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Abstract. Two Augmented Lagrangian algorithms for solving KKT systems are introduced.
The algorithms differ in the way in which penalty parameters are updated. Possibly infeasible
accumulation points are characterized. It is proved that feasible limit points that satisfy the
Constant Positive Linear Dependence constraint qualification are KKT solutions. Boundedness
of the penalty parameters is proved under suitable assumptions. Numerical experiments are
presented.
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1. Introduction

Let F : IRn → IRn, h : IRn → IRm and Ω = {x ∈ IRn | ℓ ≤ x ≤ u}, where
ℓ, u ∈ IRn, ℓ < u. Assume that h admits continuous first derivatives on an open
set that contains Ω and denote

∇h(x) = (∇h1(x), . . . ,∇hm(x)) = h′(x)T ∈ IRn×m.

Let PA denote the Euclidian projection operator onto a closed and convex set
A. A point x ∈ IRn is said to be a KKT point of the problem defined by F, h
and Ω if there exists λ ∈ IRm such that

PΩ[x− F (x) −∇h(x)λ] − x = 0, h(x) = 0, x ∈ Ω. (1)

KKT points are connected with the solution of Variational Inequality Prob-
lems. The Variational Inequality Problem (VIP) defined by (F,D) (see, for ex-
ample, [34]) consists of finding x ∈ D such that F (x)T d ≥ 0 for all d in the
tangent cone TD(x) ([3], page 343). Defining D = {x ∈ Ω | h(x) = 0}, and under
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appropriate constraint qualifications, it turns out that the solutions of the VIP
are KKT points. In particular, if f : IRn → IR is differentiable and F = ∇f ,
the equations (1) represent the KKT optimality conditions of the minimization
problem

Minimize f(x) subject to h(x) = 0, x ∈ Ω. (2)

The most influential work on practical Augmented Lagrangian algorithms for
minimization with equality constraints and bounds (problem (2)) was the paper
by Conn, Gould and Toint [12], on which the LANCELOT package [10] is based.
Convergence of the algorithm presented in [12] was proved under the assumption
that the gradients of the general constraints and the active bounds at any limit
point are linearly independent. In [11] the authors extended the method of [12]
to the case where linear inequality constraints are treated separately and also to
the case where different penalty parameters are associated with different general
constraints.

In the present paper we introduce two Augmented Lagrangian algorithms for
solving (1). For proving global convergence, we do not use the Linear Indepen-
dence Constraint Qualification (LICQ) at all. On one hand, we characterize the
situations in which infeasible limit points might exist using weaker assumptions
than the LICQ. On the other hand, the fact that feasible limit points are KKT
points will follow using the Constant Positive Linear Dependence (CPLD) condi-
tion [29], which has been recently proved to be a constraint qualification [2] and
is far more general than the LICQ and other popular constraint qualifications.
We use the LICQ only for proving boundedness of the penalty parameters.

This paper is organized as follows. The two main algorithms are introduced
in Section 2. In Section 3 we characterize the infeasible points that could be limit
points of the algorithms. In Section 4 it is proved that, if the CPLD constraint
qualification holds at a feasible limit point, then this point must be KKT. In Sec-
tion 5 we prove boundedness of the penalty parameters. In Section 6 we present
numerical experiments. Conclusions and lines for future research are given in
Section 7.

Notation.

Throughout this work, [v]i is the i−th component of the vector v. We also
denote vi = [v]i if this does not lead to confusion.

IR+ denotes the set of nonnegative real numbers and IR++ denotes the set
of positive real numbers.

If J1 and J2 are subsets of {1, . . . , n}, B[J1,J2] is the matrix formed by taking
the rows and columns of B indexed by J1 and J2 respectively and B[J1] is the
matrix formed by taking the columns of B indexed by J1. If y ∈ IRn, y[J1] is the
vector formed by taking the components yi such that i ∈ J1.

2. Model algorithms

From here on we assume that F is continuous. Given x ∈ Ω, λ ∈ IRm, ρ ∈ IRm
++

we define
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G(x, λ, ρ) = F (x) +

m
∑

i=1

λi∇hi(x) +

m
∑

i=1

ρihi(x)∇hi(x).

If the KKT system is originated in a smooth minimization problem, the
mapping F is the gradient of some f : IRn → IR. In this case we define, for
ρ ∈ IRm

++,

L(x, λ, ρ) = f(x) +

m
∑

i=1

λihi(x) +
1

2

m
∑

i=1

ρihi(x)2.

This is the definition of the Augmented Lagrangian used in [11]. In this case
we have that ∇L = G. The function L is the Augmented Lagrangian associated
with the problem (2).

The mapping G will be used to define one-parameter and many-parameters
Augmented Lagrangian algorithms for solving the general KKT problem (1).
These two algorithms (A1 and A2) are described below. They are presented as
two instances of the general Algorithm A.

Algorithm A.

Let x0 ∈ Ω, τ ∈ [0, 1), γ > 1, −∞ < λ̄min ≤ 0 ≤ λ̄max < ∞, ρ1 ∈ IRm
++

(in Algorithm A1 [ρ1]i = ‖ρ1‖∞ for all i = 1, . . . , m), λ̄1 ∈ [λ̄min, λ̄max]m. Let
{εk}k∈IN ⊆ IR++ be a sequence that converges to zero.

Step 1. Initialization

Set k← 1.

Step 2. Solving the subproblem

Compute xk ∈ Ω such that

‖PΩ[xk −G(xk, λ̄k, ρk)]− xk‖∞ ≤ εk. (3)

Step 3. Estimate multipliers

Define, for all i = 1, . . . , m,

[λk+1]i = [λ̄k]i + [ρk]ihi(xk). (4)

If h(xk) = 0 and PΩ[xk − G(xk, λ̄k, ρk)] − xk = 0 terminate the execution
of the algorithm. (In this case, xk is a KKT point and λk+1 is the associated
vector of Lagrange multipliers.)

Compute

λ̄k+1 ∈ [λ̄min, λ̄max]m. (5)

Step 4. Update the penalty parameters

Define Γk = {i ∈ {1, . . . , m} | |hi(xk)| > τ‖h(xk−1)‖∞}. If Γk = ∅, define
ρk+1 = ρk. Else,

– In Algorithm A1, define ρk+1 = γρk.
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– In Algorithm A2, define [ρk+1]i = γ[ρk]i if i ∈ Γk and [ρk+1]i = [ρk]i if
i /∈ Γk.

Step 5. Begin a new iteration

Set k← k + 1. Go to Step 2.

Remark 1. (i) Algorithm A2 only differs from Algorithm A1 in the way in which
penalty parameters are updated. In Algorithm A2, as in [11], more than one
penalty parameter is used per iteration. In the case in which Algorithm A2
updates at least one penalty parameter, Algorithm A1 updates its unique
penalty parameter. In such a situation, other penalty parameters may re-
main unchanged in Algorithm A2. Therefore, the penalty parameters in Al-
gorithm A2 tend to be smaller than the penalty parameter in Algorithm A1.

(ii) The global convergence results to be presented in the following sections are
independent of the choice of λ̄k+1 in (5). Whenever possible, we will choose
λ̄k+1 = λk+1 but, as a matter of fact, the definition (4) is not used at all
in the forthcoming Sections 3 and 4. If one chooses λ̄k+1 = 0 for all k,
Algorithms A1 and A2 turn out to be External Penalty methods.

(iii) The Augmented Lagrangian algorithms are based on the resolution of the
inner problems (3). In the minimization case (F = ∇f) the most reasonable
way for obtaining these conditions is to solve (approximately) the minimiza-
tion problem

Minimize L(x, λ̄k, ρk) subject to x ∈ Ω. (6)

This is a box-constrained minimization problem. Since Ω is compact, mini-
mizers exist and stationary points can be obtained up to any arbitrary pre-
cision using reasonable algorithms. Sufficient conditions under which points
that satisfy (3) exist and can be obtained by available algorithms in more
general problems have been analyzed in many recent papers. See [19–22,26].

3. Convergence to feasible points

At a KKT point we have that h(x) = 0 and x ∈ Ω. Points that satisfy these
two conditions are called feasible. It would be nice to have algorithms that find
feasible points in every situation, but this is impossible. (In an extreme case,
feasible points might not exist at all.) Therefore, it is important to study the
behavior of algorithms with respect to infeasibility.

In this section we show that Algorithm A1 always converges to stationary
points of the problem of minimizing ‖h(x)‖22 subject to ℓ ≤ x ≤ u. In the case
of Algorithm A2 we will show that the possible limit points must be solutions
of a weighted least-squares problem involving the constraints.

In the proof of both theorems we will use the following well known property:

‖PΩ(u + tv)− u‖2 ≤ ‖PΩ(u + v)− u‖2 ∀ u ∈ Ω, v ∈ IRn, t ∈ [0, 1]. (7)
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Theorem 1. Assume that the sequence {xk} is generated by Algorithm A1 and

that x∗ is a limit point. Then, x∗ is a stationary point of the problem

Minimize ‖h(x)‖22
subject to x ∈ Ω.

(8)

Proof. Let K ⊆ IN be such that limk∈K xk = x∗. Let us denote

ρ̂k = ‖ρk‖∞ for all k ∈ IN.

Clearly, ρ̂k = [ρk]i for all i = 1, . . . , m.
By (3) and the equivalence of norms in IRn, we have that

lim
k→∞

‖PΩ[xk − F (xk)−
m
∑

i=1

([λ̄k]i + ρ̂khi(xk))∇hi(xk)]− xk‖2 = 0. (9)

By Step 4 of Algorithm A, if {ρk}k∈K is bounded we have that h(x∗) = 0,
so x∗ is a stationary point of (8).

Assume that {ρk}k∈K is unbounded. Since {ρ̂k} is nondecreasing, we have
that

lim
k→∞

ρ̂k =∞. (10)

Then, ρ̂k > 1 for k ∈ K large enough. So, using (7) with

u = xk, v = −F (xk)−
m
∑

i=1

([λ̄k]i + ρ̂khi(xk))∇hi(xk), t = 1/ρ̂k,

we have, by (9), that

lim
k→∞

∥

∥

∥

∥

PΩ

[

xk −
F (xk)

ρ̂k

−
m
∑

i=1

(

[λ̄k]i
ρ̂k

+ hi(xk)

)

∇hi(xk)

]

− xk

∥

∥

∥

∥

2

= 0. (11)

By (5), (10), (11) and the continuity of F we obtain:

‖PΩ[x∗ −
m
∑

i=1

hi(x∗)∇hi(x∗)]− x∗‖2 = 0.

This means that x∗ is a stationary point of (8), as we wanted to prove. ⊓⊔

We say that an infeasible point x∗ ∈ Ω is degenerate if there exists w ∈ IRm
+

such that x∗ is a stationary point of the weighted least-squares problem

Minimize
∑m

i=1 wihi(x)2

subject to x ∈ Ω,
(12)

and
wi > 0 for some i such that hi(x∗) 6= 0. (13)

Theorem 2. Let {xk} be a sequence generated by Algorithm A2. Then, at least

one of the following possibilities hold:
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1. The sequence admits a feasible limit point.

2. The sequence admits an infeasible degenerate limit point.

Proof. Assume that all the limit points of the sequence {xk} are infeasible.
Therefore, there exists ε > 0 such that

‖h(xk)‖∞ ≥ ε (14)

for all k ∈ IN . This implies that

lim
k→∞

‖ρk‖∞ =∞. (15)

Let K be an infinite subset of indices such that

‖ρk‖∞ > ‖ρk−1‖∞ ∀ k ∈ K. (16)

Since {1, . . . , m} is a finite set, there exists K1, an infinite subset of K, and
j ∈ {1, . . . , m} such that

‖ρk‖∞ = [ρk]j ∀ k ∈ K1. (17)

Then, by (16) and Step 4 of Algorithm A2,

[ρk]j = γ[ρk−1]j ∀ k ∈ K1. (18)

By the definition of the algorithm, we have that, for all k ∈ K1,

|hj(xk−1)| > τ‖h(xk−2)‖∞.

So, by (14),
|hj(xk−1)| > τε ∀ k ∈ K1. (19)

Moreover, by (16), (17) and (18), we have:

[ρk−1]j ≥
‖ρk−1‖∞

γ
∀ k ∈ K1. (20)

Let K2 be an infinite subset of indices of {k − 1}k∈K1
such that

lim
k∈K2

xk = x∗.

By (19) we have that
hj(x∗) 6= 0. (21)

By (3) and the equivalence of norms in IRn, we have:

lim
k→∞

‖PΩ[xk − F (xk)−
m
∑

i=1

([λ̄k]i + [ρk]ihi(xk))∇hi(xk)]− xk‖2 = 0. (22)

By (15), ‖ρk‖∞ > 1 for k ∈ K2 large enough. So, using (7) with

u = xk, v = −F (xk)−
m
∑

i=1

([λ̄k]i + [ρk]ihi(xk))∇hi(xk), t = 1/‖ρk‖∞,
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we have, by (22), that

lim
k∈K2

∥

∥

∥

∥

PΩ

[

xk −
F (xk)

‖ρk‖∞
−

m
∑

i=1

(

[λ̄k]i
‖ρk‖∞

+
[ρk]i
‖ρk‖∞

hi(xk)

)

∇hi(xk)

]

− xk

∥

∥

∥

∥

2

= 0.

(23)
But

[ρk]i
‖ρk‖∞

≤ 1 ∀i = 1, . . . , m.

Therefore, there exist K3 ⊆ K2 and w ∈ IRm
+ such that

lim
k∈K3

[ρk]i
‖ρk‖∞

= wi ∀i = 1, . . . , m.

Moreover, by (20),

wj > 0. (24)

Since {λ̄k}k∈IN is bounded, taking limits for k ∈ K3 in (23), by (15) and the
continuity of F , we get:

‖PΩ[x∗ −
m
∑

i=1

wihi(x∗)∇hi(x∗)]− x∗‖2 = 0.

So, x∗ is a stationary point of (12). By (21) and (24), the condition (13) also
takes place. Therefore, x∗ is a degenerate infeasible point. ⊓⊔

Remark 2. Clearly, any infeasible stationary point of (8) must be degenerate.
Moreover, if x is infeasible and degenerate, by (13) and the KKT conditions of
(12), the gradients of the equality constraints and the active bound constraints
are linearly dependent. The reciprocal is not true. In fact, consider the set of
constraints

h(x) ≡ x = 0 ∈ IR1, −1 ≤ x ≤ 1.

At the points z = −1 and z = 1 the gradients of equality constraints and active
bound constraints are linearly dependent but these points are not degenerate.
In [12] it is assumed that, at all the limit points of the sequence generated by
the Augmented Lagrangian algorithm, the gradients of equality constraints and
active bound constraints are linearly independent (Assumption AS3 of [12]).
Under this assumption it is proved that all the limit points are feasible. The
feasibility of all the limit points generated by Algorithm A1 also holds from our
Theorem 1, if we assume that limit points are nondegenerate. For Algorithm A2,
the corresponding result comes from Theorem 2: under the weak assumption of
nondegeneracy we only obtain the weaker result that there exists at least one
feasible limit point.
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4. Convergence to optimal points

In this section we investigate under which conditions a feasible limit point of a
sequence generated by the Augmented Lagrangian algorithms is a KKT point.
The main result is that a feasible limit point is KKT if it satisfies the Con-
stant Positive Linear Dependence condition (CPLD). The CPLD condition was
introduced by Qi and Wei in [29]. More recently [2], it was proved that this
condition is a constraint qualification. Assume that the constraints of a problem
are h(x) = 0, g(x) ≤ 0, where h : IRn → IRm, g : IRn → IRp and that x̄ is a
feasible point such that gi(x̄) = 0 for all i ∈ I, gi(x̄) < 0 for all i /∈ I. We say
that x̄ satisfies the CPLD condition if the existence of J1 ⊆ {1, . . . , m}, J2 ⊆ I,
{λi}i∈J1

⊆ IR, {µi}i∈J2
⊆ IR+ such that

∑

i∈J1

λi∇hi(x̄) +
∑

i∈J2

µi∇gi(x̄) = 0

and
∑

i∈J1

|λi|+
∑

i∈J2

µi > 0

implies that the gradients {∇hi(x)}i∈J1
∪ {∇gi(x)}i∈J2

are linearly dependent
for all x in a neighborhood of x̄.

Clearly, if the Mangasarian-Fromovitz constraint qualification [28,33] holds,
the CPLD condition holds as well, but the reciprocal is not true.

The AS3 condition of [12], when applied only to feasible points, is the classical
LICQ assumption (linear independence of the gradients of active constraints).
Of course, at points that do not satisfy Mangasarian-Fromovitz the gradients of
active constraints are linearly dependent. Therefore, convergence results based
on the CPLD condition are stronger than convergence results that assume the
classical LICQ.

In Theorem 3 we prove that, if a feasible limit point of an algorithmic se-
quence satisfies the CPLD constraint qualification, then this point must be KKT.

Theorem 3. Assume that {xk} is a sequence generated by Algorithm A and that

x∗ is a feasible limit point that satisfies the CPLD constraint qualification. Then,

x∗ is a KKT point.

Proof. Let us write

Gk = G(xk, λ̄k, ρk).

Define, for all k ∈ IN ,

vk = PΩ(xk −Gk).

Therefore, vk ∈ IRn solves

Minimize ‖v − (xk −Gk)‖22

subject to ℓ ≤ v ≤ u.
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By the KKT conditions of this problem, there exist µu
k ∈ IRn

+, µℓ
k ∈ IRn

+ such
that, for all k ∈ IN ,

vk − xk + Gk +
n
∑

i=1

[µu
k ]iei −

n
∑

i=1

[µℓ
k]iei = 0 (25)

and

[µu
k ]i(ui − [xk]i) = [µℓ

k]i(ℓi − [xk]i) = 0 ∀ i = 1, . . . , n. (26)

By (3),

lim
k→∞

(vk − xk) = 0.

Then, by (25),

lim
k→∞

(

Gk +

n
∑

i=1

[µu
k ]iei −

n
∑

i=1

[µℓ
k]iei

)

= 0.

So, defining λk+1 as in (4),

lim
k→∞

(

F (xk) +∇h(xk)λk+1 +

n
∑

i=1

[µu
k ]iei −

n
∑

i=1

[µℓ
k]iei

)

= 0. (27)

Assume now that K is an infinite subset of IN such that

lim
k∈K

xk = x∗.

Since x∗ is feasible, by the continuity of h we have that

lim
k∈K
‖h(xk)‖ = 0. (28)

By (26), (27) and (28), since ℓ ≤ xk ≤ u for all k, the subsequence {xk}k∈K is
an approximate KKT sequence in the sense of [29] (Definition 2.5). (In [29] one
has F = ∇f but the extension of the definition to a general F is straightfoward.)
Therefore, as in the proof of Theorem 2.7 of [29], we obtain that x∗ is a KKT
point. ⊓⊔

5. Boundedness of the penalty parameters

In this section we assume that the sequence {xk}, generated by Algorithm A1 or
by Algorithm A2, converges to a KKT point x∗ ∈ Ω. To simplify the arguments,
as in [12], we assume without loss of generality that [x∗]i < ui for all i = 1, . . . , n
and that ℓi = 0 for all i = 1, . . . , n. The Lagrange multipliers associated with
x∗ will be denoted λ∗ ∈ IRm. This vector will be unique by future assumptions.
We will assume that F ′(x) and ∇2hi(x) exist and are Lipschitz-continuous for
all x ∈ Ω.
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Many definitions and proofs of this section invoke arguments used in [12].
We will mention all the cases in which this occurs.

Assumption NS Define

J1 = { i ∈ {1, . . . , n} | [F (x∗) +

m
∑

j=1

[λ∗]j∇hj(x∗)]i = 0 and [x∗]i > 0}

J2 = { i ∈ {1, . . . , n} | [F (x∗) +

m
∑

j=1

[λ∗]j∇hj(x∗)]i = 0 and [x∗]i = 0}.

Then, the matrix

(

[F
′

(x∗) +
∑m

j=1[λ∗]j∇2hj(x∗)][J,J] (h′(x∗)[J])
T

h′(x∗)[J] 0

)

is nonsingular for all J = J1 ∪K such that K ⊆ J2.

Assumption NS, which corresponds to Assumption AS5 of [12], will be sup-
posed to be true all along this section. Clearly, the fulfillment of NS implies that
the gradients of active constraints at x∗ are linearly independent.

We will also assume that the computation of λ̄k at Step 3 of both algorithms
is:

[λ̄k]i = max{λ̄min, min{λ̄max, [λk]i}} (29)

for all i = 1, . . . , m.
Finally, we will assume that the true Lagrange multipliers [λ∗]i satisfy

λ̄min < [λ∗]i < λ̄max ∀ i = 1, . . . , m. (30)

In the case of Algorithm A1 it will be useful to denote, as before, ρ̂k = ‖ρk‖∞.

Lemma 1. Assume that the sequence {xk} is generated by Algorithm A1. Then,

there exist k0 ∈ IN , ρ̄, a1, a2, a3, a4, a5, a6 > 0 such that, for all k ≥ k0,

‖λk+1 − λ∗‖∞ ≤ a1εk + a2‖xk − x∗‖∞, (31)

and, if ρ̂k0
≥ ρ̄:

‖xk − x∗‖∞ ≤ a3εk + a4
‖λ̄k − λ∗‖∞

ρ̂k

,

‖λk+1 − λ∗‖∞ ≤ a5εk + a6
‖λ̄k − λ∗‖∞

ρ̂k

(32)

and

‖h(xk)‖∞ ≤ a5εk

1

ρ̂k

+

(

1 +
a6

ρ̂k

)‖λ̄k − λ∗‖∞
ρ̂k

. (33)

Proof. The proof is identical to the ones of Lemmas 4.3 and 5.1 of [12], using
NS, replacing µk by 1/ρ̂k and using the equivalence of norms in IRn. ⊓⊔
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Lemma 2 and Theorem 4 below complete the penalty boundedness proof for
Algorithm A1. These proofs are specific for the updating rule of this algorithm,
since the proofs of [12] do not apply to our case.

Lemma 2. Assume that the sequence {xk} is generated by Algorithm A1. Then,

there exists k0 ∈ IN such that for all k ≥ k0,

λ̄k = λk.

Proof. By (31) there exists k1 ∈ IN such that

‖λk+1 − λ∗‖∞ ≤ a1εk + a2‖xk − x∗‖∞ for all k ≥ k1. (34)

Define ǫ = 1
2 mini{[λ∗]i − λ̄min, λ̄max − [λ∗]i} > 0. Since ‖xk − x∗‖∞ → 0 and

εk → 0, by (34) we obtain that

‖λk+1 − λ∗‖∞ ≤ ǫ for k large enough.

By (29), (30) and the definition of ǫ we obtain the desired result. ⊓⊔

In the following theorem we prove that, if a suitable adaptive choice of
the convergence criterion of the subproblems is used, Lagrange multipliers are
bounded in Algorithm A1.

Theorem 4. Assume that the sequence {xk} is generated by Algorithm A1 and

that εk is such that

εk = min{ε′k, ‖h(xk)‖∞} (35)

where {ε′k} is a decreasing sequence that tends to zero. Then, the sequence of

penalty parameters {ρk} is bounded.

Proof. Let k0 be as in Lemma 2. Then, for all k ≥ k0, we have that λ̄k = λk.
Assume that ρ̂k → ∞. By (33) and (35) there exists k1 ≥ k0 such that

a5/ρ̂k < 1 and

‖h(xk)‖∞ ≤
(

1 +
a6

ρ̂k

)(

1

1− a5

ρ̂k

)‖λk − λ∗‖∞
ρ̂k

(36)

for all k ≥ k1. Since λk = λk−1 + ρ̂k−1h(xk−1) we get

‖h(xk−1)‖∞ =
‖λk − λk−1‖∞

ρ̂k−1
≥ ‖λk−1 − λ∗‖∞

ρ̂k−1
− ‖λk − λ∗‖∞

ρ̂k−1
.

Then, by (32) and (35), if k is large enough we have that:

‖λk − λ∗‖∞ ≤ a5εk−1 + a6
‖λk−1 − λ∗‖∞

ρ̂k−1

≤ a5‖h(xk−1)‖∞ + a6

(

‖h(xk−1)‖∞ +
‖λk − λ∗‖∞

ρ̂k−1

)

.
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Therefore, if k is large enough (so that a6/ρ̂k−1 < 1) we get:

‖λk − λ∗‖∞ ≤
1

1
a6
− 1

ρ̂k−1

(

1 +
a5

a6

)

‖h(xk−1)‖∞. (37)

Combining (37) and (36) we obtain:

‖h(xk)‖∞ ≤
πk

ρ̂k

‖h(xk−1)‖∞

with

πk =

(

1 +
a6

ρ̂k

)(

1

1− a5

ρ̂k

)

1
1
a6

− 1
ρ̂k−1

(

1 +
a5

a6

)

.

Since limk→∞
πk

ρ̂k

= 0, there existsk2 ≥ k1 such that πk

ρ̂k

< τ and ρk+1 = ρk for
all k ≥ k2. This is a contradiction. ⊓⊔

Remark 3. The choice of the tolerance εk in (35) deserves some explanation. In
this case ε′k is given and tends to zero. Therefore, by (35), the sequence εk tends
to zero as required by Algorithm A1. However, when the rule (35) is adopted,
εk is not given before the resolution of each subproblem. In other words, the
inner algorithm used to solve each subproblem stops (returning the approximate
solution xk) only when the condition

‖PΩ[xk −G(xk, λ̄k, ρk)]− xk‖∞ ≤ min{ε′k, ‖h(xk)‖∞}

is fulfilled.

In the rest of this section we consider the Augmented Lagrangian method
with several penalty parameters defined by Algorithm A2. Several definitions
and proofs will be adapted from the ones given in [11,12]. This is the case of the
definitions that precede Lemma 3.

From now on, the sequence {xk} is generated by Algorithm A2. Define

I∞ = {i ∈ {1, . . . , m} | [ρk]i →∞}, Ia = {i ∈ {1, . . . , m} | [ρk]i is bounded },

ρ̃k = min
i∈I∞
{[ρk]i}, ηk =

∑

i∈Ia

|hi(xk)|.

Given the iterate xk ∈ Ω and i ∈ {1, . . . , n}, we have two possibilities for
each component [xk]i:

(i) 0 ≤ [xk]i ≤ [G(xk, λ̄k, ρk)]i, or
(ii) [G(xk, λ̄k, ρk)]i < [xk]i.

A variable [xk]i is said to be dominated at the point xk if [xk]i satisfies (i). If
[xk]i satisfies (ii) the variable [xk]i is said to be floating.

If the variable [xk]i is dominated, we have that

[PΩ[xk −G(xk, λ̄k, ρk)]− xk]i = −[xk]i. (38)
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On the other hand, if the variable [xk]i is floating, we have:

[PΩ[xk −G(xk, λ̄k, ρk)]− xk]i = −[G(xk, λ̄k, ρk)]i. (39)

Let us define:

I1 = {i ∈ {1, . . . , n} | [xk]i is floating for all k large enough and [x∗]i > 0},
(40)

I2 = {i ∈ {1, . . . , n} | [xk]i is dominated for all k large enough}. (41)

The following result corresponds to Lemmas 4.3 and 5.1 of [12], adapted for
several penalty parameters.

Lemma 3. Assume that the sequence {xk} is computed by Algorithm A2. There

exists k0 ∈ IN and positive constants b1, b2, ρ, α1, α2, α3, α4, α5 such that, for

all k ≥ k0,

‖λk+1 − λ∗‖∞ ≤ b1εk + b2‖xk − x∗‖∞, (42)

and, if [ρk0
]i ≥ ρ for all i ∈ I∞,

‖xk − x∗‖∞ ≤ α1εk + α2ηk + α3

∑

i∈I∞

|[λ̄k]i − [λ∗]i|
[ρk]i

(43)

and

‖λk+1 − λ∗‖∞ ≤ α4εk + α5‖h(xk)‖∞. (44)

Proof. The proof of (42) is identical to the one of (31). The arguments used below
to prove (46)–(51) may be found in [12] (proof of Lemma 5.1, pages 558–561).

Let k be large enough, so that the sets I1, I2 defined in (40) and (41) are well
determined. Let I3 be the set of the remaining indices (dominated or floating).
For all k large enough (say, k ≥ k0), define I4(k), I5(k) such that

(i) I4(k) ∩ I5(k) = ∅ and I4(k) ∪ I5(k) = I3;
(ii) The indices i ∈ I4(k) correspond to floating variables;
(iii) The indices i ∈ I5(k) correspond to dominated variables.

Let K =
⋃

k≥k0
{(I4(k), I5(k)}. Clearly, K is a finite set. For all (I4, I5) ∈ K,

consider the set of indices I(I4, I5) such that I4(k) = I4, I5(k) = I5 for all
k ∈ I(I4, I5). Obviously,

{k ∈ IN | k ≥ k0} =
⋃

(I4,I5)∈K

I(I4, I5), (45)

where the union on the right-hand side of (45) involves a finite number of sets.
Therefore, it is sufficient to prove the lemma for each set K = I(I4, I5). In this
way, the constants α1, . . . , α5 will depend on K. (Say, αi = αi(K), i = 1, . . . , 5.)
At the end we can take αi = max{αi(K)} and (43)–(44) will be true.

So, fixing k ∈ K = I(I4, I5) we define:

IF = I1 ∪ I4 and ID = I2 ∪ I5.
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Thus, the variables in IF are floating whereas the variables in ID are dominated.

Define T (x, λ) = F (x)+∇h(x)λ. By the definition of G and (4) we have that
T (xk, λk+1) = G(xk, λ̄k, ρk). Define Hl(x, λ) = T

′

x(x, λ) = F
′

(x)+
∑m

i=1 λi∇2hi(x),
where the derivatives are taken with respect to x. Using Taylor’s formula on each
term of the expression T (xk, λk+1) in a neighborhood of (x∗, λ∗) and on h(xk)
in a neighborhood of x∗ (see details in [12], page 559), we obtain:

(

Hl(x∗, λ∗) h
′

(x∗)
T

h
′

(x∗) 0

)(

xk − x∗

λk+1 − λ∗

)

=

(

G(xk, λ̄k, ρk)− T (x∗, λ∗)
h(xk)

)

−
(

r1 + r2

r3

)

,

(46)
where

r1(xk, x∗, λk+1) =

∫ 1

0

[Hl(xk + s(x∗ − xk), λk+1)−Hl(x∗, λk+1)](xk − x∗)ds,

r2(xk, x∗, λk+1, λ∗) =
m
∑

j=1

([λk+1]j − [λ∗]j)∇2hj(x∗)(xk − x∗)

and

[r3(xk, x∗)]i =

∫ 1

0

s

∫ 1

0

(xk − x∗)
T∇2hi(x∗ + ts(xk − x∗))(xk − x∗)dtds.

By (42), limk→∞ λk+1 = λ∗. So, by the Lipschitz-continuity of F
′

(x) and
∇2hi(x) in a neighborhood of x∗, we get:

‖r1(xk, x∗, λk+1)‖2 ≤ a7‖xk − x∗‖22,

‖r2(xk, x∗, λk+1, λ∗)‖2 ≤ a8‖xk − x∗‖2‖λk+1 − λ∗‖2 and

‖r3(xk, x∗)‖2 ≤ a9‖xk − x∗‖22

(47)

for positive constants a7, a8 and a9.

By (42) we have that λk+1 tends to λ∗ and, so, G(xk, λ̄k, ρk) tends to
T (x∗, λ∗). Therefore, as in Lemma 2.1 of [12], we obtain that [x∗]i = 0 when
i ∈ ID and [T (x∗, λ∗)]i = 0 when i ∈ IF . Thus, equation (46) may be written as







Hl(x∗, λ∗)[IF ,IF ] Hl(x∗, λ∗)[IF ,ID ] h
′

(x∗)
T
[IF ]

Hl(x∗, λ∗)[ID ,IF ] Hl(x∗, λ∗)[ID ,ID ] h
′

(x∗)
T
[ID ]

h
′

(x∗)[IF ] h
′

(x∗)[ID ] 0











(xk − x∗)[IF ]

(xk)[ID ]

λk+1 − λ∗





=





G(xk, λ̄k, ρk)[IF ]

(G(xk, λ̄k, ρk)− T (x∗, λ∗)[ID ]

h(xk)



−





(r1 + r2)[IF ]

(r1 + r2)[ID ]

r3



 .
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Therefore, after some manipulation, we obtain:
(

Hl(x∗, λ∗)[IF ,IF ] h
′

(x∗)
T
[IF ]

h
′

(x∗)[IF ] 0

)

(

(xk − x∗)[IF ]

λk+1 − λ∗

)

=

(

G(xk, λ̄k, ρk)[IF ] −Hl(x∗, λ∗)[IF ,ID ](xk)[ID ]

h(xk)− h
′

(x∗)[ID ](xk)[ID ]

)

−
(

(r1 + r2)[IF ]

r3

)

.

(48)

Since [x∗]i = 0 for all i ∈ ID and, by (3) and (38), ‖(xk)[ID ]‖2 ≤
√

|ID|εk,
we get:

‖xk − x∗‖2 ≤ ‖(xk − x∗)[IF ]‖2 +
√

|ID|εk. (49)

Define now ∆xk = ‖(xk − x∗)[IF ]‖2. Combining (42) and (49) we obtain:

‖λk+1 − λ∗‖2 ≤ a10εk + a11∆xk, (50)

with a10 =
√

m(b1 +
√

|ID|b2), a11 =
√

mb2. Moreover, by (47), (49) and (50),
∥

∥

∥

∥

(

(r1 + r2)[IF ]

r3

)∥

∥

∥

∥

2

≤ a12(∆xk)2 + a13∆xkεk + a14εk
2 (51)

with a12 = a7 + a9 + a8a11, a13 = 2
√

|ID|(a7 + a9) + a8(
√

|ID|a11 + a10) and

a14 = |ID|(a7 + a9) +
√

|ID|a8a10.

From here to the end of the proof, the arguments used are not present in [12].
Since ‖(xk)[ID ]‖2 ≤

√

|ID|εk and, by (3) and (39), ‖G(xk, λ̄k, ρk)[IF ]‖2 ≤
√

|IF |εk we obtain:
∥

∥

∥

∥

(

G(xk, λ̄k, ρk)[IF ] −Hl(x∗, λ∗)[IF ,ID ](xk)[ID ]

h(xk)− h
′

(x∗)[ID ](xk)[ID ]

)∥

∥

∥

∥

2

≤ a15εk + ‖h(xk)‖2,

with a15 =
√

n

(

1 +

∥

∥

∥

∥

(

Hl(x∗, λ∗)[IF ,ID ]

h
′

(x∗)[ID ]

)∥

∥

∥

∥

2

)

.

By Assumption NS, the left-hand side matrix of (48) is nonsingular. Let M
be the norm of its inverse. Multiplying both sides of the equation by this inverse
and taking norms, we obtain:
∥

∥

∥

∥

(

(xk − x∗)[IF ]

λk+1 − λ∗

)∥

∥

∥

∥

2

≤M(a15εk + ‖h(xk)‖2 + a12(∆xk)
2
+ a13∆xkεk + a14εk

2).

(52)

By (4) and (42),

|hi(xk)| = |[λk+1]i − [λ̄k]i|
[ρk]i

≤ |[λk+1]i − [λ∗]i|+ |[λ̄k]i − [λ∗]i|
[ρk]i

≤ b1εk + b2‖xk − x∗‖2 + |[λ̄k]i − [λ∗]i|
[ρk]i

. (53)
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Now,

‖h(xk)‖22 =
∑

i∈I∞

|hi(xk)|2 +
∑

i∈Ia

|hi(xk)|2.

So, using that
∑n

i=1 a2
i ≤ (

∑n
i=1 ai)

2 for ai ≥ 0, i = 1, . . . , n, and the inequal-
ity (53) for all i ∈ I∞, we obtain:

‖h(xk)‖2 ≤ ηk +
∑

i∈I∞

|[λ̄k]i − [λ∗]i|
[ρk]i

+ |I∞|
(b1εk + b2‖xk − x∗‖2)

ρ̃k

. (54)

By (49), combining (54) and (52), we get

∥

∥

∥

∥

(

(xk − x∗)[IF ]

λk+1 − λ∗

)∥

∥

∥

∥

2

≤M

(

a15εk+ηk+
∑

i∈I∞

|[λ̄k]i − [λ∗]i|
[ρk]i

+a16
εk

ρ̃k

+b2|I∞|
∆xk

ρ̃k

+a12(∆xk)2+a13∆xkεk+a14εk
2

)

,

(55)
where a16 = |I∞|(b1 + b2

√

|ID|).
Now, if k is large enough,

εk ≤ min

{

1,
1

4Ma13

}

(56)

and

∆xk ≤
1

4Ma12
. (57)

By (55) and (56), we have that

∆xk = ‖(xk − x∗)[IF ]‖2

≤M

(

a15εk+ηk+
∑

i∈I∞

|[λ̄k]i − [λ∗]i|
[ρk]i

+a16
εk

ρ̃k

+b2|I∞|
∆xk

ρ̃k

+a12(∆xk)2+
∆xk

4M
+a14εk

)

.

(58)
Then, by (57) and (58),

∆xk ≤M

(

a15εk+ηk+
∑

i∈I∞

|[λ̄k]i − [λ∗]i|
[ρk]i

+a16
εk

ρ̃k

+b2|I∞|
∆xk

ρ̃k

+
∆xk

4M
+

∆xk

4M
+a14εk

)

.

(59)
Define ρ̄ = max{1, 4|I∞|Mb2}. If k is large enough, [ρk]i ≥ ρ̄ for all i ∈ I∞.

By (59) we get:

∆xk ≤ 4M

(

(a15 + a16 + a14)εk + ηk +
∑

i∈I∞

|[λ̄k]i − [λ∗]i|
[ρk]i

)

. (60)
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So, by (49) and (60), we obtain:

‖xk − x∗‖∞ ≤ ‖xk − x∗‖2 ≤ α1εk + α2ηk + α3

∑

i∈I∞

|[λ̄k]i − [λ∗]i|
[ρk]i

,

where α1 = 4M(a15 + a16 + a14) +
√

|ID| and α2 = α3 = 4M . This proves (43).
Let us now prove (44). Using (56) and (57) in the inequality (52) we obtain:

∆xk = ‖(xk − x∗)[IF ]‖2 ≤
∆xk

2
+ M(a17εk + ‖h(xk)‖2),

where a17 = a14 + a15. Therefore,

∆xk ≤ 2M(a17εk + ‖h(xk)‖2). (61)

By (49) and (61) we obtain:

‖xk − x∗‖∞ ≤ ‖xk − x∗‖2 ≤ α6εk + α7‖h(xk)‖∞, (62)

where α6 = 2Ma17 +
√

|ID| and α7 = 2M
√

m. Combining (62) and (42) we
obtain the inequality

‖λk+1 − λ∗‖∞ ≤ α4εk + α5‖h(xk)‖∞,

where α4 = b1 + b2α6 and α5 = b2α7. Then, (44) is proved. ⊓⊔

Lemma 4. Assume that the sequence {xk} is computed by Algorithm A2. Then,

there exists k0 ∈ IN such that, for all k ≥ k0,

λ̄k = λk.

Proof. By (42), the proof is the same than that of Lemma 2. ⊓⊔

Theorem 5 is the final result of this section. We will prove that, under a
different adaptive choice of the stopping criterion used in the subproblems, the
penalty parameters are bounded for Algorithm A2.

Theorem 5. Assume that the sequence {xk} is computed by Algorithm A2 and

that εk is such that

εk = min{εk−1, ‖h(xk)‖∞, ε′k} (63)

where {ε′k} is a decreasing sequence that converges to zero. Then the sequence

{ρk} is bounded.

Proof. Suppose that I∞ 6= ∅. Let i0 ∈ I∞.
For all i ∈ Ia there exists k1(i) such that for all k ≥ k1(i), [ρk+1]i = [ρk]i. If

k is large enough we have that, for all i ∈ Ia,

|hi(xk)| ≤ τ‖h(xk−1)‖∞.
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Then,

ηk =
∑

i∈Ia

|hi(xk)| ≤ |Ia|τ‖h(xk−1)‖∞. (64)

Let k ≥ k̃ = maxi∈Ia
{k0, k1(i)}, where k0 is obtained as in Lemma 4. By (4),

|hi0(xk)| = |[λk+1]i0 − [λk]i0 |
[ρk]i0

≤ |[λk+1]i0 − [λ∗]i0 |+ |[λk]i0 − [λ∗]i0 |
[ρk]i0

.

So, by (42),

|hi0(xk)| ≤ b1εk + b2‖xk − x∗‖∞ + |[λk]i0 − [λ∗]i0 |
[ρk]i0

.

Thus, by (43),

|hi0(xk)| ≤ 1

[ρk]i0

[

(b1+b2α1)εk+b2α2ηk+b2α3

∑

i∈I∞

|[λk]i − [λ∗]i|
[ρk]i

+|[λk]i0−[λ∗]i0 |
]

.

(65)
Now, by (44) with λk replacing λk+1, (63) implies that

|[λk]i − [λ∗]i| ≤ ‖λk − λ∗‖∞ ≤ (α4 + α5)‖h(xk−1)‖∞ i = 1, . . . , m. (66)

Since εk ≤ εk−1 ≤ ‖h(xk−1)‖∞, combining (64), (65) and (66), we obtain:

|hi0(xk)| ≤ πk(i0)

[ρk]i0
‖h(xk−1)‖∞,

where

πk(i0) = (b1 + b2α2) + b2α2|Ia|τ +

(

b2α3

∑

i∈I∞

1

[ρk]i
+ 1

)

(α4 + α5).

Since πk(i0)
[ρk]i0

→ 0, there exists k̃(i0) ≥ k̃ such that

|hi0(xk)| ≤ τ‖h(xk−1)‖∞

for all k ≥ k̃(i0). Therefore, [ρk+1]i0 = [ρk]i0 . This is a contradiction. ⊓⊔

Remark 4. As in the case of Theorem 4, the choice of εk that satisfies (63)
is adaptive. In other words, the precision needed for solving each subproblem
depends on the level of infeasibility of the approximate solution. The sequence
{ε′k} is given and the stopping criterion at each subproblem is

‖PΩ[xk −G(xk, λ̄k, ρk)]− xk‖∞ ≤ min{εk−1, ‖h(xk)‖∞, ε′k},

where εk−1 is defined by (63). So, as in Theorem 4, the inner algorithm that
solves the subproblem returns xk only when this stopping condition is fulfilled.
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6. Numerical experiments

Our main objective regarding this set of experiments is to decide between Algo-
rithm A1 and Algorithm A2. From the theoretical point of view, Algorithm A1
has the advantage that the set of possible infeasible limit points seems to be
smaller than the set of possible infeasible limit points of Algorithm A2. Thus,
in principle, Algorithm A2 might converge to infeasible points more often than
Algorithm A1. On the other hand, Algorithm A2 tends to increase the penalty
parameters less frequently than Algorithm A1, a fact that has a positive influence
on the conditioning of the subproblems.

However, we are also interested in testing several different options for the
implementation of the algorithms. Namely: the best values for λ̄min and λ̄max

(large or small?), the best value for the tolerance τ that determines the increase
of penalty parameters and the strategy for choosing εk.

Summing up, the practical algorithms to be tested are defined by:

1. Strategy for updating penalty parameters
Option ONE: Algorithm A1.
Option TWO: Algorithm A2.

2. Choice of the safeguarded Lagrange multiplier approximations
Option BIG: λ̄max = −λ̄min = 1020.
Option SMALL: λ̄max = −λ̄min = 106.

3. Tolerance for improvement of feasibility
Option TIGHT: τ = 0.1.
Option LOOSE: τ = 0.5.

4. Strategy for convergence criterion of subproblems
Option FIX : εk = εmin ≥ 0 for all k.
Option INEX: εk = max{0.1k, εmin} for all k.
Option ADPT: ε′k = max{0.1k, εmin} for all k,

εk = max{εmin, min{ε′k, ‖h(xk)‖∞}}

for Algorithm A1 and

εk = max{εmin, min{εk−1, ε
′
k, ‖h(xk)‖∞}}

for Algorithm A2.

Therefore, 24 different methods are defined. Observe that, when εmin = 0,
the option ADPT corresponds to the theoretical hypotheses used in Section 5 to
prove boundedness of the penalty parameters. Obviously, in practical (floating
point) computations we must choose some small εmin > 0.

The implementation decisions that are common to all the options were the
following:

1. For solving the box-constrained minimization subproblems (6) at Step 2 of
both algorithms we used GENCAN [5] with its default parameters. The re-
sulting code (Augmented Lagrangian with GENCAN) will be called ALGEN-
CAN.
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2. We computed the Lagrange multipliers estimates using (4) and (29).
3. We set [ρ1]i = 10 for all i = 1, . . . , m and γ = 10 for both algorithms.
4. The algorithms were stopped declaring Convergence when

‖PΩ(xk − F (xk)−∇h(xk)λk+1)− xk‖∞ ≤ εmin

and
‖h(xk)‖∞ ≤ εmin.

We used εmin = 10−4. An execution is stopped declaring Time exceeded if
the algorithm runs during 10 minutes without achieving Convergence. Other
stopping criteria were inhibited in order to ensure an homogeneous compar-
ison.

All experiments were done in a Sun Fire 880 with 8 900 Mhz UltraSPARC
III Processors, 32 Gb of RAM memory, running SunOS 5.8. The codes were
written in FORTRAN 77 and compiled with Forte Developer 7 Fortran 95 7.0
2002/03/09. We used the optimizing option -O. The codes used in this study are
available for download in the TANGO webpage (www.ime.usp.br/∼egbirgin/tango).

We considered all the nonlinear programming problems with equality con-
straints and bounds of the CUTE collection [9]. As a whole, we tried to solve 128
problems.

Consider a fixed problem and let x
(M)
final, M = 1, . . . , 24, be the final point of

method M applied to that problem. In this numerical study we say that x
(M)
final

is feasible if
∥

∥

∥

∥

h

(

x
(M)
final

)∥

∥

∥

∥

∞

≤ εmin.

We define

fbest = min
M

{

f

(

x
(M)
final

)

| x(M)
final is feasible

}

.

We say that method M found a solution of the problem if x
(M)
final is feasible and

f

(

x
(M)
final

)

≤ fbest + 10−3|fbest|+ 10−6.

Let t(M), M = 1, . . . , 24, be the computer CPU time that method M used to
find a solution. If the method did not find a solution we define t(M) = ∞. We
define

tbest = min
M
{t(M) | method M found a solution},

and we say that method M is one of the fastest methods for the problem when

t(M) ≤ tbest + 0.01 tbest <∞.

These definitions are the same used in [4] for comparing different Augmented
Lagrangian formulae.

We are interested in comparing the 24 variants of Augmented Lagrangian
algorithms with respect to Robustness, Feasibility and Efficiency. We say that a
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Table 1. Performance of ALGENCAN

Method Performance

Strategy for Choice of the Tolerance for Strategy for
updating safeguarded improvement convergence
penalty Lagrange of feasibility criterion of R F E
parameters multiplier subproblems

approximations

TWO LOOSE BIG FIX 1(96) 1(102) 1(56)
TWO LOOSE BIG INEX 1(96) 2(101) 13(28)
ONE LOOSE BIG FIX 3(95) 11(100) 5(52)
TWO TIGHT BIG FIX 3(95) 11(100) 4(53)
TWO TIGHT SMALL FIX 3(95) 11(100) 3(54)
TWO LOOSE SMALL FIX 3(95) 2(101) 2(55)
TWO LOOSE SMALL INEX 3(95) 2(101) 14(27)
ONE TIGHT BIG FIX 8(94) 11(100) 5(52)
ONE LOOSE BIG ADPT 8(94) 16( 99) 23(12)
ONE LOOSE SMALL ADPT 8(94) 19( 98) 23(12)
TWO TIGHT BIG ADPT 8(94) 2(101) 15(26)
TWO TIGHT SMALL ADPT 8(94) 2(101) 16(25)
TWO LOOSE BIG ADPT 8(94) 2(101) 22(15)
TWO LOOSE SMALL ADPT 8(94) 2(101) 22(15)
ONE TIGHT BIG INEX 15(93) 11(100) 12(36)
ONE TIGHT SMALL INEX 15(93) 16( 99) 11(37)
ONE LOOSE BIG INEX 15(93) 16( 99) 17(24)
ONE LOOSE SMALL FIX 15(93) 21( 97) 5(52)
ONE LOOSE SMALL INEX 15(93) 19( 98) 17(24)
TWO TIGHT BIG INEX 15(93) 2(101) 9(38)
TWO TIGHT SMALL INEX 15(93) 2(101) 9(38)
ONE TIGHT BIG ADPT 22(92) 23( 95) 19(21)
ONE TIGHT SMALL FIX 22(92) 21( 97) 5(52)
ONE TIGHT SMALL ADPT 22(92) 23( 95) 19(21)

particular algorithm is robust for solving some problem if it finds the solution of
the problem according to the criterion defined above. We say that it is feasible

if it finds a feasible point and we say that it is efficient if it is one of the fastest

methods for solving the problem. In Table 1 we report, for each combination
of parameters, the number of problems in which the corresponding algorithm
was robust, feasible and efficient, respectively. More precisely, the symbol p(q)
under column R indicates that the algorithm found the solution of q problems,
according the criterion above and that its rank with respect to robustness was p.
The symbol p(q) under column F means that the algorithm found a feasible
point in q cases and ranked p with respect to feasibility. The same symbol under
column E means that the algorithm was one of the fastest in q cases and ranked
p with respect to this criterion.

Some preliminary conclusions may be drawn by inspection of Table 1.

– One of the methods (Algorithm A2 with τ = 0.5, λ̄max = 1020, εk ≡ εmin)
appears to be the best one, considering feasibility, robustness and efficiency.

– Algorithm A2 is better than Algorithm A1. This means that using different
penalty parameter and increasing separately each of them is better than
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increasing “all” the penalty parameters when the improvement of just one
constraint is not enough, as Algorithm A1 does.

– In general, using a fixed small convergence criterion in the subproblems (εk =
εmin) is better than using different choices of εk at least in terms of efficiency.
With respect to feasibility and robustness the different choices of εk are
equivalent.

– The option LOOSE for increasing the penalty parameter is slightly better
than the option TIGHT. The choice of λ̄max between 106 and 1020 is not
very relevant. Preliminary experiments showed that smaller values of λ̄max

are not convenient.

In order to test the consistency of our algorithms we compared our winner
Augmented Lagrangian algorithm with the default version of LANCELOT [12]
and with the same version with true Hessians and without preconditioners. The
last one is more adequate since the version of GENCAN that we use does not
employ preconditioners at all. It must be observed that GENCAN does not use
true Hessians either. Matrix-vector products involving Hessians are replaced by
incremental gradient quotients in GENCAN. ALGENCAN was more efficient
and robust than the version of LANCELOT without preconditioners. It was
also more efficient than the preconditioned LANCELOT but not as robust as
this method. The corresponding performance profile [15] is shown in Figure 1.

7. Conclusions

Augmented Lagrangian methods are useful tools for solving many practical non-
convex minimization problems with equality constraints and bounds. Its exten-
sion to KKT systems and, in consequence, to a wide variety of equilibrium prob-
lems (see [26,27]) is straightforward. We presented two Augmented Lagrangian
algorithms for this purpose. They differ only in the way in which penalty pa-
rameters are updated. There seems to be an important difference between these
two algorithms with respect to convergence properties. According to our feasi-
bility results the set of possible infeasible limit points of Algorithm A1 seems
to be strictly contained in the set of possible infeasible limit points of Algo-
rithm A2. This could indicate that Algorithm A2 converges to infeasible points
more frequently than Algorithm A1. However, this property was not confirmed
by numerical experiments, which indicate that Algorithm A2 is better. So, it
seems that maintaining moderate values of the penalty parameters is the more
important feature for explaining the practical performance. However, it is still
an open problem if stronger results than Theorem 2 can be obtained for Algo-
rithm A2.

The question about convergence to optimal (KKT) points is also relevant.
Up to our knowledge, convergence to KKT points of algorithms of this type had
been obtained only using assumptions on the linear independence of active con-
straints. Here we proved that a much better constraint qualification (CPLD) can
be used with the same purpose. Again, the problem of finding even weaker con-
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Fig. 1. ALGENCAN versus LANCELOT.

straint qualifications under which convergence to KKT points can be guaranteed
remains open.

The superiority of Algorithm A2 over Algorithm A1 in numerical experi-
ments was not a surprise since every optimization practitioner is conscious of
the effect of large penalty parameters on the conditioning of the subproblems
and, hence, on the overall performance of Augmented Lagrangian and penalty
methods. A little bit more surprising was the (slight) superiority of the algo-
rithms based on accurate resolution of the subproblems over the ones based on
inexact resolution. Careful inspection of some specific cases lead us to the fol-
lowing explanation for that behavior. On one hand, GENCAN, the algorithm
used to solve the subproblems is an inexact-Newton method whose behavior is
many times similar to Newton’s method especially when the iterate is close to
the solution. This implies that, after satisfying a loose convergence criterion, the
amount of effort needed for satisfying a strict convergence criterion is usually
small. In these cases it is not worthwhile to interrupt the execution for defining
a new subproblem. (One would be “abandoning Newton” precisely in the region
where it is more efficient!) On the other hand, the formula used for updating
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the Lagrange multipliers is a first-order formula motivated by the assumption
of exact solution of the subproblems. When the resolution is inexact, other up-
dating formulae ([24], p. 291) might be more efficient (although, of course, more
costly).

The conclusion about the relative efficiency of solving accurately or inaccu-
rately the subproblem may change if one uses different box-constrained solvers.
The excellent behavior of the spectral gradient method for very large convex
constrained minimization [6–8,13,30,31] is a strong motivation for pursuing the
research on inexact stopping criteria for the subproblems, since in this case
quadratic or superlinear convergence is not expected.

Valuable research has been done in the last 10 years in Augmented La-
grangian methods for solving quadratic problems originated from mechanical
applications [16–18]. Adaptive criteria that depend on feasibility of the current
point (as in the assumptions of our penalty boundedness theorems) have been
successfully used and justified from several different points of view. (Antecedents
of these practical strategies can be found in [25].) More recently [16], Dostál
showed that, for some convex quadratic programming problems, an updating
strategy based on the increase of the Augmented Lagrangian function have in-
teresting theoretical and practical properties. The extension of his philosophy to
the general nonquadratic and nonconvex case must be investigated.

The recent development of efficient sequential quadratic programming, interior-
point and restoration methods for nonlinear programming motivates a different
line of Augmented Lagrangian research. The “easy” set Ω does not need to be
a box and, in fact, it does not need to be “easy” at all if a suitable algorithm
for minimizing on it is available. (The case in which Ω is a general polytope
was considered in [11].) However, many times the intersection of Ω with the
general constraints h(x) = 0 is very complicated. In these cases, using the Aug-
mented Lagrangian approach to deal with the general constraints and a different
nonlinear programming algorithm to deal with the subproblems is attractive.
Certainly, this has been done in practical applications for many years. The con-
vergence properties of these combinations using weak constraint qualifications is
considered in a separate report [1].

Inequality constraints in the original problem can be reduced to equality and
box constraints by means of the addition of slack variables and bounds. How-
ever, it is interesting to consider directly Augmented Lagrangian methods that
deal with inequality constraints without that reformulation. The most popular
Augmented Lagrangian function for inequality constraints [32] can be obtained
by reducing the inequality constrained problem to an equality constrained one,
with the help of squared slack variables, and applying the equality Augmented
Lagrangian to the new problem. After some manipulation, squared slack vari-
ables are eliminated and an Augmented Lagrangian without auxiliary variables
arises [3]. Many alternative Augmented Lagrangians with better smoothness
properties than the classical one have been introduced. It is possible to obtain
feasibility and global convergence results for methods based on many inequality
Augmented Lagrangians after removing a considerable number of technical diffi-
culties [1,4]. However, results on the boundedness of the penalty parameters are
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harder to obtain. In particular, strict complementarity at the limit point seems
to be necessary for obtaining such results. This assumption is not used at all in
the present paper.

We presented our methods and theory considering KKT systems and not
merely minimization problems to stress the applicability of the Augmented La-
grangian strategy to the general KKT case. We performed several experiments
for general KKT systems, where the algorithm used for solving the subproblems
was the well known PATH solver (see [14]). We compared the resulting algorithm
with the PATH method for solving directly the original problem. On one hand,
we confirmed the following warning of [23]: “Typically, singularity [of the Jaco-
bian] does not cause a lot of problems and the algorithm [PATH] can handle the
situation appropriately. However, an excessive number of singularities are cause
of concern. A further indication of possible singularities at the solution is the lack
of quadratic convergence to the solution”. In fact, for some tested problems, the
effect of singularity of the Jacobian was more serious in the direct application of
PATH to the original problem than in the “Augmented Lagrangian with PATH”
algorithm. In many other situations the direct application of PATH to the KKT
system was more efficient. Clearly, the Augmented Lagrangian framework in-
tensely exploits the minimization structure of the problem when the source of
the KKT system is nonlinear programming and loses this advantage when the
KKT system is general. However, much research is necessary in order to eval-
uate the potentiality of the Augmented Lagrangian for equilibrium problems,
variational inequalities and related problems.
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