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Abstract

In this study we are concerned with the non-exact two-stage two-dimensional guillotine
cutting problem considering usable leftovers, in which stock plates remainders of the cutting
patterns (non-used material or trim loss) can be used in the future, if they are large enough to
fulfill future demands of items (ordered smaller plates). This cutting problem can be charac-
terized as a residual bin-packing problem because of the possibility of putting back into stock
residual pieces, since the trim loss of each cutting/packing pattern does not necessarily repre-
sent waste of material depending on its size. Two bilevel mathematical programming models to
represent this non-exact two-stage two-dimensional residual bin-packing problem are presented.
The models basically consist on cutting/packing the ordered items using a set of plates of min-
imum cost and, among all possible solutions of minimum cost, choosing one that maximizes
the value of the generated usable leftovers. Because of special characteristics of these bilevel
models, they can be reformulated as one-level mixed integer programming models. Results of
some numerical experiments are presented to show that the models represent appropriately the
problem and to illustrate their performances.

Key words: Two-stage two-dimensional guillotine cutting, residual bin-packing problem, resid-
ual cutting-stock problem, bilevel programming, MIP models, leftovers.

1 Introduction

Cutting problems are often found in different industrial processes where paper and aluminium rolls,
glass and fibreglass plates, metal bars and sheets, hardboards, pieces of leather and cloth, etc., are
cut in order to produce smaller pieces of ordered sizes and quantities. These problems are closely
related to packing problems and they basically consist on determining the “best” way to cut large
stock objects to produce small ordered items so that one or more objectives are optimized. Cutting
and packing problems have been widely studied in the literature in the last decades.

In a number of industrial cutting processes as, for example, in furniture and hardboard compa-
nies, the cutting equipment is able to produce only guillotine cuts on the plates (Gilmore & Gomory
1965, Farley 1983, Yanasse et al. 1991, Carnieri et al. 1994, Morabito & Arenales 2000, Morabito
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& Belluzzo 2005). A guillotine cut on a plate is a cut from one edge of the plate to the opposite
edge, parallel to the remaining edge. In other words, the cut is of guillotine type if when applied
to a rectangle it produces two new rectangles. Depending on the cutting equipment, the feasible
two-dimensional cutting patterns for the plates can be produced by guillotine cuts in at most two
stages. In the first stage, parallel longitudinal (horizontal) guillotine cuts are produced on a plate,
without moving it, to produce a set of strips. In the second stage, these strips are pushed, one by
one, and the remaining parallel transversal (vertical) guillotine cuts are made on each strip (see
Figure 1). If there is no need for additional trimming (i.e. all items have the same height in each
strip), the cutting pattern is called exact two-stage guillotine (Figure 1a); otherwise, it is called
non-exact (Figure 1b).

24× 10 24× 10

(a) (b)

Figure 1: Two-stage cutting pattern: (a) exact case, (b) non-exact case.

In this study we deal with the non-exact two-stage two-dimensional guillotine cutting problem
of how to cut a set of rectangular objects with known sizes and quantities to make exactly a set of
rectangular items with specified sizes and demands to be fulfilled. We assume that the assortment
of ordered items can be strongly heterogeneous, i.e. the set of items can be characterized by the
fact that only very few items are of identical size. We are particularly concerned with the special
case of the problem in which the non-used material of the cutting patterns (object remainder or
leftover) can be used in the future, if it is large enough to fulfill future items demands. In other
words, we consider that the trim loss of a cutting pattern does not necessarily represent waste
of material. If this trim loss is of a reasonable size, it can be stocked and used again as input
(then called a residual piece or a retail or a leftover) in subsequent cutting processes. Otherwise,
if the trim loss is considered too small to be used in the future, it represents material waste and
is discarded as scrap. Therefore, the problem is seen as a non-exact two-stage two-dimensional
guillotine cutting problem with usable leftovers. Note that the assortment of stock objects of this
problem is considered heterogeneous as different leftovers of previous cutting processes are put back
into stock.

According to the typology of Wäscher et al. (2007), this cutting problem can be characterized
as a “residual bin-packing problem” because of the heterogeneity of the stock objects (based on the
possibility of putting back into stock new residual pieces) and the assumption of strongly heteroge-
neous assortment of small items. Otherwise, if the assortment of items were weakly heterogeneous,
the problem would be considered as a “residual cutting-stock problem”. In fact, the models pre-
sented in this study apply to both problems, since identical items are treated differently than
non-identical items in order to avoid symmetric solutions. We observe that the simple objective of
minimizing the cost or trim loss of the objects cut may not be appropriate for this problem. The
use of leftovers in cutting and packing problems was apparently first discussed in Brown (1971), but
studies dealing with this subject began mainly after the work of Dyckhoff (1981). One-dimensional
cutting/packing problems that allow the provision of residual pieces have been studied by different
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authors, such as in Roodman (1986), Scheithauer (1991), Gradisar et al. (1999), Sinuany-Stern &
Weiner (1994), Gradisar & Trkman (2005), Trkman & Gradisar (2007), Cherri et al. (2009, 2013),
Dimitriadis & Kehris (2009), Cui & Yang (2010), Gradisar et al. (2011), Bang-Jensen & Larsen
(2012). Examples of applications of one-dimensional cutting problems with usable leftovers were
reported in, e.g. the textile industry (Gradisar et al. 1997), the agricultural light aircraft manu-
facturing (Abuabara & Morabito 2009), and the wood-processing industry (Koch et al. 2009). To
the best of our knowledge, all studies reported in the literature focused in one-dimensional residual
bin-packing problems, the exception being the recent published paper (Andrade et al. 2014) that
deals with two-dimensional non-guillotine cutting problems with usable leftovers. We are not aware
of other studies dealing with residual bin-packing problems involving two or more dimensions.

The paper is organized as follows. In Section 2 we present two MIP models for the two-stage
two-dimensional bin-packing problem without considering leftovers. These models are highly based
on models introduced in Lodi & Monaci (2003) for the two-stage two-dimensional knapsack problem.
Then, in Section 3, we present two bilevel models for the two-stage two-dimensional residual bin-
packing problem and their one-level MIP reformulations. In Section 4 we report and analyse the
numerical results obtained by solving the models using the branch-and-cut method of CPLEX.
Finally, in Section 5 we present concluding remarks and discuss perspectives for future research.

2 Two-stage bin-packing models without leftovers

In this section we present two MIP models for the non-exact two-stage two-dimensional bin-packing
problem without considering leftovers. These models are straightforward extensions of models
M1 and M2 introduced in Lodi & Monaci (2003) for the two-stage two-dimensional knapsack
problem. Other two-stage two-dimensional knapsack models could be considered as, for example,
the ones discussed in Silva et al. (2010), Furini & Malaguti (2013). Only a few studies are found
in the literature dealing with two-stage two-dimensional bin-packing problems. Most of the studies
are concerned with either the two-stage two-dimensional knapsack problem or the two-stage two-
dimensional cutting stock problem. An example is the method developed by Gilmore & Gomory
(1965), based on the simplex method with a column generation procedure to generate two-stage
cutting patterns. This procedure involves two phases. In the first phase cutting patterns are
determined for each longitudinal strip, while the second phase decides how many times each strip
should be used. This method works well if the assortment of ordered items is weakly heterogeneous,
i.e. the small items can be grouped into relatively few classes and the quantity of items in each class
is “sufficiently” large, as it is the case of two-stage two-dimensional cutting stock problems (Wäscher
et al. 2007).

Solution approaches for two-stage two-dimensional cutting stock problems based on two phases
are common in the literature, as for example in Farley (1983), Riehme et al. (1996), Hifi (1997),
Morabito & Garcia (1998), Yanasse & Katsurayama (2005). For the case in which the set of
items has few items of identical size, authors have proposed alternatives for the rounding of relaxed
solutions of the simplex method (Wäscher & Gau 1996, Poldi & Arenales 2006) or greedy heuristics
combined with column generation procedures (Hinxman 1980, Poldi & Arenales 2009) that may
not work well for two-stage two-dimensional bin-packing problems. Other studies dealing with
stage guillotine cutting problems can be found in Beasley (1985), Hadjiconstantinou & Christofides
(1995), Morabito & Arenales (1996), Riehme et al. (1996), Hifi (1997), Hifi & Roucairol (2001),
Lodi & Monaci (2003), Cui et al. (2005), Belov & Scheithauer (2006), Cintra et al. (2008), Silva
et al. (2010), Morabito & Pureza (2010), Cui (2013), Cui & Huang (2012), Cui & Zhao (2013),
Furini & Malaguti (2013), Furini et al. (2012), Mrad et al. (2013), Alvarez-Valdes et al. (2002),
Lodi et al. (2002), Macedo et al. (2010).
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2.1 Two-stage bin-packing model M1

Let us consider p large rectangular objects, each object ` with width W`, height H` and cost per
unit of area c` (` = 1, . . . , p) and n small rectangular items, each item i with width wi and height
hi (i = 1, . . . , n). The non-exact two-stage two-dimensional bin-packing problem can be defined
as the problem of packing (cutting) all n items into (from) a chosen subset of objects, so that
the obtained packing (cutting) pattern for each object is feasible (the packed items do not overlap
and fit inside the object according to a non-exact two-stage guillotine pattern) and the cost of the
used objects is minimized. We consider only the case in which the first stage cuts on the plate are
horizontal, i.e., they are parallel to the object width. No item rotations are allowed and there are
no other constraints related to the positioning of the items within the objects.

Without loss of generality, we assume that h1 ≥ h2 ≥ · · · ≥ hn. We also assume that the cuts
on the objects are infinitely thin; otherwise, we consider that the saw thickness was added to the
dimensions of the objects and items, without loss of generality (Gilmore & Gomory 1965, Morabito
& Arenales 2000). Moreover, we assume that all dimensions of the objects and items, as well as
the objects unit costs, are integer numbers. This is not a very restrictive assumption to deal with
problem instances in practice since, due to the finite precision of the cutting and measuring tools
and due to the finite precision used in any currency considered to define the objects’ costs, they
can be easily satisfied by a change of scale. The model presented below can be seen as a simple
extension of the two-stage knapsack model M1 introduced in Lodi & Monaci (2003, p.261) to deal
with the two-stage bin-packing problem. The original objective function of the model is modified
in order to appropriately consider more than one object. For this, we define the binary variables
u` (` = 1, . . . , p), which indicate if object ` is used or not:

u` =

{
1, if object ` is used,
0, otherwise.

(1)

The other binary variables xik` (k = 1, . . . , n, i = k, . . . , n, ` = 1, . . . , p) indicate the object and
strip from which the item is cut:

xik` =

{
1, if item i is cut from strip k of object `,
0, otherwise.

(2)

1 2 3 5

4 7

6 8 9

Figure 2: Illustration of the concept of shelves.

Following the terminology used in Lodi & Monaci (2003), given an object `, a shelf is defined
as a strip of the object with width W` and height equal to the height of the highest item packed
(cut) in (from) it. It is assumed that all items in a shelf have their bottom (inferior side) on the
shelf floor. The roof of the shelf, determined by the top (superior side) of the item of largest height,
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defines the floor of the next shelf. The shelf concept is illustrated in Figure 2. In this figure, there
is one object and three shelves: 1, 4, and 6. Items 1, 2, 3 and 5 are in shelf 1, items 4 and 7 are
in shelf 4, and items 6, 8 and 9 are in shelf 6. Note that the number of each shelf is defined as the
number of the first item packed in it. In the model presented below, we consider that we can have
up to n shelves, each one defined by an item. We say that a shelf k is open (or used) if item k is
the smallest-index item assigned to (or packed in) the shelf. In this case, if item k is on shelf k
and shelf k is assigned to object `, we have xkk` = 1. Note that any optimal two-stage cutting
pattern has an equivalent cutting pattern where the item of largest height in each shelf is the first
item placed to the left of the shelf (as depicted in Figure 2). A feasible two-stage guillotine cutting
pattern is composed of shelves and each item allocated to a shelf is cut in at most two stages (plus
the trimming). A model named M1 for the non-exact two-stage bin-packing problem (without
leftovers) is given by:

Min
u,x

∑p
`=1 c`W`H`u` (3)

s.t.
∑n

k=1 hkxkk` ≤ H`u`, ` = 1, . . . , p, (4)∑n
i=k+1wixik` ≤ (W` − wk)xkk`, k = 1, . . . , n, ` = 1, . . . , p, (5)∑p
`=1

∑i
k=1 xik` = 1, i = 1, . . . , n, (6)∑p

`=1 xk+1,k+1,` ≤
∑p

`=1 xkk`, j = 1, . . . ,m, k ∈ [αj−1 + 1, αj − 1], (7)∑p
`=1

∑αj

i=k+2 xi,k+1,` ≤
∑p

`=1

∑αj

i=k+1 xik`, j = 1, . . . ,m, k ∈ [αj−1 + 1, αj − 1], (8)

u` ∈ {0, 1}, ` = 1, . . . , p, (9)
xik` ∈ {0, 1}, k = 1, . . . , n, i = k, . . . , n, ` = 1, . . . , p. (10)

The objective function (3) minimizes the total cost of the objects used (note that, if c` = 1 for
all `, (3) minimizes the total object area cut). Constraint (4) ensures that, for each used object,
the sum of the heights of the open shelves is not greater than the object height, and that open
shelves are attributed to used objects only. Constraint (5) ensures that, for each object, the sum
of the widths of the items allocated to each shelf is not greater than the object width, and that an
item can be allocated to a shelf only if the shelf is open. Constraint (6) ensures that the demand of
each item is met. Constraints (7) and (8) are redundant symmetry-breaking constraints and refer
to identical items. Without loss of generality, we assume that identical items (items with the same
width and height) are numbered consecutively. We also assume that there are m different types of
items and we define α0 ≡ 0 and αj as last index of items of the j-th type. It means that the indices
of items of type j range from αj−1 + 1 to αj . Symmetry-breaking constraint (7) says that an item
that is not the first of its type can open a shelf only if the previous item (of the same type) opens
a shelf too. Symmetry-breaking constraint (8) says that if two consecutive items k and k+ 1 of the
j-th type open a shelf, the number of items of type j on shelf k + 1 must be less than or equal to
the number of items of type j on shelf k. Constraints (9) and (10) define the domain of variables
u` and xik`.

2.2 Two-stage bin-packing model M2

In Lodi & Monaci (2003, p.262) another model for the non-exact two-stage two-dimensional knap-
sack problem was presented, named M2, which considers identical items as items of the same group
or type. In the following we present a slightly modified version of this model to solve the two-stage
two-dimensional bin-packing problem. The model assumes that there are n items of m different
types. Items of type i have width w̄i and height h̄i. We assume, without loss of generality, that
h̄1 ≥ h̄2 ≥ · · · ≥ h̄m. The demanded quantity of items of type i is given by bi. The additional
model parameters (that can be easily computed from the other ones) are: αi (i = 0, . . . ,m) and βk
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(k = 1, . . . , n), with α0 ≡ 0, αi ≡
∑i

s=1 bs (i = 1, . . . ,m) (that coincides with the definition intro-
duced in the previous subsection), and βk ≡ min{i | αi ≥ k} (k = 1, . . . , n). Note that: (i) any
item of type i can be packed in any shelf in the interval [1, αi], i.e. αi indicates the highest shelf
index to allocate items of type i and (ii) indices in the interval [αi−1 + 1, αi] can be interpreted as
the indices of the shelves characterized by items of type i. Moreover, each shelf k can pack items of
types [βk,m], i.e. parameter βk can be seen as the index of the item type of largest height (lowest
index) that can be allocated in shelf k. In other words, βk is the index of the item type that defines
shelf k. Note that there is a shelf for each item.

The former variables xik` (k = 1, . . . , n, i = k, . . . , n, ` = 1, . . . , p) are also used in this model,
but with a slightly different meaning. Now they are integer (instead of binary) and relate items
and shelves in the following way:

xik` =


quantity of items of type i allocated to shelf k of object `, if i 6= βk,

quantity of additional items of type i (other than the one
that defines the shelf) allocated to shelf k of object `, if i = βk,

(11)

with i = 1, . . . ,m, k ∈ [1, αi], ` = 1, . . . , p. The model also considers the binary variables qk`
(k = 1, . . . , n, ` = 1, . . . , p), which indicate if the shelf is open (used) or not:

qk` =

{
1, if shelf k of object ` is open,
0, otherwise.

(12)

The remaining model parameters and variables are the same as the model of the previous section.
The second model for the two-stage bin-packing problem (without leftovers), named M2, is given
by:

Min
u,x,q

∑p
`=1 c`W`H`u` (13)

s.t.
∑n

k=1 h̄βkqk` ≤ H`u`, ` = 1, . . . , p, (14)∑m
i=βk

w̄ixik` ≤ (W` − w̄βk)qk`, k = 1, . . . , n, ` = 1, . . . , p, (15)∑p
`=1

(∑αi
k=1 xik` +

∑αi
k=αi−1+1 qk`

)
= bi, i = 1, . . . ,m, (16)∑p

`=1 qk` ≤ 1, k = 1, . . . , n, (17)∑p
`=1 qk+1,` ≤

∑p
`=1 qk`, i = 1, . . . ,m, k ∈ [αi−1 + 1, αi − 1], (18)∑p

`=1 xi,k+1,` ≤
∑p

`=1 xik`, i = 1, . . . ,m, k ∈ [αi−1 + 1, αi − 1], (19)∑p
`=1

∑αi
s=k xis` ≤ bi − (k − αi−1), i = 1, . . . ,m, k ∈ [αi−1 + 1, αi], (20)

xik` ≤ bi, i = 1, . . . ,m, k ∈ [1, αi], ` = 1, . . . , p, (21)
u` ∈ {0, 1}, ` = 1, . . . , p, (22)
xik` ∈ N≥0, i = 1, . . . ,m, k ∈ [1, αi], ` = 1, . . . , p, (23)
qk` ∈ {0, 1}, k = 1, . . . , n, ` = 1, . . . , p. (24)

Constraint (14) ensures that, for each object, the sum of the heights of the open shelves is less
than or equal to the object height and that shelves are opened in used objects only. Constraint (15)
ensures that, for each object, the sum of the widths of the items allocated to each shelf is not greater
than the object width. Constraint (16) ensures that the demand of each item is met. Constraint (17)
ensures that each shelf can be opened only once (i.e. we cannot have a shelf k opened in two different
objects). Constraints (18) and (19) are redundant symmetry-breaking constraints equivalent to (7)
and (8) from model M1. Constraint (20) is a redundant constraint considered in Lodi & Monaci
(2003) to improve the quality of the lower bounds of the LP relaxation of the model (removing the
integrality constraints). Constraints (21–23) define the domain of the variables.

ModelM1 has 2p continuous variables, 2p+np/2+n2p/2 binary variables, and p+np+3n−2m
constraints. Model M2 has 2p continuous variables, 2p + np binary variables, p

∑m
k=0 αk integer
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variables, and 5p + np + 4n −m + p
∑m

k=0 αk constraints. Note that both models have the same
quantity of continuous variables, but differ in terms of the number of binary and integer variables.
ModelM1 has O(n2p) binary variables, while modelM2 has only O(np). ModelM1 does not have
integer variables, whereas model M2 has p

∑m
k=0 αk. Analyzing

∑m
k=0 αk, we have the following

extreme cases: (i) if m = 1, then
∑m

k=0 αk = n, (ii) if m = n and h̄1 > h̄2 > · · · > h̄m, then∑m
k=0 αk = n(n + 1)/2, (iii) if m = n and h̄1 = h̄2 = · · · = h̄m, then

∑m
k=0 αk = mn = n2. In

this way, in the worst case, model M2 has O(n2p) integer variables. Considering the constraints,
we observe that model M1 has O(np) constraints. Model M2 has O(n2p) constraints in the worst
case. Note that in cases where m is a relatively small number compared to n, model M2 should
have an amount of integer variables and constraints proportional to np. Therefore, as the ratio
m/n decreases, we expect that model M2 becomes easier to solve than model M1.

3 Two-stage residual bin-packing models ML
1 and ML

2

In this section, we present models for the two-stage bin-packing problem considering leftovers.
While, in the two-dimensional scenario, leftovers can be defined in several ways, we arbitrarily
consider leftover as any trim loss of height not smaller than dmin, obtained after producing the
first-stage horizontal cuts in the object. On the one hand, it appears as a natural choice to separate
the leftovers in the first stage of the cutting procedure, considering any other residual piece of the
second-stage cuts and the trimming as scrap. This decision appears to be in agreement with a
low-cost strategy to deal with leftovers in the production and stocking environment. On the other
hand, paying the price of dealing with more complicated models, any other practical definition of
leftover can be modeled and tackled in a way similar to the one presented here.

We look for a solution that minimizes the costs of the used objects and, among all minimum
cost solutions, we look for one that maximizes the sum of the values of the leftovers. As illustrative
example, consider an instance with p = 2 identical objects with W1 = W2 = H1 = H2 = 9 and
c1 = c2 = 1, and n = 8 items with w1 = · · · = w4 = 4, w5 = · · · = w8 = 3, h1 = · · · = h6 = 4, and
h7 = h8 = 2. Figures 3(a–b) represent two different feasible solutions (to modelsM1 andM2 that
do not consider leftovers) with cost 162. Since the sum of the areas of the eight demanded items is
larger than the area of a single object, at least two objects are needed to cut the items and, hence,
both depicted feasible solutions are optimal. However, there is a feature that differentiate these
two optimal solutions and that is not being captured by models M1 and M2. If we consider dmin

equal to the smallest height of a demanded item, i.e. dmin = 2, we have that the solution depicted
on Figure 3(b) has a leftover in one of its objects, while the solution depicted on Figure 3(a) has
no (usable) leftovers.

9× 9

4× 4 4× 4

3
×

4

3× 2

9× 9

4× 4 4× 4

3
×

4

3× 2

9× 9

4× 4 4× 4

3
×

4

3
×

4

9× 9

4× 4 4× 4

3× 2 3× 2

(a) (b)

Figure 3: Illustration of the concept of leftovers in the two-stage bin-packing problem.
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A natural modeling approach for considering leftovers would be to consider a bilevel mathe-
matical programming problem. A bilevel mathematical programming problem (see, for example,
(Dempe 2002)) is an optimization problem that maximizes or minimizes an objective function with
some of the problem variables restricted to be a solution to another optimization problem. The
two models presented below for the two-stage residual bin-packing problem are bilevel models with
integer and continuous variables and linear objective functions and constraints. Before presenting
the models, we explain how to model the leftovers. Let us consider s` as the height of the trim loss
of object ` = 1, . . . , p. The trim loss of object ` is considered as a leftover (i.e. a residual piece)
if its height s` is such that s` ≥ dmin, where dmin ≥ 0 is a given parameter. If the trim loss is not
a leftover, it is considered as a waste (i.e. a scrap) and its value is null. Therefore, to model the
leftovers area we define function s̄(s`) as:

s̄(s`) =

{
W`s`, if s` ≥ dmin,
0, otherwise.

(25)

The value of the leftover is defined as its area times its unit area value, given by c̄` > 0. It would
be reasonable to consider c̄` ≡ c` for ` = 1, . . . , p, i.e. to set the unit area value of a leftover as
the unit area cost of the corresponding object. Note that, in practice, if the unit area value of the
leftovers is independent of the objects from which they were cut, one may simply consider c̄` = 1
for all `.

We can use (25) as constraints of a MIP by applying the big-M technique. To simplify the
explanation, we first present a bilevel model based on modelM1 to represent the two-stage residual
bin-packing problem. Then we discuss how to use (25) as MIP constraints, as well as the remaining
details of the model:

Max
z,T

∑p
`=1 c̄`T` (26)

s.t. dmin ≤ s` +M`z`, ` = 1, . . . , p, (27)
s` ≤ dmin +M`(1− z`), ` = 1, . . . , p, (28)
T` ≤ s`W` + M̄`z`, ` = 1, . . . , p, (29)
T` ≤ M̄`(1− z`), ` = 1, . . . , p, (30)
T` ≥ 0, ` = 1, . . . , p, (31)
z` ∈ {0, 1}, ` = 1, . . . , p, (32)
(u, x, s) ∈ argmin

u′,x′,s′

∑p
`=1 c`W`H`u

′
` (33)

s.t.
∑n

k=1 hkx
′
kk` + s′` = H`u

′
`, ` = 1, . . . , p, (34)∑n

i=k+1wix
′
ik` ≤ (W` − wk)x′kk`, k = 1, . . . , n, ` = 1, . . . , p, (35)∑p

`=1

∑i
k=1 x

′
ik` = 1, i = 1, . . . , n, (36)∑p

`=1 xk+1,k+1,` ≤
∑p

`=1 xkk`, j = 1, . . . ,m, k ∈ [αj−1 + 1, αj − 1], (37)∑p
`=1

∑αj

i=k+2 xi,k+1,` ≤
∑p

`=1

∑αj

i=k+1 xik`, j = 1, . . . ,m, k ∈ [αj−1 + 1, αj − 1], (38)

u′` ∈ {0, 1}, ` = 1, . . . , p, (39)
x′ik` ∈ {0, 1}, k = 1, . . . , n, i = k, . . . , n, ` = 1, . . . , p, (40)
s′` ≥ 0, ` = 1, . . . , p. (41)

The inferior level problem (33–41) ensures that the total area cost of the objects used is min-
imized. The superior level problem (26–32) ensures that the sum of the values of the leftover
areas generated from the objects cut is maximized, considering as feasible points the solutions to
the inferior level problem that satisfy constraints (27–32). Variables s` (` = 1, . . . , p) indicate the
height of the leftover of each object. Constraints (27–32), together with the objective function (26),
formulate s̄(s`) defined in (25) by means of the big-M technique. For this, we need to define pa-
rameters M` and M̄` such that M` ≥ H` and M̄` ≥ H`W` (` = 1, . . . , p), and we use a binary
variable z` for each object `. If the height s` of the leftover of object ` is smaller than dmin, the
corresponding z` is forced to assume value one by (27). In this case, by (30–31), we have T` = 0.
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If s` is greater than dmin, the corresponding z` is forced to be zero by (28) and, by (29–31) and
the objective function (26), T` assumes the value of the leftover area. If s` = dmin, z` may assume
value zero or one and, by the objective function (26), T` assumes the value of the leftover area.
Constraint (33) ensures that (u, x, s) is a solution to the inferior level problem, in which the cost of
the objects used to satisfy the demand is minimized. The inferior level problem composed by the
objective function (33) and constraints (34–41) is essentially model M1 defined in (3–10), except
for constraint (34), that differs of (4) by the addition of the term s′` that incorporates the leftover
height of each object, and constraint (41) that says that the leftovers heights are non-negative
quantities. Constraint (34) ensures that the sum of the heights of the open shelves of an object
plus the height of its leftover must be equal to the height of the object.

It should be noted that the use of an object could be prioritized in the model by simply nulling
its unit area cost c`. This could be interesting to prioritize the use of leftovers (generated in
previous periods) in the cutting pattern generation in order to avoid buying new objects while
leftovers accumulate in stock. This situation could be accomplished by setting c` = 0, to prioritize
the use of object `, while keeping in c̄` the original unit area cost of object `, to correctly represent
the value of its leftover.

In the following we shortly present the second bilevel model for the two-stage residual bin-
packing problem based on modelM2. The explanation of this model follows the same steps of the
presentation of the previous bilevel model based on model M1. The model is given by:

Max
z,T

∑p
`=1 c̄`T` (42)

s.t. dmin ≤ s` +M`z`, ` = 1, . . . , p, (43)
s` ≤ dmin +M`(1− z`), ` = 1, . . . , p, (44)
T` ≤ s`W` + M̄`z`, ` = 1, . . . , p, (45)
T` ≤ M̄`(1− z`), ` = 1, . . . , p, (46)
T` ≥ 0, ` = 1, . . . , p, (47)
z` ∈ {0, 1}, ` = 1, . . . , p, (48)
(u, x, q, s) ∈ argmin

u′,x′,q′,s′

∑p
`=1 c`W`H`u

′
` (49)

s.t.
∑n

k=1 h̄βkq
′
k` + s′` = H`u

′
`, ` = 1, . . . , p, (50)∑m

i=βk
w̄ix

′
ik` ≤ (W` − w̄βk)q′k`, k = 1, . . . , n, ` = 1, . . . , p, (51)∑p

`=1(
∑αi

k=1 x
′
ik` +

∑αi
k=αi−1+1 q

′
k`) = bi, i = 1, . . . ,m, (52)∑p

`=1 q
′
k` ≤ 1, k = 1, . . . , n, (53)∑p

`=1 q
′
k+1,` ≤

∑p
l=1 q

′
k`, i = 1, . . . ,m, k ∈ [αi−1 + 1, αi − 1], (54)∑p

`=1 x
′
i,k+1,` ≤

∑p
`=1 x

′
ik`, i = 1, . . . ,m, k ∈ [αi−1 + 1, αi − 1], (55)∑p

`=1

∑αi
s=k x

′
is` ≤ bi − (k − αi−1), i = 1, . . . ,m, k ∈ [αi−1 + 1, αi], (56)

x′ik` ≤ bi, i = 1, . . . ,m, k ∈ [1, αi], ` = 1, . . . , p, (57)
u′` ∈ {0, 1}, ` = 1, . . . , p, (58)
x′ik` ∈ N≥0, i = 1, . . . ,m, k ∈ [1, αi], ` = 1, . . . , p, (59)
q′k` ∈ {0, 1}, k = 1, . . . , n, ` = 1, . . . , p, (60)
s` ≥ 0, ` = 1, . . . , p. (61)

3.1 MIP reformulations

A technique commonly applied to solve bilevel mathematical programming models is, when possible,
to reformulate the model as an equivalent one-level model. In the following we discuss a simple way
to reformulate the bilevel models of previous section as MIP models. For instance, for model M1,
considering that the objective function (33) of the inferior level problem assumes only integer values
(variables u`, ` = 1, . . . , p, are binary and the objects unit costs c`, ` = 1, . . . p, are integer numbers
by hypothesis) and that it is independent of the variables of the superior level problem, the bilevel
model based on model M1 and given by (26–41) can be reformulated as the following MIP:

9



Min
z,T,u,x,s

F (T, u) ≡
∑p

`=1 c`W`H`u` −
(∑p

`=1 c̄`T`
)
/
(∑p

`=1 c̄`W`H`

)
(62)

s.t. dmin ≤ s` +M`z`, ` = 1, . . . , p, (63)
s` ≤ dmin +M`(1− z`), ` = 1, . . . , p, (64)
T` ≤ s`W` + M̄`z`, ` = 1, . . . , p, (65)
T` ≤ M̄`(1− z`), ` = 1, . . . , p, (66)
T` ≥ 0, ` = 1, . . . , p, (67)
z` ∈ {0, 1}, ` = 1, . . . , p, (68)∑n

k=1 hkxkk` + s` = H`u`, ` = 1, . . . , p, (69)∑n
i=k+1wixik` ≤ (W` − wk)xkk`, k = 1, . . . , n, ` = 1, . . . , p, (70)∑p
`=1

∑i
k=1 xik` = 1, i = 1, . . . , n, (71)∑p

`=1 xk+1,k+1,` ≤
∑p

`=1 xkk`, j = 1, . . . ,m, k ∈ [αj−1 + 1, αj − 1], (72)∑p
`=1

∑αj

i=k+2 xi,k+1,` ≤
∑p

`=1

∑αj

i=k+1 xik`, j = 1, . . . ,m, k ∈ [αj−1 + 1, αj − 1], (73)

u` ∈ {0, 1}, ` = 1, . . . , p, (74)
xik` ∈ {0, 1}, k = 1, . . . , n, i = k, . . . , n, ` = 1, . . . , p, (75)
s` ≥ 0, ` = 1, . . . , p. (76)

Note that the objective function F (T, u) in (62) is composed by the objective functions of the
superior and inferior levels (26) and (33), respectively, where the superior level objective func-
tion (26) was normalized in such a way as to assume only values in the interval [0, 1). The value
of F (T, u) is integer at feasible points with no leftovers, while it is rational at feasible points with
leftovers. Using the value of F (T, u) at a feasible point, it is easy to obtain the corresponding val-
ues of (26) and (33) as dF (T, u)e and (dF (T, u)e − F (T, u))

∑p
`=1 c̄`W`H`, respectively. Note that

constraints (63–76) correspond exactly to constraints (27–32) and (34–41). From now on, we call
the model given by (62–76) as model ML

1 . Regarding the size of the model, it has 2p continuous
variables, 2p+ np/2 + n2/2 binary variables, and 7p+ np+ 3n− 2m constraints.

Following the same steps to define modelML
1 , we combine (62) with constraints (43–48,50–61)

and define model ML
2 given by:

Min
z,T,u,x,s

F (T, u) ≡
∑p

`=1 c`W`H`u` −
(∑p

`=1 c̄`T`
)
/
(∑p

`=1 c̄`W`H`

)
(77)

s.t. dmin ≤ s` +M`z`, ` = 1, . . . , p, (78)
s` ≤ dmin +M`(1− z`), ` = 1, . . . , p, (79)
T` ≤ s`W` + M̄`z`, ` = 1, . . . , p, (80)
T` ≤ M̄`(1− z`), ` = 1, . . . , p, (81)
T` ≥ 0, ` = 1, . . . , p, (82)
z` ∈ {0, 1}, ` = 1, . . . , p, (83)∑n

k=1 h̄βkqk` + s` = H`u`, ` = 1, . . . , p, (84)∑m
i=βk

w̄ixik` ≤ (W` − w̄βk)qk`, k = 1, . . . , n, ` = 1, . . . , p, (85)∑p
`=1(

∑αi
k=1 xik` +

∑αi
k=αi−1+1 qk`) = bi, i = 1, . . . ,m, (86)∑p

`=1 qk` ≤ 1, k = 1, . . . , n, (87)∑p
`=1 qk+1,` ≤

∑p
`=1 qk`, i = 1, . . . ,m, k ∈ [αi−1 + 1, αi − 1], (88)∑p

`=1 xi,k+1,` ≤
∑p

`=1 xik`, i = 1, . . . ,m, k ∈ [αi−1 + 1, αi − 1], (89)∑p
`=1

∑αi
s=k xis` ≤ bi − (k − αi−1), i = 1, . . . ,m, k ∈ [αi−1 + 1, αi], (90)

xik` ≤ bi, i = 1, . . . ,m, k ∈ [1, αi], ` = 1, . . . , p, (91)
u` ∈ {0, 1}, ` = 1, . . . , p, (92)
xik` ∈ N≥0, i = 1, . . . ,m, k ∈ [1, αi], ` = 1, . . . , p, (93)
qk` ∈ {0, 1}, k = 1, . . . , n, ` = 1, . . . , p, (94)
s` ≥ 0, ` = 1, . . . , p. (95)

ModelML
2 has 2p continuous variables, 2p+np binary variables, and 7p+ 4n+np−m+p

∑m
i=1 αi

constraints.
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Models ML
1 and ML

2 deal with the non-exact two-stage two-dimensional guillotine cutting
problem. It should be noted that these models can be easily adapted to treat the exact case of this
problem (i.e. without trimming; see Figure 1a) by imposing, for example, that xik` = 0 if wi 6= wk
in model ML

1 , and that xik` = 0 if wi 6= w̄βk in model ML
2 , or simply removing these variables

from the models. Moreover, both models can also be modified to deal with cases in which the
items can be rotated by 90 degrees in the cutting/packing patterns. This can be done in model
ML

1 by introducing for each item i a counterpart item i′ for which its width and height are defined
as wi′ = hi and hi′ = wi (i.e. the dimensions of items i and i′ are swapped) and by adding to the
formulation constraints to avoid that items i and i′ are both produced from the objects cut. A
similar reasoning can also be applied to the item types of model ML

2 .

4 Numerical experiments

In this section we present and analyze some numerical experiments with models ML
1 and ML

2 .
Twenty arbitrary randomly-generated small-scale instances were considered to illustrate both mod-
els. It is worth noting that medium and large-scale instances available in the literature are not
suitable to be solved, by the proposed models, with an exact method such as CPLEX. The first
ten instances have strongly heterogeneous items, being representatives of the residual bin-packing
problem, while the second set of ten instances corresponds to weakly heterogeneous items and rep-
resents the residual cutting-stock problem. Table 1 describes the objects and items that compose
each instance. In the table, p is the number of objects and n is the number of items. From the
data in the table, it is straightforward to obtain the data to build the instances for models ML

1

andML
2 (that consider the items individually and grouped by type, respectively). In all instances,

we considered c` = c̄` = 1 for all `. For each instance, we also considered dmin equal to the smallest
height of the instance’ demanded items. Table 2 displays the number of continuous, binary, and
integer variables and the number of constraints of the twenty considered instances of models ML

1

and ML
2 . In the models, we always considered big-M constants M` ≡ H` and M̄` ≡ H`W` for

` = 1, . . . , p.
MIP modelsML

1 andML
2 were implemented in C/C++ using the ILOG Concert Technology 2.9

and compiled with g++ from gcc version 4.6.1 (GNU compiler collection). Numerical experiments
were conducted on a machine with two 2.67GHz Intel Xeon CPU X5650 processors, 8GB of RAM
memory, and running GNU/Linux operating system (Ubuntu 12.04 LTS, kernel 3.2.0-33). Instances
were solved using the branch-and-cut method in IBM ILOG CPLEX 12.1.0. By default, a solution
is reported as optimal by the solver when

absolute gap = best feasible solution− best lower bound ≤ εabs

or

relative gap =
| best feasible solution− best lower bound |

1e−10 + | best feasible solution |
≤ εrel,

with εabs = 10−6 and εrel = 10−4, where “best feasible solution” means the smallest value of the
objective function related to a feasible solution generated by the method. Since decimal places of
the objective functions (62) and (77) of models ML

1 and ML
2 , respectively, represent the value of

the leftovers, we inhibited the relative gap stopping criterion setting εrel = 0, to avoid stopping the
method prematurely. All other parameters of the solver were used with their default values unless
otherwise stated.

Table 3 describes the solutions to the twenty instances associated with models ML
1 and ML

2 .
In the table, “Optimal value” corresponds to the value of the objective function at the solution
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Inst.
Objects Items

p width × height n width × height

1 3 3(52× 53) 32 19×21, 7×20, 4×20, 15×20, 14×20, 14×19,
17×19, 10×17, 13×17, 5×17, 16×17, 20×16,
5×16, 3×15, 5×14, 18×14, 10×13, 14×12,
11 × 11, 2 × 10, 7 × 9, 14 × 8, 13 × 8, 9 × 7,
7× 7, 16× 6, 20× 5, 2× 5, 9× 3, 17× 3, 5× 3,
4× 2

2 2 2(63× 60) 23 22×23, 17×23, 13×22, 7×22, 9×21, 5×20,
20×20, 6×19, 7×17, 14×16, 12×14, 15×14,
20 × 14, 9 × 10, 16 × 9, 20 × 9, 18 × 8, 3 × 8,
12× 7, 18× 6, 20× 4, 9× 3, 6× 3

3 7 24× 14, 2(18× 10), 24× 13, 3(13× 10) 17 3 × 5, 2 × 5, 4 × 3, 6 × 3, 3 × 3, 7 × 3, 2 × 2,
6 × 2, 9 × 2, 4 × 2, 1 × 2, 7 × 2, 4 × 1, 6 × 1,
2× 1, 9× 1, 7× 1

4 11 2(24× 14), 3(18× 10), 2(24× 13), 4(13× 10) 27 3 × 5, 1 × 5, 7 × 5, 2 × 5, 3 × 4, 7 × 4, 4 × 4,
4 × 3, 1 × 3, 6 × 3, 8 × 3, 3 × 3, 7 × 3, 5 × 2,
6 × 2, 2 × 2, 9 × 2, 4 × 2, 1 × 2, 7 × 2, 8 × 1,
2× 1, 6× 1, 7× 1, 9× 1, 4× 1, 5× 1

5 16 2(24× 14), 5(18× 10), 3(24× 13), 6(13× 10) 37 3 × 5, 1 × 5, 7 × 5, 2 × 5, 8 × 5, 6 × 4, 5 × 4,
3 × 4, 7 × 4, 4 × 4, 1 × 4, 2 × 4, 4 × 3, 5 × 3,
1 × 3, 2 × 3, 6 × 3, 8 × 3, 3 × 3, 7 × 3, 6 × 2,
9 × 2, 7 × 2, 4 × 2, 5 × 2, 1 × 2, 2 × 2, 3 × 2,
6 × 1, 2 × 1, 4 × 1, 8 × 1, 5 × 1, 9 × 1, 3 × 1,
1× 1, 7× 1

6 8 2(24× 14), 4(18× 10), 2(24× 13) 34 3 × 5, 1 × 5, 7 × 5, 2 × 5, 8 × 5, 6 × 4, 3 × 4,
7 × 4, 4 × 4, 1 × 4, 2 × 4, 4 × 3, 5 × 3, 1 × 3,
6 × 3, 8 × 3, 3 × 3, 7 × 3, 6 × 2, 7 × 2, 9 × 2,
5 × 2, 4 × 2, 2 × 2, 1 × 2, 3 × 2, 9 × 1, 7 × 1,
8× 1, 5× 1, 2× 1, 6× 1, 4× 1, 1× 1

7 3 24× 14, 18× 10, 24× 13 11 2(2 × 2), 6 × 2, 4 × 2, 1 × 2, 2(7 × 1), 4 × 1,
9× 1, 6× 1, 2× 1

8 10 3(28× 17), 3(16× 27), 4(13× 23) 19 1× 10, 6× 10, 4× 9, 8× 9, 9× 9, 5× 8, 2× 7,
4× 6, 10× 6, 6× 6, 10× 5, 5× 5, 8× 5, 4× 4,
7× 4, 10× 4, 6× 4, 7× 3, 10× 2

9 4 3(19× 10), 19× 26 17 2 × 9, 2 × 8, 5 × 8, 3 × 8, 4 × 7, 5 × 7, 4 × 6,
6 × 4, 2 × 4, 3 × 4, 4 × 3, 2 × 3, 6 × 2, 5 × 2,
1× 1, 2× 1, 3× 1

10 6 2(290× 106), 2(148× 183), 2(194× 132) 13 2(63× 59), 63× 55, 48× 48, 17× 43, 98× 40,
38×35, 2(114×33), 24×23, 62×19, 2(110×11)

11 13 5(25× 21), 5(27× 19), 3(30× 24) 37 8(11×7), 5(7×5), 9(9×5), 5(10×5), 10(3×2)

12 1 14× 19 12 12(2× 4)

13 7 2(21× 24), 5(10× 18) 32 15(4× 7), 17(1× 4)

14 4 24× 14, 2(18× 10), 24× 13 28 12(7× 1), 7(6× 1), 9(4× 1)

15 12 4(26× 19), 4(22× 23), 4(30× 17) 34 13(7× 6), 10(9× 4), 11(11× 3)

16 19 6(30× 11), 6(27× 13), 7(12× 26) 21 10(8× 10), 9(10× 3), 2(11× 2),

17 1 14× 19 17 7(2× 4), 10(1× 3)

18 5 3(22× 17), 2(14× 30) 24 14(2× 11), 10(5× 5)

19 16 4(30× 22), 4(30× 24), 8(10× 21) 41 15(9× 7), 11(11× 6), 15(1× 5)

20 9 5(22× 17), 4(14× 30) 21 8(2× 11), 7(8× 9), 6(5× 5)

Table 1: Description of the considered instances. Dimensions are given in the format width ×
height. Notation a(b× c) means that there are a objects or items with dimension b× c. When a is
omitted it means that there is a single copy of the described object or item.
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Inst.
Model ML

1 Model ML
2

Continuous Binary
Constraints

Continuous Binary Integer
Constraints

variables variables variables variables variables

1 6 1,590 149 6 102 1,584 1,797
2 4 556 83 4 50 552 681
3 14 1,084 185 14 133 1,071 1,290
4 22 4,179 401 22 319 4,158 4,613
5 32 11,280 741 32 624 11,248 12,063
6 16 4,776 362 16 288 4,760 5,190
7 6 203 69 6 39 177 266
8 20 1,920 279 20 210 1,900 2,217
9 8 620 113 8 76 612 759

10 12 558 139 12 90 420 582
11 26 9,164 673 26 507 1,391 2,106
12 2 80 53 2 14 12 78
13 14 3,710 365 14 238 329 728
14 8 1,632 218 8 120 236 485
15 24 7,164 588 24 432 840 1,465
16 38 4,426 589 38 437 950 1,563
17 2 154 71 2 19 24 114
18 10 1,510 223 10 130 190 439
19 32 13,808 885 32 688 1,312 2,241
20 18 2,096 309 18 207 396 729

Table 2: Number of continuous, binary, and integer variables and number of constraints of the
twenty considered instances of models ML

1 and ML
2 .

reported by the solver as optimal. “Objects cost” and “Leftovers value” correspond to the cost
of the used objects at the optimal solution and the value of the leftovers, respectively. Those
values are extracted from the optimal value according to (62) and (77) for models ML

1 and ML
2 ,

respectively. Remaining columns “MIP iterations”, “B&B Nodes”, and “CPU time” (in seconds)
are self-explanatory and state the effort required by the solver to obtain the reported solution. As
illustrative examples, Figures 4–8 show the graphical representation (cutting/packing patterns) of
the solutions obtained (considering model ML

2 ) for the arbitrarily selected instances 1, 6, 10, 16,
and 20. In the figures, dashed regions represent leftovers while blank spaces correspond to waste.
The graphical representation of the solutions obtained for the whole set of instances can be found
in Andrade et al. (2013).

From the results of Table 3, it is possible to see that there is no clear winner in the first half of
the instances set, while model ML

2 is clearly easier to be solved in the second half of the instances
set, as expected. The stopping criterion was satisfied in 19 cases (all but instance 11 for which
the solver ran out of memory) for model ML

1 and in all cases for model ML
2 . The best feasible

solution reported for instance 11 by modelML
1 coincides with the optimal one found when solving

model ML
2 . Instances that combine a large number p of objects with a large number n of items

(like instances 4, 5, 11, and 15; see Table 1) appear to be the hardest ones when a branch-and-cut
exact method like CPLEX is used. This may be considered an expected consequence of the number
of binary variables of the models, which depends on p and n (model ML

1 has 2p + np/2 + n2/2
binary variables, while model ML

2 has 2p + np binary variables; see Section 3.1). The bottleneck
for considering instances larger than the ones presented in this experiments lies on the usage of
memory. On larger instances the solver ran out of memory (as it was the case of instance 11 of
modelML

1 ) if only primary (RAM) memory is used. When considering secondary memory (files on
disk), the time for swapping is unaffordable. This observation supports the necessity for developing
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Model ML
1

Inst.
Optimal Solutions description Effort measurements

value Objects cost Leftovers value MIP Iterations B&B Nodes CPU Time

1 5,511.937107 5,512 520 10,778,938 649,747 171.06
2 7,559.616667 7,560 2,898 42,798 2,079 1.23
3 259.962804 260 52 146,570 7,040 1.88
4 359.999998 360 0 55,955,833 1701,516 1,286.04
5 466.000000 466 0 174,832,220 1508,414 8,752.14
6 491.976187 492 48 22,395,534 632,600 451.53
7 179.869565 180 108 317 9 0.07
8 863.983673 864 64 1,349,127 28,641 30.07
9 380.000000 380 0 25,848 1,227 1.50
10 51,215.922104 51,216 12,998 5,522 189 0.29
11 1,745.9918* 1,746 60 40,810,461 335,600 2,319.25
12 265.421053 266 154 44 0 0.00
13 683.947589 684 100 132,993 1,605 7.43
14 179.982143 180 18 17,937 383 0.67
15 1,506.000000 1,506 0 93,466,859 2033,696 2,981.30
16 1,364.994258 1,365 36 203,713 4,285 7.46
17 265.368421 266 168 92 0 0.03
18 748.000000 748 0 4,559 58 0.38
19 2,010.000000 2,010 0 789,515 3,411 43.92
20 1,167.962817 1,168 132 320,459 5,688 7.95

Model ML
2

Inst.
Optimal Solutions description Effort measurements

value Objects cost Leftovers value MIP Iterations B&B Nodes CPU Time

1 5,511.937107 5,512 520 10,833,135 659,436 171.35
2 7,559.616667 7,560 2,898 78,562 3,088 1.51
3 259.962804 260 52 146,570 7,040 1.90
4 360.000000 360 0 13,905,664 215,651 247.56
5 466.000000 466 0 167,435,459 1,573,589 10,138.93
6 491.976189 492 48 24,503,629 713,002 514.95
7 179.869565 180 108 356 0 0.04
8 863.983673 864 64 873,289 16,808 12.68
9 380.000000 380 0 25,848 1,227 1.50
10 51,215.922104 51,216 12,998 4,332 165 0.26
11 1,745.991836 1,746 60 24,461,056 794,785 602.00
12 265.421053 266 154 29 0 0.03
13 683.947589 684 100 4,163 173 0.28
14 179.982143 180 18 17,766 951 0.38
15 1,505.999996 1,506 0 52,485,990 1105,225 2,298.26
16 1,364.994258 1,365 36 72,094 3,491 3.55
17 265.368421 266 168 78 0 0.00
18 748.000000 748 0 1,963 71 0.17
19 2,010.000000 2,010 0 116,686 3,161 5.79
20 1,167.962817 1,168 132 78,712 2,974 2.57

Table 3: Numerical results for the twenty instances of models ML
1 and ML

2 . ∗Value reported for
instance 11 of model ML

1 in the column “Optimal value” correspond to the best feasible solution
found, since the solver ran out of memory and the absolute gap stopping criterion was not satisfied.
The reported best lower bound was 1, 745.9799.

dedicated exact and heuristic method to tackle the introduced problems.
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Figure 4: Graphical representation of the solution to instance 1.
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Figure 5: Graphical representation of the solution to instance 6.
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Figure 6: Graphical representation of the solution to instance 10.
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Figure 7: Graphical representation of the solution to instance 16.
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Figure 8: Graphical representation of the solution to instance 20.
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5 Conclusions

In this study we presented two MIP models for the non-exact two-stage two-dimensional guillotine
cutting/packing problem with usable objects remainders. Both models are based on bilevel math-
ematical programming formulations for the problem, but because of special characteristics of these
bilevel models, they can be reformulated as one-level MIP models. The models can be modified
to deal with particular cases of the tackled problem, such as the exact two-stage guillotine cutting
without trimming, and with more general cases, such as the case in which the items can be rotated
and the case in which the first-stage cuts on the plates can be either horizontal (parallel to the
plate width) or vertical (parallel to the plate height). To the best of our knowledge, there are no
other studies in the literature dealing with two-stage two-dimensional guillotine cutting/packing
problems with usable leftovers. Numerical experiments illustrating the models and their scope
and limitations were presented. The formal definition of these variants of two-dimensional guillo-
tine cutting problems with residual pieces opens up interesting possibilities for the development
of dedicated exact and heuristic methods for the resolution and practical application of these and
other cutting/packing problems of two and more dimensions as, for example, the two-dimensional
non-guillotine cutting/packing problem with usable leftovers.
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Silva, E., Alvelos, F. & Valério de Carvalho, J. M. (2010), ‘An integer programming model for
two- and three-stage two-dimensional cutting stock problems’, European Journal of Operational
Research 205(3), 699–708.

Sinuany-Stern, Z. & Weiner, I. (1994), ‘The one dimensional cutting stock problem using two
objectives’, Journal of Operations Research Society 45(2), 231–236.

Trkman, P. & Gradisar, M. (2007), ‘One-dimensional cutting stock optimization in consecutive
time periods’, European Journal of Operational Research 179(2), 291–301.
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