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Abstract

The Reverse Engineering problem addressed in the present research consists in
estimating the thicknesses and the optical parameters of two thin films deposited on
a transparent substrate using only transmittance data through the whole stack. To
the present author’s knowledge this is the first report on the retrieval of the opti-
cal constants and the thickness of multiple film structures using transmittance data
only. The same methodology may be used if the available data correspond to normal
reflectance. The software used in this work is freely available through the PUMA

Project web page (http://www.ime.usp.br/∼egbirgin/puma/).

Keywords: Optical constants, thin films, optimization, numerical algorithms, Re-
verse Engineering.

1 Introduction

The problem of estimating the thickness and the optical constants of thin films using
transmittance (or reflectance) data only is very challenging from the mathematical point
of view and has a technological and an economic importance. It always represents a very
ill-conditioned inverse problem with many local-nonglobal solutions. The ill-condition of
this reverse engineering process stems from the fact that the available transmittance data
for retrieving the structure is incomplete and frequently noisy. So, as in highly underdeter-
mined problems, infinitely unstable or physically meaningless solutions are expected [1]. In
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previous publications we successfully (see [2] for a critical review) addressed the problem
of retrieving the optical constants and the thickness of a single dielectric or semiconductor
film deposited onto a thick transparent substrate. The inverse problem was solved for thin
[3, 4] and for very thin films [5] using spectral transmittance data only. The solution was
found introducing an unconstrained formulation of the nonlinear programming model and
solving the estimation problem with a method based on repeated calls to an unconstrained
minimization algorithm [3]. An extension of the solution of the inverse problem using only
reflectance data was recently reported [6].

In the present contribution we address the problem of retrieving the properties of an
optical structure that includes more than one dielectric film, deposited either on one side or
onto both sides of a transparent substrate of known optical properties. By the properties
of the structure we mean the optical constants (extinction coefficient and refractive index,
as a function of wavelength) and the thickness of each of the films composing the structure.
As in our previous contributions the challenge consists of retrieving the properties of the
system using transmittance data only. Note that the degree of underdetermination of the
problem increases as the number of films increases.

The paper is organized as follows. In the next section, a general discussion of the
mathematical model of the estimation problem is presented. The optimization technique
for a couple of thin films is described in Section 3. Section 4 presents numerical experiments
and the results obtained with a structure containing two amorphous semiconductor films
deposited onto a crystalline silicon substrate. The conclusions are summarized in Section 5.

2 Mathematical model of the estimation problem

The optical structure we have in mind is a stack of thin films deposited on both sides of
a transparent substrate. As usually, we define the top of the stack as the side where light
impinges, the bottom being the opposite side. The numerical experiments are performed
on transmittance (T ) data of computer generated a-si:H and a-Ge:H films calculated using
the optical constants given in the Appendix. The transmittance data of gedanken films,
rounded-off to four digits, were calculated in a [λmin, λmax]nm wavelength interval. The T
data of real film structures were measured in a VIS-IR spectrophotometer.

The refractive index s of the transparent substrate is known. The thickness of the
substrate is also known but it plays no role in the calculations, the reason being that
its thickness is much larger than the wavelengths into play [7, 1]. For each film of the
structure the unknowns are the refractive index and the extinction coefficient (in the λmin

to λmax interval) and its thickness [8, 9].
Assume that mt ≥ 0 films are deposited on the top of the substrate and mb ≥ 0 films

are deposited on the bottom. For all i = 1, . . . , mt, λ ∈ [λmin, λmax], we denote:

dt
i = thickness of top film i,

nt
i(λ) = refractive index of top film i,

κt
i(λ) = attenuation coefficient of top film i.
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Analogously, for all i = 1, . . . , mb, λ ∈ [λmin, λmax], we denote:

db
i = thickness of bottom film i,

nb
i(λ) = refractive index of bottom film i,

κb
i(λ) = attenuation coefficient of bottom film i.

For each wavelength λ, the theoretical transmittance is a function of thicknesses, re-
fractive indices and attenuation coefficients, so:

T theoretical(λ) = T (s(λ), {dt
i}mt

i=1, {nt
i(λ)}mt

i=1, {κt
i(λ)}mt

i=1, {db
i}mb

i=1, {nb
i(λ)}mb

i=1, {κb
i(λ)}mb

i=1).
(1)

In order to simplify the notation, we write:

dtop = {dt
i}mt

i=1,
dbottom = {db

i}mb

i=1,
ntop(λ) = {nt

i(λ)}mt

i=1,
nbottom(λ) = {nb

i(λ)}mb

i=1,
κtop(λ) = {κt

i(λ)}mt

i=1,
κbottom(λ) = {κb

i(λ)}mb

i=1.

and
dall = {dtop, dbottom}, nall = {ntop, nbottom}, κall = {κtop, κbottom}.

So, (1) can be written as:

T theoretical(λ) = T (s(λ), dall, nall(λ), κall(λ)).

When mt = 1 and mb = 0, the formula (1) is the one given in [10] and used in [3, 7, 4]
for retrieving the optimal parameters of a single film deposited on the top of a transparent
substrate [11]. A general formula for arbitrary mt and mb is discussed in Sections 1.4–
1.6 of [1]. Proofs that the integrals along thickness of the substrate correspond to the
analytical expression shown in [1] can be found in [12]. In this work we use a formula
introduced by Ventura [13] which, although equivalent to the ones given in [1] is better
suited for numerical computations. In particular, derivatives of the parameters involved
in (1) are easily available when we use these formulae. The transmittance of a couple of
different films deposited onto a transparent substrate can be expressed in a compact form.

If the two films are deposited onto the same face of the substrate the transmittance
reads:

TFFS =
64s(n2

1 + κ2
1)(n

2
2 + κ2

2)x1x2

x1x2(Ax1x2 + Bx1 + Cx2 + D + E) + x1(Fx1 + G) + x2(Hx2 + I) + J
,
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where

A = −[(n1 − 1)2 + κ2
1][(n2 + n1)

2 + (κ2 + κ1)
2][(s2 − n2)(n2 − 1) − κ2

2],

B = 2[(n1 − 1)2 + κ2
1][Bs sin(ϕ2) − Bc cos(ϕ2)],

Bs = κ2(s
2 + 1)(n2

2 − n2
1 + κ2

2 − κ2
1) − 2(n2

2 + κ2
2 − s2)(κ2n1 − κ1n2),

Bc = (κ2
2 + n2

2 − s2)(n2
2 − n2

1 + κ2
2 − κ2

1) + 2κ2(s
2 + 1)(κ2n1 − κ1n2),

C = 2[(s2 − n2)(n2 − 1) − κ2
2][2Cs sin(ϕ1) − Cc cos(ϕ1)],

Cs = κ1[(n
2
1 + κ2

1 + n2)(n2 − 1) + κ2
2] − κ2n1(n

2
1 + κ2

1 − 1),
Cc = (n2

1 + κ2
1 − 1)(n2

2 − n2
1 + κ2

2 − κ2
1) + 4κ1(κ2n1 − κ1n2),

D = 2[(n2 + n1)
2 + (κ2 + κ1)

2][Ds sin(ϕ1 + ϕ2) + Dc cos(ϕ1 + ϕ2)],
Ds = 2κ1(n

2
2 + κ2

2 − s2) + κ2(s
2 + 1)(n2

1 + κ2
1 − 1),

Dc = 2κ1κ2(s
2 + 1) − (n2

2 + κ2
2 − s2)(n2

1 + κ2
1 − 1),

E = 2[(n2 − n1)
2 + (κ2 − κ1)

2][Es sin(ϕ2 − ϕ1) − Ec cos(ϕ2 − ϕ1)],
Es = κ2(s

2 + 1)(n2
1 + κ2

1 − 1) − 2κ1(n
2
2 + κ2

2 − s2),
Ec = 2κ1κ2(s

2 + 1) + (n2
2 + κ2

2 − s2)(n2
1 + κ2

1 − 1),

F = [(n1 − 1)2 + κ2
1][(n2 − n1)

2 + (κ2 − κ1)
2][(s2 + n2)(n2 + 1) + κ2

2],

G = −2[(s2 + n2)(n2 + 1) + κ2
2][2Gs sin(ϕ1) − Gc cos(ϕ1)],

Gs = κ1(n
2
2 − n2

1 + κ2
2 − κ2

1) + (κ2n1 − κ1n2)(n
2
1 + κ2

1 − 1),
Gc = −4κ1(κ2n1 − κ1n2) + (n2

2 − n2
1 + κ2

2 − κ2
1)(n

2
1 + κ2

1 − 1),

H = −[(n1 + 1)2 + κ2
1][(n2 − n1)

2 + (κ2 − κ1)
2][(s2 − n2)(n2 − 1) − κ2

2],

I = 2[(n1 + 1)2 + κ2
1][Is sin(ϕ2) + Ic cos(ϕ2)],

Is = 2(n2
2 + κ2

2 − s2)(κ2n1 − κ1n2) + (s2 + 1)κ2(n
2
2 − n2

1 + κ2
2 − κ2

1),
Ic = 2κ2(s

2 + 1)(κ2n1 − κ1n2) − (n2
2 + κ2

2 − s2)(n2
2 − n2

1 + κ2
2 − κ2

1),

J = [(n1 + 1)2 + κ2
1][(n2 + n1)

2 + (κ2 + κ1)
2][(s2 + n2)(n2 + 1) + κ2

2],

and

β1 =
4πd1

λ
, β2 =

4πd2

λ
, ϕ1 = β1n1, ϕ2 = β2n2, x1 = exp(−β1κ1), x2 = exp(−β2κ2).

If the two-films are deposited onto different sides of the transparent substrate, the
compact formula for the transmittance is:

TFSF =
64s(n2

1 + κ2
1)(n

2
2 + κ2

2)x1x2

x1x2(Ax1x2 + Bx1 + Cx2 + D + E) + x1(Fx1 + G) + x2(Hx2 + I) + J
,
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where

A = −[(n1 − 1)2 + κ2
1][(n2 − 1)2 + κ2

2][n2(n
2
1 + κ2

1 + s2) + n1(n
2
2 + κ2

2 + s2)],

B = 2[(n1 − 1)2 + κ2
1][Bs sin(ϕ2) + Bc cos(ϕ2)],

Bs = κ2[2n1(s
2 − n2

2 − κ2
2) + (n2

1 + κ2
1 + s2)(n2

2 + κ2
2 − 1)],

Bc = n1(n
2
2 + κ2

2 − 1)(n2
2 + κ2

2 − s2) + 2κ2
2(n

2
1 + κ2

1 + s2),

C = 2[(n2 − 1)2 + κ2
2][Cs sin(ϕ1) + Cc cos(ϕ1)],

Cs = κ1[(n
2
2 + κ2

2 + s2)(n2
1 + κ2

1 − 1) − 2n2(n
2
1 + κ2

1 − s2)],
Cc = 2κ2

1(n
2
2 + κ2

2 + s2) + n2(n
2
1 + κ2

1 − s2)(n2
1 + κ2

1 − 1),

D = 2[κ2(n
2
1 + κ2

1 − s2) + κ1(n
2
2 + κ2

2 − s2)][Ds sin(ϕ1 + ϕ2) − 2Dc cos(ϕ2 + ϕ1)],
Ds = 4κ1κ2 − (n2

1 + κ2
1 − 1)(n2

2 + κ2
2 − 1),

Dc = κ2(n
2
1 − 1) + κ1(n

2
2 − 1) + κ1κ2(κ1 + κ2),

E = 2[κ1(n
2
2 + κ2

2 − s2) − κ2(n
2
1 + κ2

1 − s2)][Es sin(ϕ2 − ϕ1) − 2Ec cos(ϕ2 − ϕ1)],
Es = 4κ1κ2 + (n2

2 + κ2
2 − 1)(n2

1 + κ2
1 − 1),

Ec = κ1(n
2
2 − 1) − κ2(n

2
1 − 1) + κ1κ2(κ2 − κ1),

F = [(n1 − 1)2 + κ2
1][(n2 + 1)2 + κ2

2][n2(n
2
1 + κ2

1 + s2) − n1(n
2
2 + κ2

2 + s2)],

G = −2[(n2 + 1)2 + κ2
2][Gs sin(ϕ1) + Gc cos(ϕ1)],

Gs = −κ1[2n2(n
2
1 + κ2

1 − s2) + (n2
2 + κ2

2 + s2)(n2
1 + κ2

1 − 1)],
Gc = n2(n

2
1 + κ2

1 − s2)(n2
1 + κ2

1 − 1) − 2κ2
1(n

2
2 + κ2

2 + s2),

H = −[(n1 + 1)2 + κ2
1][(n2 − 1)2 + κ2

2][n2(n
2
1 + κ2

1 + s2) − n1(n
2
2 + κ2

2 + s2)],

I = −2[(n1 + 1)2 + κ2
1][Is sin(ϕ2) + Ic cos(ϕ2)],

Is = −κ2[2n1(n
2
2 + κ2

2 − s2) + (n2
1 + κ2

1 + s2)(n2
2 + κ2

2 − 1)],
Ic = n1(n

2
2 + κ2

2 − s2)(n2
2 + κ2

2 − 1) − 2κ2
2(n

2
1 + κ2

1 + s2),

J = [(n1 + 1)2 + κ2
1][(n2 + 1)2 + κ2

2][n2(n
2
1 + κ2

1 + s2) + n1(n
2
2 + κ2

2 + s2)],

and

β1 =
4πd1

λ
, β2 =

4πd2

λ
, ϕ1 = β1n1, ϕ2 = β2n2, x1 = exp(−β1κ1), x2 = exp(−β2κ2).

Both formulations lead to Swanepoel’s formulation [10] when the thickness of one of
the films goes to zero.

The transmittance data are T theoretical(λi) or Tmeas(λi) for wavelengths λi, i = 1, . . . , N ,
where

λmin ≤ λ1 < . . . < λN ≤ λmax.

Ideally, for all i = 1, . . . , N , the true parameters should satisfy the equations

Tmeas(λi) = T theoretical(s(λi), dall, nall(λi), κall(λi)). (2)

However, this is a system with (mt + mb)(2N + 1) unknowns and only N equations; i.e.,
highly underdetermined. The many degrees of freedom that are inherent to this problem
lead us to introduce empirical and phenomenological constraints that must be satisfied
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by the properties of the films under consideration. See [3] and [6] for the application
of this philosophy to the one-film estimation problem with transmittance and reflectance
data, respectively. Namely, instead of considering the nonlinear system (2) we define the
optimization problem

Minimize
∑N

i=1[T
theoretical(s(λi), dall, nall(λi), κall(λi)) − Tmeas(λi)]

2

subject to Physical Constraints.
(3)

In the one-film case this strategy has been successfully used many times under the PUMA

project (see [3, 4, 6] and http://www.ime.usp.br/∼egbirgin/puma/).
In the present case we use the same constraints that were employed in the one-film case

[3], which are suitable for hydrogenated amorphous semiconductor thin films in the neigh-
borhood of their fundamental absorption edge. For completeness, these constraints are
described below. We assume that n(λ) is the refractive index and κ(λ) is the attenuation
coefficient of a generic film in the stack.

PC1: n(λ) ≥ 1 and κ(λ) ≥ 0 for all λ ∈ [λmin, λmax];

PC2: n(λ) and κ(λ) are decreasing functions of λ;

PC3: n(λ) is convex;

PC4: there exists λinfl ∈ [λmin, λmax] such that κ(λ) is convex if λ ≥ λinfl and concave if
λ < λinfl.

In [3] it has been showed that PC1–PC4 will be satisfied if, and only if,

n(λmax) ≥ 1, κ(λmax) ≥ 0,

n′(λmax) ≤ 0, κ′(λmax) ≤ 0,

n′′(λ) ≥ 0 for all λ ∈ [λmin, λmax],

κ′′(λ) ≥ 0 for all λ ∈ [λinfl, λmax],

κ′′(λ) ≤ 0 for all λ ∈ [λmin, λinfl], and

κ′(λmin) ≤ 0.

As in [3], we eliminate the constraints of the problem by means of a suitable change
of variables. So, we write

n(λmax) = 1 + u2, κ(λmax) = v2, (4)

n′(λmax) = −u2
1, κ′(λmax) = −v2

1, (5)

n′′(λ) = w(λ)2 for all λ ∈ [λmin, λmax], (6)

κ′′(λ) = z(λ)2 for all λ ∈ [λinfl, λmax], and (7)

κ′′(λ) = −z(λ)2 for all λ ∈ [λmin, λinfl]. (8)
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To consider the real-life situation, in which data are given by a set of N equally spaced
points on the interval [λmin, λmax], we define:

h = (λmax − λmin)/(N − 1) and λi = λmin + (i − 1)h for i = 1, . . . , N.

We will use the notation ni, κi, wi, and zi for the estimates of n(λi), κ(λi), w(λi), and
z(λi), for all i = 1, . . . , N . The discretization of (4–8) gives:

nN = 1 + u2, vN = v2, (9)

nN−1 = nN + u2
1h, κN−1 = κN + v2

1h, (10)

ni = w2
i h

2 + 2ni+1 − ni+2 for i = 1, . . . , N − 2, (11)

κi = z2
i h2 + 2κi+1 − κi+2, if λi+1 ≥ λinfl, and (12)

κi = −z2
i h

2 + 2κi+1 − κi+2, if λi+1 < λinfl. (13)

Let us stress that these constraints must be satisfied by the refractive indices and the
attenuation coefficients of all the films.

3 Optimization technique

Problem (3) with the constraints defined by (9–13) is an optimization problem with (mt +
mb)(2N + 1) variables.

The constraints are represented by the non negativity of the thicknesses and the fact
that the inflection points λinfl must be in the range [λmin, λmax]. The remaining variables
are unconstrained and dimensionless. These are the main reasons to deal with them in
a different way than we do with thicknesses and inflection points. Our strategy is to
define, for each set of inflection points and each set of thicknesses a different continuous
unconstrained optimization problem whose variables are the ones defined by the refractive
indices and the attenuation coefficients. As in [3], the unconstrained problems will be
solved using the spectral gradient method [14] (see [15] for a comparative study with the
spectral conjugate gradient method). The high-level procedure is defined in the following
algorithm.

Algorithm 3.1

Step 1. Define a coarse grid with respect to the variables thicknesses and inflection points.

Step 2. For each point of the grid solve the problem (3),(9–13) where the variables thick-

nesses and inflection points are fixed. Obtain the set of thicknesses and the inflection
points of the grid that, after solving the unconstrained optimization problems, give
the smallest sum of squares.

Step 3. Define a new refined grid in a vicinity of the best thicknesses and best inflection
points obtained at Step 2.
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Step 4. Solve the unconstrained optimization problems defined by each point of the new
grid. Adopt the solution that gives the smallest value of the sum of squares as the
output of the algorithm.

For a system with two films, the initial coarse grid for the thickness is given by uni-
formly distributed points in the box [d1

min, d
1
max] × [d2

min, d
2
max], where di

min and di
max are

(for film i) the lower and upper bound estimates of the film thicknesses, respectively. To
estimate the inflection point we proceed in an analogous way: the initial coarse grid is
given by uniformly distributed points in the box [F 1

min, F
1
max] × [F 2

min, F
2
max], where F i

min

and F i
max are (for film i) the lower and upper bound estimates of the film inflection points,

respectively.
It is worth mentioning that according to the PUMA strategy [3, 4, 6] (successfully

used in retrieving the optical constants [16, 17, 18, 19]), the minimization problem (3)
must be solved for each given trial set (d1

trial, d
2
trial, F

1
trial, F

2
trial). Moreover, for each trial

set of thicknesses and inflection points, the optimization method needs initial estimates for
n(λ) and κ(λ). In fact, the method solves the optimization problem starting from several
different initial estimations for n(λ) and κ(λ). The generation of each initial estimation is
based on the approximation of n(λ) and κ(λ) by a piecewise linear function as in [3].

This amounts a lot of computer work, which increases exponentially with the number
of films. For instance, for the case of a 100nm film together with a 600nm film, the trial
thicknesses intervals would be [10, 200]nm and [300, 900]nm, respectively (both of them
with step 10nm in the coarse grid). This means a total of 1220 grid points. Moreover,
for the retrieval made in the spectrum interval [1000, 2000]nm, there would be 11 trial
inflection points per film (obtained with step size equal to 100nm). This implies solving
problem (3),(9–13) 147, 620 times. If we consider that this is done for each pair of initial
estimates of n(λ) and κ(λ) (see [3]), we conclude that at the first run, the problem (3) is
solved 885,720 times.

For this reason, we implemented a parallel version of the optimization procedure de-
scribed above. Parallelization is straightforward, since the optimization problems can be
solved independently.

4 Results

All the experiments were run in a grid composed by four 2.4GHz Intel(R) Core 2 Quad
and 4GB of RAM memory. We used the language C and the Message Passing Interface
(MPI) with the gcc compiler (GNU project C/C++ compiler, version 4.2.1) and the LAM
MPI implementation (version 7.1.2). The program was compiled with the optimization
compiler option -O3.

4.1 Computer generated films

We performed numerical experiments with two films. Moreover, as in [3], we assume
that, for each film, λinfl = λmin is known. We considered the case of films having equal
properties as well as films of different nature. The transmittance data originate from the
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computer-generated A, B, C and D films introduced in [3], their optical constants being
described in the Appendix. In particular:

Film A: Simulates an a-Si:H thin film with dtrue = 100nm.

Film B: Identical to Film A except that dtrue = 600nm.

Film C: Simulates an a-Ge:H thin film with dtrue = 100nm.

Film D: Identical to Film C with dtrue = 600nm.

Moreover, g will denote a glass substrate. For example, AgB system will be an optical
structure with Film A on top, a thick glass substrate in the middle and Film B on the
bottom.

4.1.1 Structures with identical gedanken films having the same thickness

The retrieval algorithm was applied to transmittance data of computer generated films
simulating the same material and the same thickness. We have two cases; i.e., the structure
AAg (or BBg) and the structure AgA (or BgB). Obviously, when both films are deposited
onto the same face, top or bottom of the substrate, the algorithm, which supposes two
films, is unable to retrieve the true thickness of each of the component films but always
retrieve their sum. In other words, for films of identical nature deposited one on top of
the other the algorithm find numerous pairs of thicknesses d1 and d2 such that d1 + d2 ≈
dtotal that generates the calculated transmittance. Curiously, the same result is obtained
when the two films having the same nature and identical thickness are deposited one on
top and the other on the bottom of the substrate. The minimization process retrieves
films thicknesses the sum of which equals the sum of the individual thickness of the films
composing the structure. In other words, there is no trivial way to determine “the pair
of thicknesses of the grid that gives the smallest sum of squares”. The optical constants
retrieved in this identical-nature identical-thickness films do not correspond, in general, to
those used to generate the transmittance. Depending on the thicknesses retrieved n and κ
adjust themselves to give an accurate transmittance in the wavelength interval considered.
Evidently, if the “true” thickness of one of the films is given, the algorithm finds the “true”
thickness of the other one. The correct answer is also found if the algorithm is informed
that both films have identical thickness.

4.1.2 Structures with: a) identical gedanken films having different thickness,
and b) two films of different nature

In this set of tests, we considered several two-films systems combining a-Si:H and a-Ge:H
layers of different thicknesses and deposited on both sides of the glass substrate. The
systems considered are: AgB, BgD, CgB and CgD. The spectral ranges used for the retrieval
process were: 631–1621nm, 934–1924nm, 817–1807nm and 945–1935nm, respectively.

In this case, no underdeterminations appear. Figures 1, 2, 3 and 4 show the retrievals
for systems AgB, BgD, CgB and CgD, respectively. Table 1 summarizes the retrieved thick-
nesses and the corresponding quadratic errors.

9



 0

 0.2

 0.4

 0.6

 0.8

 1

 800  1000  1200  1400  1600

T
ra

ns
m

ita
nc

e

Wavelength(nm)

True values
Retrieved values

(a)

 3.5

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 800  1000  1200  1400  1600

In
de

x 
of

 R
ef

ra
ct

io
n

Wavelength(nm)

True values
1st film retrieved values

2nd film retrieved values

(b)

 0

 1

 2

 3

 4

 5

 0.8  1  1.2  1.4  1.6  1.8  2

lo
g[

A
bs

or
pt

io
n 

C
oe

ffi
ci

en
t (

cm
-1

)]

Photon Energy(eV)

True values
1st film retrieved values

2nd retrieved values

(c)

Figure 1: “True” and retrieved values of (a) the transmittance, (b) the refractive indices,
and (c) the absorption coefficients of the numerically generated system AgB.
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Figure 2: “True” and retrieved values of (a) the transmittance, (b) the refractive indices,
and (c) the absorption coefficients of the numerically generated system BgD.
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Figure 3: “True” and retrieved values of (a) the transmittance, (b) the refractive indices,
and (c) the absorption coefficients of the numerically generated system CgB.
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Figure 4: “True” and retrieved values of (a) the transmittance, (b) the refractive indices,
and (c) the absorption coefficients of the numerically generated system CgD.

13



System 1st film 2nd film Quadratic error
dtrue dretr dtrue dretr

AgB 100 100 600 600 4.597773e-05
BgD 600 604 600 599 1.237465e-04
CgB 100 118 600 588 1.419527e-06
CgD 100 100 600 599 3.344105e-05

Table 1: Retrievals for systems AgB, BgD, CgB and CgD.

4.1.3 Experimental amorphous films

As a final test of the goodness and limitations of the algorithm, the retrieval program was
applied to a real structure consisting of two films of different material. In what follows
we describe the preparation of the two-films structure, the nature of the films and of the
substrate, the transmittance of the single- and the double-film structures, and finally we
discuss the quality of the retrieval.

The chosen structure consists of a both-sides polished high-quality crystalline silicon
(c-Si) wafer supporting on one of its faces two amorphous semiconductor films of different
nature. The first, on top of the c-Si substrate is a ca. ∼800nm thick hydrogen-free
amorphous germanium (a-Ge) film. The second (∼1150nm thick) going on top of the a-Ge
layer is a H-free amorphous silicon (a-Si) film. Both films were deposited in an rf-sputtering
system using semiconductor-quality targets and Ar as a ionizing gas. The deposition rate
was of 0.1 nm/sec, the substrate being kept at 200 C during the whole process. The
deposition times were 110 Min. and 180 Min. for the a-Ge and the a-Si films, respectively.
During the deposition run, a-Ge and a-Si single layers were also deposited onto separate
c-Si substrates. The transmittance of all films and of the substrate were measured with
a Perkin Elmer Lambda 9 spectrophotometer in the 930-2750nm wavelength range. The
goodness of the T data for wavelengths larger than 1500nm was confirmed independently
with a Nicolet FTIR spectrophotometer. The idea behind the deposition of a-Ge and
a-Si films identical to those composing the double structure was to compare the optical
constants obtained with our well proven PUMA algorithm for single films [3], with those
retrieved from the double-film structure.

The thickness of the three films was also estimated mechanically from a film-substrate
step left by a clamp during deposition. The film-substrate step so obtained was not of
perfect quality and Talystep measurements on different places gave slightly different values.
We performed three measurements on the step and found the following average values:
a-Si: single film ∼1150nm; a-Ge single film ∼800nm; double structure ∼1790nm. As
expected from the very different deposition times, the a-Si film is thicker than the a-Ge one.
The difference between the sum of the thickness of the isolated semiconductor films and the
thickness of the double structure may stem from experimental mechanical errors and from
the sequence adopted to deposit the layers, which may alter their structure. We come back
to the point when discussing the results of the retrieval process. Before considering the
retrieval of the optical properties let us compare the mechanically measured thicknesses
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Film

Retrieved thicknesses (in nanometers)

Mechanical

Using PUMA for Using PUMA for
the single-film the double-film

a-Si/c-Si and a-Ge/c-Si structure
structures a-Si/a-Ge/c-Si

a-Si 1150 1135 1136
a-Ge 800 712 724

Both films 1790 – 1860

Table 2: Retrieved thicknesses of the single-film a-Si/c-Si and a-Ge/c-Si and the double-
film a-Si/a-Ge/c-Si structures using PUMA and an independent mechanical method.

with those found from the retrieval algorithm. Table 2 shows the details. Let us note that
the thicknesses retrieved from the single- and double-film structures agree remarkably well
within experimental errors, as well as with the figures found by an independent mechanical
method.

Figure 5(a) shows the transmittance of the c-Si substrate and of the double-film struc-
ture. Figure 5(b) displays the transmittance of the individual a-Si/c-Si and a-Ge/c-Si
films, co-deposited with the double-film structure. As the retrieval algorithm assumes
that the substrate is transparent, we have only performed calculations in the wavelength
range comprised between the vertical dotted lines in Figure 5(a). So, the calculation to
retrieve the films properties consider only the 1200–2190nm range. In this energy interval
the refractive index of the c-Si substrate has been estimated from its transmittance [10].
As apparent from Figure 5(a-b), in the selected wavelength range the transmittance of
the films possesses a well defined interference structure. As expected from the electronic
structure and the refractive index difference between film and substrate, the single a-Si
film has a higher transmittance in the whole wavelength range and the corresponding
interference pattern is flatter than that of the a-Ge film [20]. As a consequence of this,
the transmittance of the double-film structure is, to a certain extent, determined by the
denser and less transparent germanium film.

Figure 6(a-b) and Table 2 compare, respectively, the retrieved optical constants and
the thickness of the isolated a-Si and a-Ge semiconductor films with those obtained from
the double-film structure. They indicate that: (i) There is a retrieval of two films hav-
ing different optical constants. (ii) The retrieval of the thicknesses is remarkably good.
(iii) Figure 6 also indicates that the retrieval of the optical constants is better for a-Ge
than for a-Si; i.e., the film determining, or governing, the overall transmittance. (iv) In
the case of a-Ge there is a perfect agreement between the retrieved refractive indices of
both films (Figure 6(a)). On the contrary, the retrieved index of refraction of the a-Si
film (Figure 6(a)) differs between the two structures by an almost constant factor of 0.3.
Regarding the absorption coefficient we find that the amorphous germanium film is clearly
recognized by the inversion algorithm, the retrieved α’s being identical between the two
films within a factor of 2. The absorption coefficient of the a-Si film is also relatively well
retrieved, except in the low energy photon region where the difference between structures
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Figure 5: Transmittances of (a) the c-Si substrate and the double-film structure, and of
(b) the single-film structures.

increases.

5 Discussion

5.1 Discussion on computer-generated films

We observed that the worst performance of our method occurs when the data are generated
using two films of the same nature having the same thicknesses. The reason is given in
Figure 7(a-i). Roughly speaking, what is apparent from Figure 7 is that in the symmetric
structures the position of the transmittance extrema is less sensitive, or not sensitive at
all, to thickness variations (see Figures 7(a-c)), whereas in the asymmetric structures,
either because of film thickness difference or material composition (see Figures 7(d-i)),
they produce important changes in the overall shape of the transmittance. Also, the
variation of the transmittance with respect to small changes of the film thickness (±∆d)
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Figure 6: Retrieved optical constants of the a-Si and a-Ge semiconductor films using
PUMA from the single-film and the double-film structure.
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is smaller in the symmetric case. That means that the quadratic error, or target function
of (3), is flatter when symmetry occurs in the FSF structure. The flatness of QE(±∆d)
is, of course, one of the main reasons for the bad retrieval of the true thicknesses.

On the other hand, the numerical experiments indicate the possibility of retrieving,
from transmittance data, the optical constants and the thickness, despite the high under-
determination of the problem. A few comments are in order.

a) The thickness of the films is always retrieved within a surprising accuracy.

b) Consider Figures 1 and 5; i.e., structures with two films of the same nature but
different thickness, AgB and CgD, respectively. In both gedanken experiments the
absorption coefficient of the material is correctly retrieved for values of α big enough
to produce a detectable change in the transmittance. The retrieval of the index n
is also very good, except in regions where the absorption dominates completely the
transmittance.

c) Consider Figure 2, corresponding to films of different nature but same thickness. In
this case, the transmittance is dominated, so to speak, by the smallest gap material.
So, the retrieved absorption corresponds to the more opaque film, the other film being
more or less “transparent” in the overall transmittance interval. On the contrary,
the index n is correctly retrieved for both materials in the considered wavelength
range. See Figure 2.

d) Figure 3 shows the numerical results of films of different nature and different thick-
ness. In this particular case we have considered the structure a-Ge:H (100nm)/glass/a-
Si:H (600nm). The absorption of the materials is different but the small gap material
is much thinner than the large gap material. As a consequence, the contribution to
the absorption of both films becomes of a similar magnitude and the algorithm can-
not find neither of them. In spite of this fact, the refractive indices are more or less
retrieved.

5.2 Discussion on experimental results

During the last decades, research work on the properties of amorphous semiconductors
has clearly shown that the structural, optical and electrical properties of such materials
strongly depend on deposition methods and conditions, including the chemical preparation
and nature of the substrate [20, 21, 22]. Needless to say, such considerations apply to the
properties of the a-Si and a-Ge films being discussed here. In this sense, we remark that
when we state that the films of the single and the double structure are deposited under
identical nominal conditions we just mean that they were deposited simultaneously, which
does not mean that their structure is necessarily identical.

Let us make the point clear by considering each material separately. Hydrogen free
amorphous germanium was deposited onto a couple of crystalline silicon wafers which,
after growth, are nominally identical. However, one of them was taken out of the deposi-
tion chamber for optical measurements whereas the other remained in the chamber to be
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Figure 7: All figures correspond to systems with two films deposited onto different sides of a
glass substrate and with d1+d2 = 1000nm. The first “column” (pictures (a-c)) corresponds
to films of the same material (a-Si:H) and the same thickness (d̄1 = d̄2 = 500nm). The
second column corresponds to films of the same material (a-Si:H) and different thicknesses
(d̄1 = 200nm and d̄2 = 800nm). The third column corresponds to films of different
materials (a-Si:H and a-Ge:H) and the same thickness (d̄1 = d̄2 = 500nm). Pictures in the
first “line” correspond to transmittances generated varying d1 ∈ {d̄1−10nm, d̄1, d̄1+10nm}
(remember that d1 +d2 = 1000nm). The two following lines correspond to variations of d1

within an increasing range. It can be observed that in the case “same-material films with
similar thicknesses” the variation in the transmittance is smaller than in the other cases.
A possible explanation for this observation is the symmetry of the system that does not
occur in the other situations.

19



covered by an amorphous silicon film. The deposition of the amorphous silicon layer was
made onto a crystalline silicon wafer and on the substrate containing the a-Ge layer on top
of it. It has to be noted here that the growth of this second film (a-Si) took three hours,
during which the previously deposited a-Ge film annealed at 200 C. The annealing process
contributes to modify its previous structural properties. The fact that thermal annealing
changes the properties of amorphous semiconductors has been abundantly reported in the
literature [23, 24]. Before the report on the beneficial effects of hydrogenation in removing
deep defect states in the pseudo-gap of column IV amorphous semiconductors, thermal
annealing was one of the methods used to improve the structure of amorphous germanium
and silicon, in particular the size and density of internal voids. In other words, we do
not expect the structural properties of the a-Ge films of the single- and of the double-film
structure to be identical. Similar, although different considerations apply to the case of the
simultaneous deposition of the a-Si film. One of the layers is deposited onto the ordered
surface of a crystalline silicon wafer whereas the other grew onto the disordered surface of
the previously deposited amorphous germanium film. It is also known that the structure
and chemical nature of the substrate affects the properties of amorphous semiconductors
[25]. The problem is that we do not know either the magnitude or the way these differences
affect the optical properties of the present films.

Besides these considerations on the different optical response of the films stemming
from their structure, we have also to consider experimental errors, absent in gedanken

films. The errors originate from the fact that the H-free amorphous films are not perfectly
flat, the presence of unavoidable voids provokes a rather rough surface [25]. Moreover,
there are also errors from the measured transmittance which may be either random or
systematic. They normally poison the transmittance data, as well as the noisy regions in
the measured spectra. Finally, the retrieval algorithm possesses its own limitations which
have been discussed in a previous section referring to computer-generated films.

6 Conclusions

The main conclusions of the present research concerning the retrieval of the optical con-
stants of two superimposed films are the following:

• Compact formulae for the theoretical transmittance of a couple of different films
deposited onto a transparent substrate were presented.

• The retrieval of the properties becomes very hard, if not impossible, when the struc-
ture contains films of identical nature and of the same thickness. An additional
information concerning the thickness of one of the films is necessary for a good
retrieval.

• For films made of the same material but having a different thickness the algorithm
retrieves properly the properties and the thickness of the structure.

• The retrieval is also good when the films are of different material. In this case,
as shown in the level-set graphics, the indetermination is drastically reduced. The
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reason is that the Physical Constraints introduced in the model, although clearly
insufficient for regularizing the same-film case, reduce the space of search in an
efficient way in the case of two different films. In other words, the constraints play,
in the two-different film structure, the same role played in the single-film situation.

• In general, the retrieval of the properties of different films indicates that the ab-
sorption coefficient is better retrieved for the denser film, the one that governs the
transmittance. The index of refraction is normally well retrieved for both layers,
particularly in the low absorption spectral regions.

Let us conclude saying that it is surprising that an inverse problem with such a high
degree of underdetermination can be correctly solved with a minimization algorithm. To
our knowledge this is the first report on the retrieval of the optical constants and the
thickness of multiple-film structures using transmittance data only.
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Appendix

Analytical expressions used to compute the substrates and the simulated optical constants
of semiconductor and dielectric films:

sglass(λ) =
√

1 + (0.7568 − 7930/λ2)−1.

sSi(λ) = 3.71382 − 8.69123 10−5λ − 2.47125 10−8λ2 + 1.04677 10−11λ3.

a-Si:H

Index of refraction:

ntrue(λ) =
√

1 + (0.09195 − 12600/λ2)−1.

Absorption coefficient :

ln(αtrue(E)) =











6.5944 10−6 exp(9.0846E) − 16.102, 0.60 < E < 1.40;
20E − 41.9, 1.40 < E < 1.75;√

59.56E − 102.1 − 8.391, 1.75 < E < 2.20.

a-Ge:H

21



Index of refraction:

ntrue(λ) =
√

1 + (0.065 − (15000/λ2)−1.

Absorption coefficient :

ln(αtrue(E)) =











6.5944 10−6 exp(13.629E) − 16.102, 0.50 < E < 0.93;
30E − 41.9, 0.93 < E < 1.17;√

89.34E − 102.1 − 8.391, 1.17 < E < 1.50.

In the expressions above, the wavelength λ is in nm, the photon energy E = 1240/λ is in
eV, and the absorption coefficient α is in nm−1.
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