimization with linear equality con-
straints. Dennis, Heinkenschloss and Vicente [17] use affine scaling directions and, also, the SQP approach

3

for optimization with equality constraints and simple bounds (see, also, [18]). Di Pillo, Lucidi and Palagi
[19] define a primal-dual algorithm model for inequality constrained optimization problems that exploits
the equivalence between the original constrained problem and the unconstrained minimization of an ex-
act Augmented Lagrangian function. They employ a curvilinear line search technique using information
on the nonconvexity of the Augmented Lagrangian function. Facchinei and Lucidi [20] use negative-
curvature directions in the context of inequality constrained problems. The convergence to second-order
critical points of trust-region algorithms for convex constraints with identification properties is studied
in Chapter 11 of [16].

This paper is organized as follows. In Section 2 we describe the second-order method for box-
constrained minimization of functions with the particular structure that is needed in the PHR Augmented
Lagrangian approach. We prove first-order and second-order convergence of this box-constraint solver.
In Section 3 we define the Augmented Lagrangian method and we prove, under the constraint quali-
fication (4), convergence to KKT points verifying the second-order necessary optimality condition. In
Section 4 we exhibit numerical examples. Finally, in Section 5, we state conclusions and lines for future
research.

Notation

• The symbol ‖ · ‖ denotes the Euclidian norm, although, many times it can be replaced by an
arbitrary vector norm.

• PA(z) denotes the Euclidian projection of z on the set A.

• λ1(B) is the smallest eigenvalue of the symmetric real matrix B.

• We denote IN = {0, 1, 2, . . .}.

• The open ball with center x̄ and radius ε will be denoted B(x̄, ε).

• Ā is the topological closure of the set A.

• The segment {x ∈ IRn | x = tu + (1− t)v, t ∈ [0, 1]} will be denoted [u, v].

• For all y ∈ IRn, y+ = (max{0, y1}, . . . ,max{0, yn})T .

2 Second-Order Method for Box-Constrained Minimization

In this section we consider the problem

Minimize F (x) subject to x ∈ Ω. (6)

The set Ω will be a compact n-dimensional box. That is,

Ω = {x ∈ IRn | ℓ ≤ x ≤ u},

where ℓ, u ∈ IRn, −∞ < ℓ < u <∞.
The general form of F (x) will be:

F (x) = f0(x) +
1

2

m∑

j=1

[fj(x)+]2. (7)

We will use the following smoothness assumption:

Assumption A1. The functions f0, f1, . . . , fm are twice continuously differentiable on an open convex
bounded set A that contains Ω.

4

The motivation of (7) is that this is the form of the Augmented Lagrangian function defined by
(5), with obvious adaptations. Therefore, in the Augmented Lagrangian PHR method we will need to
minimize functions of the form (7). By (7), F has continuous first derivatives, but second derivatives may
not exist at the points where fj(x) = 0 for some j. Note that the case in which F is a twice continuously
differentiable function is a particular case of (7), corresponding to m = 0 and F (x) = f0(x).

For all x ∈ A we denote:
I0(x) = {i ∈ {1, . . . ,m} | fi(x) = 0},
I+(x) = {i ∈ {1, . . . ,m} | fi(x) > 0},
I−(x) = {i ∈ {1, . . . ,m} | fi(x) < 0}.

For all x ∈ Ω, ε ≥ 0, we define:

Iε(x) = {i ∈ {1, . . . ,m} | fi(x) ≥ −ε}

and

∇2
εF (x) = ∇2f0(x) +

m∑

i=1

fi(x)+∇2fi(x) +
∑

i∈Iε(x)

∇fi(x)∇fi(x)T .

Observe that, at any point x where F is twice smooth, the Hessian of F is ∇2
0F (x). Therefore, at these

points, the eigenvalues of ∇2
εF (x) are bounded below by the eigenvalues of the true Hessian ∇2

0F (x).
Therefore, if the true Hessian is positive semidefinite, then ∇2

εF (x) is positive semidefinite too.

2.1 Technical results

The next proposition is a Taylor-like result that says that the quadratic whose gradient is ∇F (x̄) and
whose Hessian is ∇2

εF (x̄) is an approximate overestimation of the increment F (x)− F (x̄).

Proposition 1. Suppose that f0, f1, . . . , fm satisfy Assumption A1. Let x̄ ∈ A. Then, for all x ∈ A,
ε ≥ 0, we have:

F (x) ≤ F (x̄) +∇F (x̄)T (x− x̄) +
1

2
(x− x̄)T∇2

εF (x̄)(x− x̄) + o(‖x− x̄‖2). (8)

Proof. By the continuity of fi, i = 1, . . . ,m, there exists δ > 0 such that, for all x ∈ B(x̄, δ),

fi(x̄) > 0⇒ fi(x) > 0

and
fi(x̄) < 0⇒ fi(x) < 0,

for all i = 1, . . . ,m. Therefore, for all x ∈ B(x̄, δ),

I+(x) ⊆ I0(x̄) ∪ I+(x̄) ⊆ Iε(x̄). (9)

Let x ∈ B(x̄, δ). Then,

F (x) = f0(x) +
1

2

m∑

i=1

[fi(x)+]2 = f0(x) +
1

2

∑

i∈I+(x)

fi(x)2.

Therefore, by (9),

F (x) ≤ f0(x) +
1

2

∑

i∈I0(x̄)∪I+(x̄)

fi(x)2. (10)

5

By the second-order Taylor development of the right-hand side of (10) we have:

F (x) ≤ f0(x̄) +∇f0(x̄)T (x− x̄) +
1

2
(x− x̄)T∇2f0(x̄)(x− x̄)

+
1

2

∑

i∈I0(x̄)∪I+(x̄)

(
fi(x̄)2+2fi(x̄)∇fi(x̄)T (x−x̄)+(x−x̄)T (fi(x̄)∇2fi(x̄)+∇fi(x̄)∇fi(x̄)T)(x−x̄)

)
+o(‖x−x̄‖2)

= f0(x̄) +
1

2

∑

i∈I0(x̄)∪I+(x̄)

fi(x̄)2 +

(
∇f0(x̄) +

∑

i∈I0(x̄)∪I+(x̄)

fi(x̄)∇fi(x̄)

)T

(x− x̄)

+
1

2
(x− x̄)T

(
∇2f0(x̄) +

∑

i∈I0(x̄)∪I+(x̄)

(fi(x̄)∇2fi(x̄) +∇fi(x̄)∇fi(x̄)T)

)
(x− x̄) + o(‖x− x̄‖2)

= F (x̄)+∇F (x̄)T (x−x̄)+
1

2
(x−x̄)T

(
∇2f0(x̄)+

m∑

i=1

fi(x̄)+∇2fi(x̄)+
∑

i∈I0(x̄)∪I+(x̄)

∇fi(x̄)∇fi(x̄)T

)
(x−x̄)+o(‖x−x̄‖2).

Then, using that ∇fi(x̄)∇fi(x̄)T is positive semidefinite and (9) we obtain that

F (x) ≤ F (x̄) +∇F (x̄)T (x− x̄) +
1

2
(x− x̄)T∇2

εF (x̄)(x− x̄) + o(‖x− x̄‖2)

as we wanted to prove. 2

The following technical proposition is a trivial consequence of the uniform continuity of the func-
tions fi.

Proposition 2. Suppose that f0, f1, . . . , fm satisfy Assumption A1. Let ε > 0. There exists δ > 0 such
that, for all x̄ ∈ Ω, x ∈ B(x̄, δ) ∩ Ω, we have:

fi(x̄) < −ε⇒ fi(x) < 0

for all i = 1, . . . ,m.

Proof. Since Ā is compact, all the functions fi are uniformly continuous on A. So, there exists δ > 0
such that, for all x̄ ∈ Ω, x ∈ B(x̄, δ) ∩ Ω, i ∈ {1, . . . ,m}, one has:

|fi(x)− fi(x̄)| ≤ ε

2
.

Then,

fi(x) ≤ fi(x̄) +
ε

2
.

Therefore, if fi(x̄) < −ε we have that fi(x) < − ε
2 < 0, as we wanted to prove. 2

For all x ∈ Ω, we define

F(x) = {z ∈ Ω | zi = ℓi if xi = ℓi, zi = ui if xi = ui, ℓi < zi < ui otherwise}.

We say that F(x) is the open face to which x belongs. We define V(x) as the smallest affine subspace that
contains F(x). Let S(x) be the parallel subspace to V(x). The dimension of F(x) (denoted dim(F(x)))
will be the dimension of S(x) which, of course, coincides with the number of free variables of the face.
Obviously, Ω is the disjoint union of all its open faces. Given an open face F(x), the variables xi such
that ℓi < xi < ui will be called free and the remaining variables will be called fixed or active. Vertices of
Ω are open faces with dimension zero.

6

Define:
gP (x) = PΩ(x−∇F (x))− x,

gI(x) = PS(x)(gP (x)),

and
g(x) = gF(x)(x) = PS(x)(∇F (x)).

The vector gP (x) will be called (continuous, negative) Projected Gradient whereas gI(x) is the (continuous,
negative) Internal Projected Gradient and gF(x)(x) is the Internal Gradient.

Let F be an open face with at least one free variable. For all x ∈ F , we define the reduced ε-Hessian
H[F,ε](x) as the n× n matrix whose entry (i, j) is:

• The entry (i, j) of ∇2
εF (x) if both xi and xj are free variables in F .

• The entry (i, j) of the Identity n× n matrix, otherwise.

2.2 Bound-constrained algorithm

Let us now describe our main algorithm. Given the iterate xk ∈ Ω, Algorithm 2.1 below chooses among
two procedures for computing the next iterate xk+1 ∈ Ω. The spectral projected gradient (SPG) method
is employed when an appropriate test indicates that the current face must be abandoned. If the test
recommends that one must stay in the current face, the next iterate is computed using an Internal
Algorithm. The Internal and SPG algorithms will be defined later.

The execution of Algorithm 2.1 finishes only when an iterate is found such that the norm of the
projected gradient is smaller than εgrad and all the eigenvalues of the reduced εfun-Hessian are greater
than −εhess. If the internal projected gradient is large relatively to the projected gradient or if there
are “sufficiently negative” eigenvalues of the reduced Hessian, the algorithm stays in the current face.
In the first case, this means that the internal components of the gradient are large enough and, so, it is
worthwhile to continue in the same face. In the second case, an internal direction exists along which the
(negative) curvature of the function is large. So, the algorithm also judges that staying in the current
face exploiting decrease along a negative curvature direction is worthwhile. Otherwise, the current face
is abandoned using an SPG iteration. In other words, we stay in the current face while the gradient and
Hessian indicators reveal that internal progress is still possible.

Algorithm 2.1 (Gencan-Second)

Let x0 ∈ Ω be the initial approximation to the solution of (6). Assume that η ∈ (0, 1), εfun, εgrad, εhess > 0,
εcurv ∈ (0, εhess). Initialize k ← 0.

Step 1. Stopping Criterion

If
‖gP (xk)‖ ≤ εgrad (11)

and
dim(F(xk)) = 0 or λ1(H[F(xk),εfun](x

k)) ≥ −εhess, (12)

terminate the execution of the algorithm declaring “Convergence”.

Step 2. Decision about keeping or abandoning the current face

If
‖gI(x

k)‖ ≤ η‖gP (xk)‖ (13)

7

and
dim(F(xk)) = 0 or λ1(H[F(xk),εfun](x

k)) ≥ −εcurv, (14)

compute xk+1 ∈ Ω using Algorithm 2.2 (SPG). Otherwise, compute xk+1 ∈ Ω using Algorithm 2.3 (In-
ternal Algorithm).

Step 3. Set k ← k + 1 and go to Step 1.

Remark. If F(xk) is a vertex then, by (13) and (14), gI(x
k) = 0 and xk+1 is computed by SPG. There-

fore, Algorithm 2.3 is called only when dim(F(xk)) ≥ 1.

The spectral projected gradient is defined below. As in [9, 10, 11] and [7], the SPG direction is a
projected gradient scaled by the spectral coefficient σk. In this way, a gradient step is performed with a
minimal amount of second-order information.

Algorithm 2.2 (Spectral Projected Gradient iteration)

Let xk ∈ Ω be the current approximation to the solution of (6). Assume that α ∈ (0, 1
2), 0 < σmin <

σmax <∞.

Step 1. Compute the search direction

If k = 0 or (xk − xk−1)T (∇F (xk) − ∇F (xk−1)) ≤ 0 then set σk = 1. Otherwise, define σk as the
safeguarded spectral coefficient [9]:

σk = max

{
σmin,min

{ ‖xk − xk−1‖2
(xk − xk−1)T (∇F (xk)−∇F (xk−1))

, σmax

}}
.

Define dk = PΩ(xk − σk∇F (xk))− xk.

Step 2. Compute the steplength

Set t← 1. If
F (xk + tdk) ≤ F (xk) + αt(dk)T∇F (xk). (15)

set tk = t, define xk+1 ∈ Ω such that F (xk+1) ≤ F (xk + tkd) (observe that xk+1 = xk + tkd is an
admissible choice) and return. Otherwise, choose tnew ∈ [0.1t, 0.9t], set t← tnew and repeat test (15).

At Step 2, Algorithm 2.1 decides that, if (13) and (14) take place, the new iteration is computed by
Algorithm 2.2. If this is not the case, the new iteration will be in the closure of the face F(xk) and will
be computed using Algorithm 2.3 below.

Algorithm 2.3 (Internal iteration)

Let xk ∈ Ω be the current approximation to the solution of (6). Assume that α ∈ (0, 1
2), β > 0,

0 < θ < 1, κ > 0, ε0 > 0. Let εcurv be the one of Algorithm 2.1. Denote Hk = H[F(xk),εfun](x
k),

g(xk) = PS(xk)(∇F (xk)).

Step 1. Compute the first-order direction

If ‖g(xk)‖ 6= 0, compute dk,1 ∈ S(xk) (the first-order direction) satisfying

g(xk)T dk,1 ≤ −θ‖dk,1‖‖g(xk)‖ (16)

8

and
‖dk,1‖ ≥ β‖g(xk)‖. (17)

Otherwise, define dk,1 = 0.

Step 2. Compute the second-order negative-curvature direction

If ‖g(xk)‖ ≥ ε0 or λ1(Hk) ≥ −εcurv, define dk = dk,1 and go to Step 4. Otherwise, compute
dk,2 ∈ S(xk) satisfying

‖dk,2‖ = 1,

g(xk)T dk,2 ≤ 0, (18)

and
(dk,2)T Hkdk,2 < −εcurv. (19)

(Since λ1(Hk) < −εcurv this direction necessarily exists.)

Step 3. Decide between first and second-order directions

If ‖dk,1‖ 6= 0 and
g(xk)T dk,1

‖dk,1‖ ≤ κ

(
g(xk)T dk,2 +

1

2
(dk,2)T Hkdk,2

)
(20)

choose dk = dk,1, else choose dk = dk,2.

Step 4. Compute maximal feasible steplength

Compute
t[max,k] = max{t ≥ 0 | [xk, xk + tdk] ⊆ Ω}.

Step 5. Test xk+1 in the boundary of F(xk).

If t[max,k] < 1 and F (xk + t[max,k]d
k) < F (xk) then compute xk+1 in the boundary of F(xk) such that

F (xk+1) ≤ F (xk + t[max,k]d
k) and return. (Observe that xk+1 = xk + t[max,k]d

k is an admissible choice

and that, since dim(F(xk)) ≥ 1, xk+1 /∈ F(xk).)

Step 6. Choose descent function γ(t)

If dk = dk,2, define γ(t) = −t2εcurv/4. Else, define γ(t) = t(dk)T∇F (xk).

Step 7. Backtracking

Set t← min{1, t[max,k]}. If

F (xk + tdk) ≤ F (xk) + αγ(t) (21)

set tk = t, define xk+1 ∈ F(xk) such that F (xk+1) ≤ F (xk + tkd) and return. (Observe that xk+1 =
xk + tkd is an admissible choice.) Otherwise, choose

tnew ∈ [0.1t, 0.9t], (22)

set t← tnew and repeat test (21).

Remarks.

9

1. The first-order direction dk,1 is always computed. The second-order negative-curvature direction
dk,2 is computed only if the reduced gradient is not large and the smallest eigenvalue of the reduced
Hessian is negative enough.

2. If both directions were computed, the algorithm decides between the first and the second-order
directions. The idea (as in [23]) is to choose the search direction that provides a better predicted
reduction of the model (linear in the case of the first-order direction, quadratic in the case of the
negative-curvature direction). In general, one uses κ = 1. The use of the linear model for dk,1

and the quadratic model for dk,2 in (20) deserves some discussion: One could wonder why the
quadratic model is not used in both cases. For supporting our decision, let us observe first that
both models are computed for unitary search directions (dk,1/‖dk,1‖ and dk,2). The employment of
unitary directions is completely arbitrary and, in fact, we could use directions of arbitrarily small
size ν > 0, choosing ‖dk,2‖ = ν at Step 2 and multiplying the left-hand side of (20) by ν. However,
the result of the test (20) would depend on the choice of ν. For ν tending to zero (and κ = 1), the
decision based on the modified ν-form of (20) would be the following:

Choose dk = dk,1 if, and only if,
g(xk)T dk,1

‖dk,1‖ <
g(xk)T dk,2

‖dk,2‖ . (23)

If we use the quadratic model on the left-hand side of (20) and we let the size ν tend to zero
we arrive to the decision (23), excepts, perhaps, in the case that g(xk)T dk,1 = g(xk)T dk,2. These
considerations lead us to think that, in a local sense, considering the quadratic model for dk,1 is
equivalent to the adopted form. So, we preserved the test (20) because it is less expensive than its
all-quadratic alternative.

3. To compute the steplength, the algorithm firstly computes the maximum feasible steplength along
the search direction. If the maximum steplength is smaller than 1 and, at the boundary point that
corresponds to this steplength, the objective function decreases, then this boundary point (or some
better boundary point) is defined as the next iterate. Otherwise, a backtracking process starts.

4. To perform the backtracking process, the algorithm firstly selects the forcing descent function.
This function corresponds to a simple quadratic model if the descent direction is the negative-
curvature one, and to the linear approximating function if we deal with the first-order direction.
Then, the algorithm performs a backtracking procedure trying to decrease the objective function
proportionally to the forcing function chosen.

2.3 Convergence

Throughout this section we assume that f0, f1, . . . , fm satisfy Assumption A1. As usually, we say that
an algorithm is well defined if it guarantees to terminate or return in finite time. We will show first that
Algorithm 2.3 is well defined. That is, when we try to compute the next iterate keeping the current active
constraints, we find in a finite number of steps a new point that satisfies the required descent condition.

Lemma 1. Algorithm 2.3 is well defined. Moreover, if xk+1 is computed by Algorithm 2.3, then
xk+1 ∈ F(xk) and F (xk+1) < F (xk).

Proof. Consider first the case dk = dk,1. Since g(xk)T dk < 0, the proof that the Armijo condition (21) is
satisfied for t small enough follows from classical one-dimensional arguments for descent methods.

Let us consider now the case dk = dk,2. By (18) and (19) we have that, for all t > 0,

tg(xk)T dk,2 +
t2

2
(dk,2)T Hkdk,2 ≤ − t2εcurv

2
< 0. (24)

By (8), for t > 0 small enough, we have:

F (xk + tdk,2)− F (xk)− [tg(xk)T dk,2 +
t2

2
(dk,2)T Hkdk,2] ≤ o(t2).

10

Therefore, by (24),
F (xk + tdk,2)− F (xk)

tg(xk)T dk,2 + t2

2 (dk,2)T Hkdk,2
− 1 ≥ o(1).

Thus, since 0 < α < 1/2, for t small enough, we have:

F (xk + tdk,2)− F (xk)

[tg(xk)T dk,2 + t2

2 (dk,2)T Hkdk,2]
≥ α.

Therefore,

F (xk + tdk,2)− F (xk) ≤ α[tg(xk)T dk,2 +
t2

2
(dk,2)T Hkdk,2] ≤ −α

t2εcurv

2
.

This implies that, for t small enough, the sufficient descent condition (21) necessarily holds. Therefore,
after a finite number of backtrackings in Algorithm 2.3, a value of t satisfying (21) is necessarily found.
Therefore, both in the case in which dk = dk,1 and in the case in which dk = dk,2 the internal iteration
terminates finding xk+1 in the closure of F(xk). 2

Lemma 2. Algorithm 2.2 is well defined.

Proof. See, for example, [11]. Observe that dk, generated by Algorithm 2.2, is a descent direction and,
so, the Armijo condition (15) is satisfied for t small enough. 2

In Lemma 3 we show that, if all the iterations are eventually computed by Algorithm 2.3, then all
the iterates belong to the same face after a finite number of iterations.

Lemma 3. Assume that there exists k0 ∈ IN such that xk+1 is computed by Algorithm 2.3 for all k ≥ k0.
Then, there exists k1 ≥ k0 such that

xk ∈ F(xk1) for all k ≥ k1.

Proof. By Step 2 of Algorithm 2.1, xk+1 ∈ F(xk) for all k ≥ k0. Assume, by contradiction, that

xk+1 /∈ F(xk)

infinitely many times. This means that at least one variable is added to the set of fixed variables at xk

infinitely many times. This is impossible, since the number of variables is finite. 2

In the next lemma we show that, if all the iterates are eventually computed by Algorithm 2.3 and,
moreover, the first-order direction is used infinitely many times, then the main algorithm terminates at
some point satisfying the stopping conditions.

Lemma 4. Assume, as in Lemma 3, that there exists k0 ∈ IN such that xk+1 is computed by Algo-
rithm 2.3 for all k ≥ k0. Moreover, suppose that there exists k2 ≥ k0 such that dk = dk,1, for infinitely
many indices k ≥ k2. Then, there exists k ∈ IN such that Algorithm 2.1 stops at xk, satisfying (11) and
(12).

Proof. By Lemma 3 there exists k1 such that xk ∈ F(xk1) for all k ≥ k1. Let k3 = max{k1, k2}. Let
K ⊆ {k3, k3 + 1, k3 + 2, . . .} be an infinite set of indices such that dk = dk,1 for all k ∈ K. Define, as
usually, g(x) = PS(xk1)[∇F (x)].

By (21), we have, for all k ∈ K,

F (xk+1) ≤ F (xk) + αtkg(xk)T dk.

Then, by (16),
F (xk+1) ≤ F (xk)− αθtk‖g(xk)‖‖dk‖ (25)

11

for all k ∈ K.
We wish to prove that, for a suitable subsequence, g(xk) → 0. If this is not the case, then, since

F (xk+1) ≤ F (xk) for all k ∈ IN , the inequality (25) implies that

lim
k∈K
‖sk‖ = 0, (26)

where, for all k ∈ K,
sk = tkdk. (27)

We consider two cases:

Case 1.1: There exists an infinite sequence K1 ⊆ K such that limk∈K1
‖dk‖ = 0.

Case 1.2: The sequence {‖dk‖}k∈K is bounded away from zero.

In Case 1.1, by (17), we have that limk∈K1
‖g(xk)‖ = 0.

In Case 1.2, by (26) and (27), we have that

lim
k∈K

tk = 0.

Therefore, for k ∈ K large enough, there exists t̄k ≤ 10tk (then t̄k → 0) such that:

F (xk + t̄kdk) ≥ F (xk) + αt̄kg(xk)T dk.

So,
F (xk + t̄kdk)− F (xk)

t̄k
≥ αg(xk)T dk.

So, by the Mean Value Theorem, for all k ∈ K there exists ξk ∈ [0, 1] such that:

g(xk + ξksk)T dk ≥ αg(xk)T dk

for infinitely many indices k ∈ K. Since ‖sk‖ → 0, by the uniform continuity of g, this implies that
‖g(xk)‖ → 0.

Therefore, in all cases, we have that limk∈K1
‖g(xk)‖ = 0, for some infinite subsequence K1. This

implies that limk∈K1
‖gI(x

k)‖ = 0. Therefore, by the test (13),

lim
k∈K1

‖gP (xk)‖ = 0. (28)

Now, we have two possibilities:

Case 2.1. The direction dk is defined at Step 2 of Algorithm 2.3, for infinitely many indices k ∈ K2 ⊆ K1.

Case 2.2. The direction dk is defined at Step 3 of Algorithm 2.3, for all k ∈ K1 large enough.

Consider first Case 2.1. In this case, λ1(Hk) ≥ −εcurv ≥ −εhess for infinitely many indices k ∈ K1.
Therefore, by (28), for some finite k we have that (11) and (12) hold.

Now, consider Case 2.2. By (18), (19) and (20), for all k ∈ K1 large enough we have:

g(xk)T dk,1

‖dk,1‖ ≤ κ

(
g(xk)T dk,2 +

1

2
(dk,2)T Hkdk,2

)

≤ κ

2
(dk,2)T Hkdk,2 ≤ −κεcurv

2
.

12

But this is impossible for k large enough, since g(xk)T dk,1

‖dk,1‖
is nonpositive and tends to zero. 2

Now we introduce an additional assumption. We are going to assume that, in any segment contained
in the box Ω, the objective function possesses, at most, finitely many second-derivative discontinuities.

Assumption A2. Given u, v ∈ A, define

ϕu,v(t) = F ((1− t)u + tv) for all t ∈ [0, 1].

We assume that, for all u, v ∈ Ω, the function ϕu,v has, at most, a finite number of second-derivative
discontinuities.

Remark. Roughly speaking, Assumption A2 says that each function fi changes its sign at most a finite
number of times in any segment [u, v] ⊆ Ω. We need this assumption because, in Lemma 5 below, we
will use the identity:

ϕ′
u,v(t1)− ϕ′

u,v(0) =

∫ t1

0

ϕ′′
u,v(t)dt.

Assumption A2 is a sufficient condition for the correctness of this statement.

In Lemma 5 we prove that, if all the iterates are eventually computed by Algorithm 2.3, then all the
iterates are eventually computed using first-order directions.

Lemma 5. Suppose that Assumption A2 holds and {xk} is an infinite sequence generated by Algo-
rithm 2.1. Assume that there exists k0 ∈ IN such that xk+1 is computed by Algorithm 2.3 for all k ≥ k0.
Then, there exists k4 ∈ IN such that dk = dk,1 for all k ≥ k4.

Proof. Let x∗ ∈ Ω be a limit point of the sequence {xk}. By Lemma 3, there exists k1 such that

xk ∈ F(xk1) for all k ≥ k1. So, x∗ ∈ F(xk1). Moreover, F (xk+1) ≤ F (xk) for all k and, by continuity,

lim
k→∞

F (xk) = F (x∗).

Assume, by contradiction, that for infinitely many indices k ∈ K2 ⊆ {k1, k1 + 1, k1 + 2, . . .}, the
algorithm chooses dk = dk,2. Therefore, by (19),

(dk,2)T Hkdk,2 < −εcurv (29)

for all k ∈ K2.
Let ε > 0 be such that B(x∗, ε) ⊆ A. By Proposition 2, there exists δ ∈ (0, ε/2) such that, for all

i = 1, . . . ,m, k ∈ K2, x ∈ B(xk, δ),

fi(x
k) < −εfun ⇒ fi(x) < 0. (30)

Without loss of generality, assume that xk ∈ B(x∗, δ/2) for all k ∈ K2. By (30), since ‖dk,2‖ = 1, there
exists t̂ > 0 such that, for all k ∈ K2,

0 < t ≤ t̂ and fi(x
k) < −εfun ⇒ fi(x

k + tdk,2) < 0. (31)

Define, for all k ∈ K2, t ∈ [0, t̂],
ϕk(t) = F (xk + tdk,2).

The function ϕk has continuous first derivatives on [0, t̂]. Moreover, by Assumption A2, it has at most
a finite number of second-derivative discontinuities at points (say) tk,1, . . . , tk,qk

. By convention, let us
write, for all j = 1, . . . , qk,

ϕ′′
k(tk,j) = lim

t→tk,j−
ϕ′′

k(t).

13

By direct calculation, for all t ∈ (tk,j , tk,j+1) and x = xk + tdk,2 ∈ Ω, we have:

ϕ′′
k(t) ≤ (dk,2)T

[
∇2f0(x) +

m∑

i=1

fi(x)+∇2fi(x) +
∑

i∈Iεfun
(x)

∇fi(x)∇fi(x)T

]
dk,2.

Therefore, by (29), (31) and the uniform continuity of fj(x), ∇fj(x) and ∇2fj(x) on Ω, there exists
t̄ ∈ (0, t̂) such that, for all t ∈ [0, t̄] such that xk + tdk,2 ∈ Ω, we have that

ϕ′′
k(t) < −εcurv/2. (32)

By (32) and Assumption A2, since ϕ′
k(0) = g(xk)T dk,2 ≤ 0, for all k ∈ K2, t ∈ [0, t̄] such that xk + tdk,2 ∈

Ω, integrating ϕ′′
k(t), we obtain:

ϕ′
k(t) ≤ 0. (33)

By (32) and (33), for all k ∈ K2, t ∈ (0, t̄] such that xk + tdk,2 ∈ Ω,

ϕk(t) < ϕk(0)− εcurvt
2

4
= F (xk)− εcurvt

2

4
. (34)

But xk+1 ∈ F(xk1) for all k ∈ K2, therefore, by (34), and Step 4 of Algorithm 2.3,

t[max,k] > t̄ for all k ∈ K2. (35)

(Otherwise, by (34), the step t[max,k] would be accepted in (21) and, consequently, xk+1 would not belong

to F(xk1).) By (22), (34) and (35), for all k ∈ K2,

F (xk+1) ≤ F (xk)− εcurv

4

[
t̄

10

]2

.

This implies that, for k ∈ K2 large enough, F (xk+1) < F (x∗), which is a contradiction. 2

In Lemma 6 we prove that, if infinitely many iterates are computed by Algorithm 2.2, then the algo-
rithm terminates at some iteration satisfying the stopping criteria.

Lemma 6. Assume that, for infinitely many indices k, xk+1 is computed by Algorithm 2.2. Then, there
exists k ∈ IN such that

‖gP (xk)‖ ≤ εgrad and λ1(H[F(xk),εfun](x
k)) ≥ −εhess.

Proof. Observe that in the definition of the algorithm we assume that Algorithm 2.3 computes xk+1 in
such a way that F (xk+1) < F (xk) for all k. As a consequence, the convergence proof of Algorithm 2.2
[11] holds, after some relabeling, without modifications and, so, ‖gP (xk)‖ ≤ εgrad for k large enough.
The inequality λ1(H[F(xk),εfun](x

k)) ≥ −εhess follows from the fact that, by (14), this inequality holds at
every SPG iteration. 2

Theorem 1 condenses the results above. It tells that Algorithm 2.1 necessarily terminates at a point
that satisfies the stopping criteria.

Theorem 1. Suppose that Assumption A2 holds. Assume that Algorithm 2.1 is applied to the problem
(6) and generates {x0, x1, x2, . . .}. Then, there exists k ∈ IN such that the algorithm terminates satisfying
the convergence criteria (11) and (12).

Proof. By Lemma 6, if Algorithm 2.2 is called infinitely many times, the algorithm terminates satisfying
(11) and (12). If Algorithm 2.2 is not called infinitely many times, then there exists k0 ∈ IN such that
xk+1 is computed by Algorithm 2.3 for all k ≥ k0. Then, by Lemma 5, there exists k4 ∈ IN such that
dk = dk,1 for all k ≥ k4. Therefore, by Lemma 4, the algorithm terminates at some xk satisfying (11)
and (12). 2

14

3 Application to an Augmented Lagrangian Method

In this section we use the tools presented before to define an Augmented Lagrangian method for solving (1)
that aims to converge to second-order stationary points.

As suggested in the previous section, for fixed values of ρ, λ, µ we define:

F (x) = Lρ(x, λ, µ),

f0(x) = f(x) +
ρ

2

q∑

i=1

[
hi(x) +

λi

ρ

]2

,

fj(x) =
1√
ρ
(µj + ρgj(x)), j = 1, . . . , p.

In this section, for notational convenience, we will use the equivalences above and the consequent gra-
dient and Hessian definitions of Section 2 whenever this simplifies the exposition. In particular, we will
assume, for the well-definiteness of the main algorithm, that Assumption A2 always holds. This means
that gi(x) + µi/ρ does not change its sign infinitely many times in any segment contained in Ω.

For all x ∈ IRn we define T (x) as the set of directions d ∈ IRn that satisfy:

• ∇h(x)T d = 0,

• ∇gi(x)T d = 0 for all i such that gi(x) = 0,

• di = 0 if xi = ℓi or xi = ui.

Therefore, if x is feasible, T (x) is the orthogonal subspace to the gradients of active constraints at x.
We want to find points that satisfy both first and second-order optimality conditions of the original

problem (1). These are feasible points such that there exist λ∗ ∈ IRq, µ∗ ∈ IRp, µ∗
i ≥ 0, µ∗

i gi(x
∗) = 0

satisfying the KKT conditions:

PΩ

[
x∗ −

(
∇f(x∗) +

q∑

i=1

λ∗
i∇hi(x

∗) +

p∑

i=1

µ∗
i∇gi(x

∗)

)]
− x∗ = 0

and the second-order necessary condition (SONC):

dT

(
∇2f(x∗) +

q∑

i=1

λ∗
i∇2hi(x

∗) +

p∑

i=1

µ∗
i∇2gi(x

∗)

)
d ≥ 0 for all d ∈ T (x∗).

Most Nonlinear Programming algorithms for solving (1) obtain points that satisfy the KKT conditions
under some constraint qualification. The most popular constraint qualification is LICQ (linear indepen-
dence of the gradients of active constraints), also known as regularity. A weaker (thus, better) constraint
qualification is the Mangasarian-Fromovitz condition (MFCQ). The PHR Augmented Lagrangian method
introduced in [1] converges to KKT points under the weaker CPLD constraint qualification mentioned in
the Introduction of this paper.

The (weak) second-order necessary condition is satisfied by limit points of several well-known algo-
rithms under the regularity constraint qualification. It has been shown [5, 27] that the fulfillment of
MFCQ is not enough for guaranteeing that local minimizers of nonlinear programming problems satisfy
SONC. In [3] it has been proved that the condition (MFCQ and WCR) (4) is a suitable constraint quali-
fication that guarantees that local minimizers satisfy SONC. Relations of (MFCQ and WCR) with other
second-order constraint qualifications can also be found in [3].

In [3] an Augmented Lagrangian algorithm for solving (1) in the case Ω = IRn was introduced. It was
shown that, if the subproblems are solved in such a way that the Hessian of the Augmented Lagrangian is
(almost) positive semidefinite then convergence to first and second-order stationary points are obtained

15

under the condition (4). However, no algorithm for obtaining the solutions of the subproblems was pro-
posed in [3]. The algorithm below fills this gap. On one hand, we use the compact domain Ω as defined
at the beginning of this paper, so that sequences are necessarily bounded and limit points of subproblem
approximate solutions necessarily exist. On the other hand, we establish the conditions for the subprob-
lem solutions in such a way that the box-constrained algorithm defined in the previous section may be
used and is necessarily successful. In other words, by the main result proved in Section 2, the PHR-like
algorithm given below is necessarily well defined.

Algorithm 3.1. (Algencan-Second)

Let λmin < λmax, µmax > 0, γ > 1, 0 < τ < 1. Let {(εfun)k}, {(εgrad)k}, {(εhess)k} be sequences of positive
numbers such that limk→∞(εfun)k = limk→∞(εgrad)k = limk→∞(εhess)k = 0. Let λ1

i ∈ [λmin, λmax], i =
1, . . . , q, µ1

i ∈ [0, µmax], i = 1, . . . , p, and ρ1 > 0. Let x0 ∈ Ω be an arbitrary initial point. Initialize k ← 1.

Step 1. Find an approximate minimizer xk of the problem minx∈Ω Lρk
(x, λk, µk) using Algorithm 2.1

(Gencan-Second) with parameters εfun = (εfun)k, εgrad = (εgrad)k, εhess = (εhess)k. The condi-
tions for xk ∈ Ω are:

‖PΩ[xk −∇Lρk
(xk, λk, µk)]− xk‖ ≤ (εgrad)k (36)

and
dim(Fk) = 0 or λ1(H[Fk,(εfun)k](x

k)) ≥ −(εhess)k. (37)

(Conditions (36) and (37) correspond to (11) and (12) respectively.)

Step 2. Define

V k
i = max

{
gi(x

k),−µk
i

ρk

}
, i = 1, . . . , p.

If k > 1 and
max{‖h(xk)‖∞, ‖V k‖∞} ≤ τ max{‖h(xk−1)‖∞, ‖V k−1‖∞}, (38)

define ρk+1 = ρk. Otherwise, define ρk+1 = γρk.

Step 3. Compute λk+1
i ∈ [λmin, λmax], i = 1, . . . , q and µk+1

i ∈ [0, µmax], i = 1, . . . , p. Set k ← k + 1 and
go to Step 1.

Remark. In Section 2 we proved that, when Algorithm 2.1 is applied to the problem of minimizing Lρk

on Ω, the conditions (36) and (37), which correspond to (11) and (12), are necessarily fulfilled in finite
time. Therefore, Algorithm 3.1 is well defined. In (37) we omitted the dependence of H with respect
to ρk and the multipliers in order to simplify the notation. We also assume that Fk is the open face of
Ω that contains xk. Therefore, (37) says that the approximate Hessian of the Augmented Lagrangian is
almost positive semidefinite, restricted to the face defined by the active bounds at xk. In other words,
(37) states that, if d ∈ IRn is such that di = 0 whenever xk

i = ℓi or xk
i = ui, then:

dT∇2
(εfun)k

Lρk
(xk, λk, µk)d ≥ −(εhess)k‖d‖2. (39)

The following lemma was proved in [3] and will be useful here to prove the main convergence result.

Lemma 7. Assume that the feasible point x∗ satisfies WCR, the sequence {xk} ⊆ IRn converges to x∗

and d ∈ T (x∗). Then, there exists a sequence {dk} ⊆ IRn such that dk ∈ T (xk) for all k ∈ IN and
limk→∞ dk = d.

The main result of this section is stated below. It will be proved that feasible limit points of sequences
generated by Algorithm 3.1 are first and second-order stationary, under reasonably weak constraint qual-
ifications.

Theorem 2. Let {xk} be a sequence generated by Algorithm 3.1. Then:

16

• The sequence admits at least a limit point and every limit point x∗ is a first-order stationary point
of the problem

Minimize ‖h(x)‖2 + ‖g(x)+‖2 subject to x ∈ Ω. (40)

• If a limit point x∗ is feasible and satisfies the CPLD constraint qualification, then it satisfies the
KKT conditions.

• If a feasible limit point x∗ satisfies MFCQ and WCR, then x∗ is a KKT point and satisfies the
second-order condition SONC.

Proof. Algorithm 3.1 is a particular case of Algorithm 3.1 of [1]. Therefore, every limit point is a first-
order stationary point of (40). Limit points obviously exist because xk ∈ Ω for all k and Ω is compact.
The fact that feasible limit points that satisfy CPLD are necessarily KKT also follows from Theorem 4.2
of [1].

Let us prove now that SONC also holds under the constraint qualification (MFCQ and WCR). Let K
be an infinite sequence of indices such that limk∈K xk = x∗. Assume that x∗ is feasible and satisfies (4).

Let us define, for all k ∈ K,
λ̂k = λk + ρkh(xk)

and
µ̂k = (µk + ρkg(xk))+.

By Theorem 4.2 of [1], since x∗ satisfies MFCQ, the sequence {(λ̂k, µ̂k)}k∈K is bounded and, so,

there exists an infinite subsequence K1 ⊆ K and (λ∗, µ∗) such that limk∈K1
(λ̂k, µ̂k) = (λ∗, µ∗). Taking

appropriate limits in (36) it turns out that x∗ satisfies the KKT conditions with multipliers λ∗ and µ∗.
Let d ∈ T (x∗). By Lemma 7, since limk∈K1

xk = x∗, there exists a sequence {dk} such that dk ∈ T (xk)
and limk∈K1

dk = d.
By (39), we have that

−(εhess)k‖dk‖2 ≤ (dk)T∇2
(εfun)k

Lρk
(xk, λk, µk)dk

= (dk)T

(
∇2f(xk) +

q∑

i=1

λ̂k
i∇2hi(x

k) +

p∑

i=1

µ̂k
i∇2gi(x

k)

)
dk

+ρk

[q∑

i=1

(∇hi(x
k)T dk)2 +

∑

µk
i
+ρkgi(xk)≥−(εfun)k

(∇gi(x
k)T dk)2

]
. (41)

Now we want to prove that, for k large enough, the fact that µk
i + ρkgi(x

k) ≥ −(εfun)k implies that
gi(x

∗) = 0. We proceed by contradiction. Suppose that gi(x
∗) < 0. Then, gi(x

k) < 0 for k ∈ K1 large
enough. Consider two cases: (a) the sequence {ρk} is bounded; and, (b) the sequence {ρk} is unbounded.
In the first case, by (38), we have that ‖V k‖ → 0 and, since gi(x

∗) < 0, we obtain that −µk
i /ρk → 0.

Also, since (εfun)k → 0, we have that −(εfun)k/ρk → 0. Thus, for k ∈ K1 large enough we have that
gi(x

k) < −µk
i /ρk − (εfun)k/ρk.

Now, consider Case (b). Since µk
i is bounded and (εfun)k → 0, we have that −µk

i /ρk → 0 and
−(εfun)k/ρk → 0. Therefore, for k ∈ K1 large enough, gi(x

∗) < 0 implies that gi(x
k) < −µk

i /ρk −
(εfun)k/ρk.

Thus, for k ∈ K1 large enough, µk
i + ρkgi(x

k) ≥ −(εfun)k implies that gi(x
∗) = 0, as we wanted to

prove. Therefore, by (41),

−(εhess)k‖dk‖2 ≤ (dk)T

(
∇2f(xk) +

q∑

i=1

λ̂k
i∇2hi(x

k) +

p∑

i=1

µ̂k
i∇2gi(x

k)

)
dk

17

+ρk

[q∑

i=1

(∇hi(x
k)T dk)2 +

∑

gi(x∗)=0

(∇gi(x
k)T dk)2

]

for k large enough. So, by the definition of dk,

−(εhess)k‖dk‖2 ≤ (dk)T

(
∇2f(xk) +

q∑

i=1

λ̂k
i∇2hi(x

k) +

p∑

i=1

µ̂k
i∇2gi(x

k)

)
dk.

Taking limits for k ∈ K1 in the last inequality, we obtain SONC, as desired. 2

4 Numerical Examples

We implemented Algorithm 2.1 (Gencan-Second) (including Algorithms 2.2 and 2.3) with the first-order
directions computed as in Gencan [7, 8]. We used subroutine EA19 from HSL to compute the leftmost
eigenvalue of the matrix Hk and the corresponding eigenvector, when required. The direction dk,2 of
Algorithm 2.3 is a unitary-norm normalization of the eigenvector corresponding to the leftmost eigenvalue.
We implemented Algencan-Second (Algorithm 3.1) using Gencan-Second as subproblem solver. In
the experiments we used the AMPL interface of Algencan. The default parameters of Gencan and
Algencan were used here.

Algencan-Second was stopped declaring convergence when:

‖PΩ[xk −∇Lρk
(xk, λk, µk)]− xk‖∞ ≤ εopt,

dim(Fk) = 0 or λ1(H[Fk,(εfun)k](x
k)) ≥ −εopt

and
max{‖h(xk)‖∞, ‖V k‖∞} ≤ εopt,

with εopt = 10−8. The specific parameters of Gencan-Second were chosen as follows: ε0 = 10−4,
(εcurv)k = 0.99 × 10−8, (εhess)k = 10−8, κ = 1, η = 0.1. We set (εgrad)k =

√
εopt when feasibility,

optimality or complementarity at the current point are not satisfied with tolerance
√

εopt, otherwise we
set (εgrad)k = max{εopt, 0.1 (εgrad)k−1}.

We tested Algencan-Second on two small constrained problems, where the first-order algorithm
Algencan and Ipopt [40] fail to converge to local minimizers starting from given initial points. (As
we mentioned in the Introduction, although convergence of first-order unconstrained minimization algo-
rithms to saddle points may occur, the set of initial points from which such convergence may take place
is usually rare. As a consequence, even if a first-order method converges to a saddle point starting from
x0, such convergence may not occur if the initial point x0 is slightly perturbed.)

Example 1: Indefinite Quadratic.

Minimize

n−1∑

i=1

x2
i − εx2

n s. t. ‖x‖2 + s = 1, s ≥ 0.

We took n = 2, ε = 1 (note that the problem has three variables, namely, x1, x2 and a “slack” vari-
able s). Using the initial point (0.5, 0, 0.75), Algencan converges to the interior saddle point (0, 0, 1)
in 3 iterations. On the other hand, Algencan-Second converges to the global minimizer (0, 1, 0) in 3
iterations too. Similar behavior is observed for different values of n and ε, whenever the initial point is
in the hyperplane xn = 0. See Figure 1. Ipopt converges, as well as Algencan, to the interior saddle
point (0, 0, 1) in 58 iterations.

18

(0.5, 0)
Initial point(0, 0) Saddle point

(0, 1) Global minimizer

x1 = (0, 1.0488)

ALGENCAN

ALGENCAN-SECOND

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 1: Behavior of Algencan and Algencan-Second on the Indefinite Quadratic Problem. This
picture corresponds to the problem formulation without the slack variable s.

Example 2: First-Order Convergence to Global Maximizer.

Minimize − x1 − x2 s. t. x1x2 = ε, 0 ≤ x1, x2 ≤ 10,

where ε ≥ 0. When ε = 0, this is a mathematical programming problem with complementarity con-
straints. If we drop the constraint x1x2 = ε, the global minimizer of the relaxed problem is (10, 10).
Therefore, (10, 10) is a “good candidate” to be the initial point for a nonlinear programming solver. The
global minimizers of this problem are (ε/10, 10) and (10, ε/10).

Starting from any initial point in the line x1 = x2 (in particular, starting from (10, 10)), Algencan

converges to the global maximizer of the problem (
√

ε,
√

ε). On the other hand, Algencan-Second

always converges to one of the global minimizers. See Figure 2a. Ipopt converges, as well as Algencan,
to the global maximizer of the problem (

√
ε,
√

ε) in 10 iterations. It is interesting to observe that the
convergence to a global maximizer is not related to the absence of first-order constraint qualifications. In
the case ε = 0, the global maximizer (0, 0) does not satisfy even very weak constraint qualifications (as
CPLD), but the global maximizers in the case ε > 0 are regular feasible points.

A similar behavior of Algencan and Algencan-Second is observed if, in the present problem, we
replace the constraints by the Fischer-Burmeister constraint x1 + x2 −

√
x2

1 + x2
2 = ε. See Figure 2b.

Note that the convergence to a global maximizer does not contradict the convergence theory presented
in [1]. The method generates infeasible points and, generally, achieves feasibility only in the limit. In the
case of Algencan functional values do not decrease from one outer iteration to another.

We also performed a massive comparisons between Algencan and Algencan-Second using all the
bound-constrained and nonlinear programming problems from the Cuter [24] collection with at most 500
variables and constraints. As a whole, we solved 451 problems. From those 451 problems, considering
a CPU time limit of 60 seconds, Algencan and Algencan-Second both satisfied their convergence
criterion in 360 problems. If we consider that two functional values f1 and f2 are equivalent whenever

|f1 − f2| ≤ max{10−10, 10−6 min{|f1|, |f2|}}

then both methods found feasible points with non equivalent functional values in only 10 out of the
360 problems. Table 1 shows the functional value and the feasibility of those 10 problems at the final

19

(5, 5) Initial point

(1, 1) Global maximizer

ALGENCAN

x1 ≈ x2 = (0.1, 10) Global minimizer

ALGENCAN-SECOND

x1,1

x1,2

x1,3

x1,4

x1,5

x1,6

0 2 4 6 8 10

0

2

4

6

8

10

(5, 5) Initial point

(1.7071, 1.7071) Global maximizer

ALGENCAN

x1 ≈ x2 = (1.0556, 10)

Global minimizer

ALGENCAN-SECOND

0 2 4 6 8 10

0

2

4

6

8

10

(a) (b)

Figure 2: Behavior of Algencan and Algencan-Second on Example 2 with ε = 1. (a) corresponds
to the constraint x1x2 = ε and (b) corresponds to the Fischer-Burmeister formulation.

point given by Algencan and Algencan-Second. In the table, it can be seen that the difference
in the functional value of problems HS88, HS90, HS91 and HS92 can be attributed to (and, hence,
compensated by) the difference in the level of satisfaction of the feasibility. Considering the other 6
problems, Algencan-Second found lower functional values in 3 problems while Algencan found lower
functional values in the other 3 problems. So, in this massive comparison, Algencan-Second does not
represent a meaningful improvement over Algencan. One reason is that convergence of first-order
methods to points that are not local minimizers only occurs starting from rare initial approximations.
A second reason is that, albeit without theoretical convergence consequences, Gencan uses negative
curvature directions when its internal conjugate-gradient process finds one. Nevertheless, we provided
examples showing that, sometimes, initial rare approximations could be quite reasonable initial choices
and that first-order methods could fail in cases in which the second-order algorithm succeeds.

5 Conclusions

In this paper, as part of the permanent improvement work on the Algencan project, we introduced a
variation of Algencan with guaranteed convergence to second-order stationary points. In [3] the aimed
optimality condition was rigorously stated. The classical (weak) second-order optimality condition was
associated in [3] to a new second-order constraint qualification, which turns out to be weaker than LICQ.

For achieving convergence to the defined second-order critical points we need a special subproblem
solver. For obvious reasons, we wish this special algorithm to be a minor modification of the matrix-free
box-constraint solver Gencan, used by the Augmented Lagrangian method. The main difficulty is that,
since the PHR approach uses subproblems that are not twice smooth, the new box-constraint solver
should achieve second-order criticality even in the absence of second derivatives.

Fortunately, we were able to define the special type of box-constraint criticality that is needed in
the PHR method (Section 2 of the present paper). The Augmented Lagrangian method, equipped
with subproblem stopping criteria associated with the proved finite-time criticality of the subproblem

20

Problem
Algencan Algencan-Second

f ‖h(x)‖∞ f ‖h(x)‖∞
C-RELOAD -1.0161705169761395D+00 3.3D−09 -1.0114303074208186D+00 4.4D−09

HS70 7.4984636572406815D−03 3.0D−12 1.8634912110365290D−01 0.0D+00
HS88 1.3626577752721036D+00 9.1D−10 1.3626462499986325D+00 1.0D−08
HS90 1.3626571636269016D+00 3.3D−10 1.3626462499234895D+00 1.0D−08
HS91 1.3626577761343370D+00 9.1D−10 1.3626462501794216D+00 1.0D−08
HS92 1.3626571234820575D+00 2.9D−10 1.3626462504401662D+00 1.0D−08

ROBOT 6.5932988227968785D+00 6.9D−09 5.4628412085058411D+00 8.6D−09
STEENBRD 9.9391294228639563D+03 2.8D−09 9.5149906109996809D+03 4.0D−11
STEENBRF 9.1427472202938352D+03 1.8D−10 9.8197109492851869D+03 1.7D−09

TRY-B 9.9999999999999689D−01 3.1D−15 1.2924630623040149D−19 0.0D+00

Table 1: Functional value and feasibility of the 10 out of the 451 selected problems from the Cuter col-
lection in which Algencan and Algencan-Second satisfied the stopping criterion and found solutions
with non equivalent functional values.

solver, turned out to be globally convergent in the desired sense (Section 3 of the present paper). As a
consequence, second-order stationarity was obtained for a nonlinear programming solver using suitable
weak constraint qualifications.

The extension of good box-constraint or linear-constraint solvers to the case in which the objec-
tive function has the PHR form is an interesting subject of research. Especially interesting should be
the extension of the box-constraint conjugate-gradient solver described in [25], the linearly-constrained
minimization algorithm of Forsgren and Murray [21] and the extension of interior point box-constraint
approaches. We believe that taking profit in a clever way of second-order information will cause general
algorithmic improvements, independently of convergence to second-order criticality.

Acknowledgements

This paper is part of the plenary talk given by J. M. Mart́ınez at the Conference “New Problems
and Innovative Methods in Nonlinear Optimization”, held in Erice in July 2007. Thanks are given to
the organizers Gianni Di Pillo and Massimo Roma for their kind invitation and hospitality during the
meeting. The authors are also indebted to the associated editor and two anonymous referees, whose
comments helped a lot to improve the quality of the paper.

References

[1] R. Andreani, E. G. Birgin, J. M. Mart́ınez and M. L. Schuverdt, On Augmented Lagrangian Meth-
ods with general lower-level constraints, SIAM Journal on Optimization 18, pp. 1286–1309, 2007.

[2] R. Andreani, J. M. Mart́ınez and M. L. Schuverdt, On the relation between the Constant Positive
Linear Dependence condition and quasinormality constraint qualification, Journal of Optimization
Theory and Applications 125, pp. 473–485, 2005.

[3] R. Andreani, J. M. Mart́ınez and M. L. Schuverdt, On Second-Order Optimality Conditions for
Nonlinear Programming, Optimization 56, pp. 529–542, 2007.

[4] M. Andretta, E. G. Birgin and J. M. Mart́ınez, Practical active-set Euclidian trust-region method
with spectral projected gradients for bound-constrained minimization, Optimization 54, pp. 305–
325, 2005.

[5] M. Anitescu, Degenerate nonlinear programming with a quadratic growth condition, SIAM Journal
on Optimization, pp. 1116–1135, 2000.

21

[6] E. G. Birgin and J. M. Mart́ınez, A box constrained optimization algorithm with negative curvature
directions and spectral projected gradients, Computing [Suppl] 15, pp. 49–60, 2001.

[7] E. G. Birgin and J. M. Mart́ınez, Large-scale active-set box-constrained optimization method with
spectral projected gradients, Computational Optimization and Applications 23, pp. 101–125, 2002.

[8] E. G. Birgin and J. M. Mart́ınez, Structured minimal-memory inexact quasi-Newton method and
secant preconditioners for Augmented Lagrangian optimization, Computational Optimization and
Applications 39, pp. 1–16, 2008.

[9] E. G. Birgin, J. M. Mart́ınez and M. Raydan, Nonmonotone spectral projected gradient methods
on convex sets, SIAM Journal on Optimization 10, pp. 1196–1211, 2000.

[10] E. G. Birgin, J. M. Mart́ınez and M. Raydan, Algorithm 813: SPG - Software for convex-constrained
optimization, ACM Transactions on Mathematical Software 27, pp. 340–349, 2001.

[11] E. G. Birgin, J. M. Mart́ınez and M. Raydan, Inexact Spectral Projected Gradient methods on
convex sets, IMA Journal on Numerical Analysis 23, pp. 539–559, 2003.

[12] R. H. Byrd, R. B. Schnabel and G. A. Shultz, A trust region algorithm for nonlinearly constrained
optimization, SIAM Journal on Numerical Analysis 24, pp. 1152–1170, 1987.

[13] T. F. Coleman, J. Liu and W. Yuan, A new trust-region algorithm for equality constrained opti-
mization, Computational Optimization and Applications 21, pp. 177–199, 2002.

[14] A. R. Conn, N. I. M. Gould, D. Orban and Ph. L. Toint, A primal-dual trust region algorithm for
non-convex nonlinear programming, Mathematical Programming 87, pp. 215–249, 2000.

[15] A. R. Conn, N. I. M. Gould and Ph. L. Toint, A globally convergent Augmented Lagrangian
algorithm for optimization with general constraints and simple bounds, SIAM Journal on Numerical
Analysis 28, pp. 545–572, 1991.

[16] A. R. Conn, N. I. M. Gould and Ph. L. Toint, Trust Region Methods, MPS/SIAM Series on Opti-
mization, SIAM, Philadelphia, 2000.

[17] J. E. Dennis, M. Heinkenschloss and L. N. Vicente, Trust-region interior-point SQP algorithms for
a class of nonlinear programming problems, SIAM Journal on Control and Optimization 36, pp.
1750–1794, 1998.

[18] J. E. Dennis and L. N. Vicente, On the convergence theory of trust-region-based algorithms for
equality-constrained optimization, SIAM Journal on Optimization 7, pp. 927–950, 1997.

[19] G. Di Pillo, S. Lucidi and L. Palagi, Convergence to Second-Order Stationary Points of a Primal-
Dual Algorithm Model for Nonlinear Programming, Mathematics of Operations Research 30, pp.
897–915, 2005.

[20] F. Facchinei and S. Lucidi, Convergence to second order stationary points in inequality constrained
optimization, Mathematics of Operations Research 23, pp. 746–766, 1998.

[21] A. Forsgren and W. Murray, Newton methods for large-scale linear inequality constrained problems,
SIAM Journal on Optimization 7, pp. 162–176, 1997.

[22] R. Fletcher, Practical methods of Optimization, John Wiley, 1987.

[23] N. I. M. Gould, S. Lucidi, M. Roma and Ph. L. Toint, Exploiting negative curvature directions
in linesearch methods for unconstrained optimization, Optimization Methods and Software 14, pp.
75–98, 2000.

22

[24] N. I. M. Gould, D. Orban and Ph. L. Toint, CUTEr and SifDec: A Constrained and Unconstrained
Testing Environment, revisited, ACM Transactions on Mathematical Software 29, pp. 373–394,
2003.

[25] W. W. Hager and H. C. Zhang, A new active set algorithm for box constrained optimization, SIAM
Journal on Optimization 17, pp. 526–557, 2006.

[26] M. R. Hestenes, Multiplier and gradient methods, Journal of Optimization Theory and Applications
4, pp. 303–320, 1969.

[27] E. S. Levitin, A. A. Milyutin and N. P. Osmolovskii, Higher order conditions for a local minimum
in problems with constraints, Russian Mathematical Surveys 33, pp. 97–168, 1978.

[28] O. L. Mangasarian and S. Fromovitz, The Fritz-John necessary optimality conditions in presence
of equality and inequality constraints, Journal of Mathematical Analysis and Applications 17, pp.
37–47, 1967.

[29] G. P. Mccormick, A modification of Armijo’s step-size rule for negative curvature, Mathematical
Programming 13, pp. 111–115, 1977.

[30] G. P. McCormick, Nonlinear Programming; Theory, Algorithms and Applications, John Wiley and
Sons, New York, 1983.

[31] J. J. Moré and D. C. Sorensen, On the use of directions of negative curvature in a modified Newton
method, Mathematical Programming 16, pp. 1–20, 1979.

[32] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 1999.

[33] M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Optimization, R.
Fletcher (ed.), Academic Press, New York, NY, pp. 283–298, 1969.

[34] L. Qi and Z. Wei, On the constant positive linear dependence condition and its application to SQP
methods, SIAM Journal on Optimization 10, pp. 963–981, 2000.

[35] R. T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex program-
ming, SIAM Journal on Control and Optimization 12, pp. 268–285, 1974.

[36] R. T. Rockafellar, Lagrange multipliers and optimality, SIAM Review 35, pp. 183–238, 1993.

[37] G. A. Shultz, R. B. Schnabel and R. H. Byrd, A family of trust-region-based algorithms for un-
constrained minimization with strong global convergence properties, SIAM Journal on Numerical
Analysis 22, pp. 47–67, 1985.

[38] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. Klema and C. Moler,
Matrix Eigensystem Routines - EISPACK Guide, 2nd edition, Lecture Notes in Computer Science
6, Springer-Verlag, 1976.

[39] D. C. Sorensen, Newton’s method with a model trust region modification, SIAM Journal on
Numerical Analysis 19, pp. 409–426, 1982.

[40] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming, Mathematical Programming 106, pp. 25–57, 2006.

[41] J. Zhang and C. Xu, A class of indefinite dogleg path methods for unconstrained minimization,
SIAM Journal on Optimization 9, pp. 646–667, 1999.

23

