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Abstract

Two problems related to packing identical rectangles within a polyhedron are tackled
in the present work. Rectangles are allowed to differ only by horizontal or vertical transla-
tions and possibly ninety-degree rotations. The first considered problem consists in packing
as many identical rectangles as possible within a given polyhedron, while the second prob-
lem consists in finding the smallest polyhedron of a given type that accommodates a fixed
number of identical rectangles. Both problems are modeled as mixed integer programming
problems. Symmetry-breaking constraints that facilitate the solution of the MIP models are
introduced. Numerical results are presented.

Key words: Packing of rectangles, MIP models, symmetry-breaking constraints, algo-
rithms.

1 Introduction

Several recent papers deal with the problem of packing as many identical rectangles as
possible within an arbitrary convex region, allowing the rectangles to differ only by horizontal
or vertical translations and possibly ninety-degree rotations [2, 5, 7, 9, 14]. See also [8, 10, 11].
When the convex region is a polyhedra – as opposed to a region with curved boundaries –
the problem can be modeled as a mixed integer programming (MIP) problem and solved to
optimality (see [1, 3, 4, 6] for the particular case of packing rectangles within rectangles). When
all the rectangles are identical, it is possible to define equivalent solutions in which the roles of a
pair of rectangles Ri and Rj are reversed. The existence of a multiplicity of equivalent solutions
can slow down a branch-and-bound algorithm, as it expands the size of the search tree. As a
result, several authors consider “symmetry-breaking constraints” that eliminate many of these
equivalent solutions (see, for example, [12, 13]).
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The contribution of this paper is to explore, with the help of numerical examples, the effect
of three kinds of symmetry-breaking constraints: one related to the rectangles rotations and two
related to how the rectangles are spatially ordered. We illustrate the impact of the symmetry-
breaking constraints in the context of two problems: (i) packing as many identical rectangles
within an equilateral triangle; and (ii) finding the smallest equilateral triangle within which a
given set of rectangles can be packed. In both problems, the rectangles edges must be aligned
with the Cartesian axes; that is, they can only be translated or rotated by ninety degrees. One
slightly surprising result is that adding symmetry-breaking constraints is not always beneficial.
In particular, if one is trying to determine whether k rectangles can be packed in a triangle, and
if it turns out that the answer is “yes”, then adding the symmetry-breaking constraints actually
slows down the MIP. The main advantage of the symmetry-breaking constraints comes when
proving the optimality of a solution or the infeasibility of a problem.

The rest of the paper is organized as follows. Section 2 describes the models of both problems.
In Section 3, the symmetry-breaking constraints are presented. Numerical experiments are
shown in Section 4 and some conclusions are provided in Section 5.

2 Mixed integer programming models

Consider a set of R1, . . . , Rk rectangles with height h and width w, centered at the origin of
the Cartesian two-dimensional space and with their sides parallel to the axes. We would like to
pack them within a given polyhedron Ω allowing translations and ninety-degree rotations. To
model the ninety-degree rotations we introduce binary variables

ri ∈ {0, 1}, i = 1, . . . , k, (1)

and define
hi ≡ (1− ri)h+ riw and wi ≡ (1− ri)w + rih, i = 1, . . . , k,

in such a way that ri = 0 means that hi = h and wi = w, i.e. that rectangle Ri preserves its
original orientation. On the other hand, ri = 1 means that hi = w and wi = h implying that
rectangle Ri received a ninety-degree rotation with respect to its original orientation.

Let (cxi , c
y
i )

T ∈ R
2 be the center coordinates of rectangle Ri with height hi and width wi, for

all i = 1, . . . , k. It is easy to see that, for every pair (i, j) with j > i, rectangles Ri and Rj do
not overlap if and only if

|cxi − cxj | ≥
1

2
(wi + wj) or |cyi − cyj | ≥

1

2
(hi + hj), for all i = 1, . . . , k, j = i+ 1, . . . , k. (2)

Accommodating the rectangles within the polyhedral object Ω can be modeled as

vℓi ∈ Ω, ℓ ∈ D, i = 1, . . . , k, (3)

where D = {NW,NE, SE, SW} and

vNW
i ≡ (cxi −

1

2
wi, c

y
i +

1

2
hi)

T , vNE
i ≡ (cxi +

1

2
wi, c

y
i +

1

2
hi)

T ,

vSEi ≡ (cxi +
1

2
wi, c

y
i −

1

2
hi)

T , vSWi ≡ (cxi −
1

2
wi, c

y
i −

1

2
hi)

T ,
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define the four vertices of rectangle Ri for i = 1, . . . , k.
Constraints (1,2,3) define a linear generalized disjunctive programing (LGDP) [16] (feasibil-

ity) model1, called Pk,[Ω,h,w]
LGDP from now on, for the problem of placing k non-overlapping rectan-

gles with height h and width w, allowed to differ only by horizontal or vertical translations and
possibly ninety-degree rotations, within Ω. The model has k binary variables (ri, i = 1, . . . , k)
and 2k continuous variables (cxi and cyi , i = 1, . . . , k). Note that hi, wi, v

ℓ
i , ℓ ∈ D, i = 1, . . . , k,

are not variables of the model but auxiliary values used to simplify the presentation. In (2)
there are k(k−1)/2 disjunctive constraints constituted by four linear constraints each, while the
number of constraints in (3) depends on the description of Ω. For example, if Ω were describing
a triangle, there would be 12k additional linear constraints (three linear constraints per each
of the four vertices of the k rectangular items). For solving the original problem of packing as

many rectangles as possible, problem Pk,[Ω,h,w]
LGDP can be solved for increasing values of k = 1, 2, . . .

until the first infeasible problem Pk′,[Ω,h,w]
LGDP is detected. In this case, N = k′− 1 is the maximum

number of rectangles that can be placed in Ω and the solution for PN,[Ω,h,w]
LGDP shows how to place

them within Ω.
According to [16] (pp. 1892–1893), the most common alternatives to reformulate the non-

overlapping disjunctive constraints in (2) as mixed integer linear constraints are the big-M and
the convex-hull reformulations. Defining a pair of binary variables qij and qji for every pair (i, j)
with j > i, and using sufficiently large constants Mw > 0 and Mh > 0, the big-M reformulation
of (2) can be written as

cxi − cxj ≥ 1

2
(wi + wj)−Mwqij −Mwqji,

cxj − cxi ≥ 1

2
(wi + wj)−Mw(1− qij)−Mw(1− qji),

cyi − cyj ≥ 1

2
(hi + hj)−Mh(1− qij)−Mhqji,

cyj − cyi ≥ 1

2
(hi + hj)−Mhqij −Mh(1− qji),

qij , qji ∈ {0, 1}, for all i = 1, . . . , k, j = i+ 1, . . . , k.

(4)

In (4), variables qij and qji are used to enforce at least one of four constraints, and can also be
interpreted as capturing the relative position between rectangles Ri and Rj . Roughly speaking,
for rectangles Ri and Rj not to overlap, there are four possibilities: rectangle Rj can be to the
left of, to the right of, below, or above rectangle Ri; and those possibilities are related to (i)
qij = qji = 0, (ii) qij = qji = 1, (iii) qij = 1 and qji = 0, and (iv) qij = 0 and qji = 1, respectively.
See Figure 1.

Defining sixteen continuous variables dx
i,[i,j,m], d

y

i,[i,j,m], d
x
j,[i,j,m], d

y

j,[i,j,m], m = 1, . . . , 4, and

four binary variables s[i,j,m], m = 1, . . . , 4, for every pair (i, j) with j > i, the convex-hull

1We are, in fact, considering that |x| ≥ c can be written as x ≥ c or x ≤ −c.
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Ri

qij = qji = 0 qij = qji = 1

1− qij = qji = 0

qij = 1− qji = 0

Figure 1: Relation between the values of binary variables qij and qji in (4) and the relative
position between rectangles Ri and Rj .

reformulation of (2) can be written as

4
∑

m=1

s[i,j,m] = 1, s[i,j,m] ∈ {0, 1}, m = 1, . . . , 4,

cxu =
4

∑

m=1

dxu,[i,j,m], cyu =
4

∑

m=1

dy
u,[i,j,m], u = i, j,

0 ≤ dx
u,[i,j,m] ≤ ĉx s[i,j,m], 0 ≤ dy

u,[i,j,m] ≤ ĉy s[i,j,m], u = i, j, m = 1, . . . , 4,

dxi,[i,j,1] − dxj,[i,j,1] ≥
1

2
(wi + wj) s[i,j,1],

dxj,[i,j,2] − dxi,[i,j,2] ≥
1

2
(wi + wj) s[i,j,2],

dy
i,[i,j,3] − dy

j,[i,j,3] ≥
1

2
(hi + hj) s[i,j,3],

dy
j,[i,j,4] − dy

i,[i,j,4] ≥
1

2
(hi + hj) s[i,j,4],

for all i = 1, . . . , k, j = i+ 1, . . . , k.

(5)

In (5), it is assumed that 0 ≤ cxi ≤ ĉx and 0 ≤ cyi ≤ ĉy, for i = 1, . . . , k. A sufficient condition
to have those bounds is that

Ω ⊆ [0, 0]× [ĉx, ĉy] ⊂ R
2. (6)

We will assume that (6) holds and that constants ĉx and ĉy are known from now on. If, for
example, Ω were an equilateral triangle of side L, it would be enough to locate it with its
bottom-left corner at the origin of the Cartesian axes and to consider ĉx ≡ L and ĉy ≡ (

√
3/2)L.

Constraints (1,3,4) and (1,3,5) define MIP (feasibility) models, named Pk,[Ω,h,w]
BM and Pk,[Ω,h,w]

CH ,

respectively, equivalent to Pk,[Ω,h,w]
LGDP . In Pk,[Ω,h,w]

BM there are two additional binary variables
(qij , qji, j = i+ 1, . . . , k) for each pair of rectangles, for a total of k + 2[k(k − 1)/2] = k2 binary
variables and 2k continuous variables. The number of constraints in (4) is 4k(k − 1)/2. In
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Pk,[Ω,h,w]
CH there are sixteen additional continuous variables (dx

i,[i,j,m], d
y

i,[i,j,m], d
x
j,[i,j,m], d

y

j,[i,j,m],

m = 1, . . . , 4) for each pair of rectangles, for a total of 2k+ 16[k(k− 1)/2] continuous variables.
There are also four additional binary variables (s[i,j,m],m = 1, . . . , 4) for each pair of rectangles,
for a total of k + 4[k(k − 1)/2] = 2k2 − k binary variables. The number of constraints in (5) is
41k(k − 1)/2.

Assume now that Ω is a polyhedron given by Ω ≡ {x ∈ R
2 | Ax ≤ b} and that a fixed

number k of identical rectangles is given. The problem of finding the “smallest polyhedron of
the same type of Ω” that accommodates the k rectangles can be modeled as

Minimize L
s.t. Avℓi ≤ Lb, ℓ ∈ D, i = 1, . . . , k,

plus constraints (1,2).
(7)

Big-M and convex-hull MIP reformulations of (7) can be obtained by replacing (2) by (4) and (5),
respectively. We name the LGDP model (7) and its big-M and convex-hull MIP reformulations

as Sk,[Ω,h,w]
LGDP , Sk,[Ω,h,w]

BM , and Sk,[Ω,h,w]
CH , respectively.

3 Symmetry-breaking constraints

Given a solution (cxi , c
y
i , ri, i = 1, . . . , k) for problem Pk,[Ω,h,w]

LGDP and choosing any pair (i, j)
with j > i, it is possible to define an equivalent or symmetric solution in which the roles
of rectangles Ri and Rj are interchanged. From now on, we will use the terms equivalent

solutions or symmetric solutions to refer to solutions that can be obtained one from the other
by simple relabeling the packed rectangles. It is easy to see that each solution belongs to a family
composed by k! equivalent solutions corresponding to all possible ways of numbering the packed
rectangles. It is well known that the presence of symmetric solutions may impair the performance
of a branch-and-bound method (see, for example, [15] and the references therein). Basically,
a traditional branch-and-bound method may have difficulties pruning tree nodes associated
with equivalent subproblems and, in consequence, a prohibitive amount of enumeration may be
required.

The simplest set of constraints that may be added to eliminate equivalent solutions, preserv-
ing at least a representative within the feasible set, is

ri ≤ ri+1, i = 1, . . . , k − 1. (8)

If there is a solution with p non-rotated rectangles and k − p rotated rectangles, the set of
constraints (8) clearly says that the non-rotated rectangles must be rectangles R1, . . . , Rp while
the rotated rectangles must be Rp+1, . . . , Rk.

However, when considering model Pk,[Ω,h,w]
LGDP with the additional constraints (8), symmetric

solutions that correspond to interchanging places of any pair of rectangles with the same orien-
tation still exist. To eliminate symmetric solutions of this type, we would like to add constraints
that impose a lexicographical (total) order within the rectangles with the same orientation.
These constraints can be written as

ri = ri+1 ⇒ (cxi+1 > cxi or (cxi+1 = cxi and cyi+1 ≥ cyi )), i = 1, . . . , k − 1, (9)
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but the strict inequality in (9) and the continuity of variables cxi , c
y
i , i = 1, . . . , k, prevent us from

expressing the lexicographical order constraints as mixed integer linear constraints. Replacing
the strict inequality with “less than or equal to” reduces (9) to

ri = ri+1 ⇒ cxi+1 ≥ cxi , i = 1, . . . , k − 1,

that turns out to be a preorder (reflexive and transitive binary relation) among the rectangles
with the same orientation. In fact, for any α, β ∈ R,

ri = ri+1 ⇒ αcxi+1 + βcyi+1 ≥ αcxi + βcyi , i = 1, . . . , k − 1,

or, equivalently,

αcxi+1 + βcyi+1 ≥ αcxi + βcyi −Mo(ri+1 − ri), i = 1, . . . , k − 1, (10)

where Mo > 0 is a sufficiently large constant, defines a preorder among the rectangles with the
same orientation. (In the context of a facility layout problem, similar constraints aiming to
reduce the number of different orderings of rectangles were also considered in [17].) Figure 2
illustrates the effect of the symmetry-breaking constraints (8) and (10).

1
2

3

4

5

6

7

8

9
10

Figure 2: This figure corresponds to the graphical representation of an instance with 10 rect-
angular items. The line represents constraint (10) with α ≈ −0.827 and β ≈ −0.251. Note
that when the line is dragged in the direction indicated by the arrow, rectangles with the same
orientation are numbered in increasing order as the line touches their centers. This illustrates
the preorder imposed by constraint (10). In addition, non-rotated rectangles, which correspond
to ri = 0, are numbered before the rotated (ri = 1) rectangles as dictated by constraint (8).

We may arrive to a different approach for eliminating symmetric solutions by replacing the
non-overlapping disjunctive constraints (2) by

cxj − cxi ≥ 1

2
(wi + wj) or cyj − cyi ≥ 1

2
(hi + hj), for all i = 1, . . . , k, j = i+ 1, . . . , k. (11)

Constraints (11) say, simultaneously, that, for every pair (i, j) with j > i, Rj and Ri must not
overlap and that Rj must be situated to the right of or above Ri. As well as (2), disjunctive
constraints (11) can be rewritten as a set of MIP constraints by considering the big-M or the
convex-hull reformulations. Defining a binary variable qij for every pair (i, j) with j > i, and
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using sufficiently large constants Mw > 0 and Mh > 0, the big-M reformulation of (11) can be
written as

cxj − cxi ≥ 1

2
(wi + wj)−Mwqij ,

cyj − cyi ≥ 1

2
(hi + hj)−Mh(1− qij),

qij ∈ {0, 1}, for all i = 1, . . . , k, j = i+ 1, . . . , k.

(12)

In (12), qij is used to enforce at least one of two constraints, and, as well as in (4), can be
interpreted as capturing the relative position between rectangles Ri and Rj , qij = 0 meaning
that Rj is to the right of Ri, and qij = 1 meaning that Rj is above Ri. Defining eight continuous
variables dx

i,[i,j,m], d
y

i,[i,j,m], d
x
j,[i,j,m], d

y

j,[i,j,m], m = 1, 2, and two binary variables s[i,j,1] and s[i,j,2],

for every pair (i, j) with j > i, the convex-hull reformulation of (11) can be written as

s[i,j,1] + s[i,j,2] = 1, s[i,j,1], s[i,j,2] ∈ {0, 1},

cxu = dxu,[i,j,1] + dxu,[i,j,2], cyu = dy
u,[i,j,1] + dy

u,[i,j,2], u = i, j,

0 ≤ dx
u,[i,j,1] ≤ ĉx s[i,j,1], 0 ≤ dy

u,[i,j,1] ≤ ĉy s[i,j,1], u = i, j,

0 ≤ dx
u,[i,j,2] ≤ ĉx s[i,j,2], 0 ≤ dy

u,[i,j,2] ≤ ĉy s[i,j,2], u = i, j,

dxj,[i,j,1] − dxi,[i,j,1] ≥
1

2
(wi + wj) s[i,j,1],

dy
j,[i,j,2] − dy

i,[i,j,2] ≥
1

2
(hi + hj) s[i,j,2],

for all i = 1, . . . , k, j = i+ 1, . . . , k.

(13)

Summing up, adding constraints (8,10) to models Pk,[Ω,h,w]
LGDP , Pk,[Ω,h,w]

BM , and Pk,[Ω,h,w]
CH , we

arrive to equivalent models that will be named Qk,[Ω,h,w]
LGDP , Qk,[Ω,h,w]

BM , and Qk,[Ω,h,w]
CH , respectively.

On the other hand, replacing (2), (4), and (5), by (11), (12), and (13), in Pk,[Ω,h,w]
LGDP , Pk,[Ω,h,w]

BM ,

and Pk,[Ω,h,w]
CH , we also arrive to equivalent models that will be named Rk,[Ω,h,w]

LGDP , Rk,[Ω,h,w]
BM ,

and Rk,[Ω,h,w]
CH , respectively. The “Q” and “R” models are equivalent to their corresponding

“P” models but with less representatives of each family of equivalent or symmetric solutions.
Figure 3 summarizes the main characteristics of each model and the relations among them. To
see that at least a representative of each family of symmetric solutions for a “P” model is a
feasible solution for the corresponding “Q” and “R” models, it is enough to note that, given a
solution for a “P” model, it is possible to relabel the rectangles in order to satisfy the additional
constraints that are present in the corresponding “Q” and “R” models.

In an analogous way, the symmetry-breaking constraints can also be easily incorporated in

Sk,[Ω,h,w]
LGDP , Sk,[Ω,h,w]

BM , and Sk,[Ω,h,w]
CH . We name T k,[Ω,h,w]

LGDP , T k,[Ω,h,w]
BM , and T k,[Ω,h,w]

CH , the models

that result of adding symmetry-breaking constraints (8,10); while we name Uk,[Ω,h,w]
LGDP , Uk,[Ω,h,w]

BM ,

and Uk,[Ω,h,w]
CH , the models that result of replacing (2), (4), and (5), by (11), (12), and (13), in

Sk,[Ω,h,w]
LGDP , Sk,[Ω,h,w]

BM , and Sk,[Ω,h,w]
CH , respectively.
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Qk,[Ω,h,w]
LGDP given by (1,2,3,8,10)

k binary variables
2k continuous variables

2(k − 1) linear constraints
k(k − 1)/2 disjuntive constraints
(with 4 linear constraints each)

Qk,[Ω,h,w]
BM given by (1,4,3,8,10)

k2 binary variables
2k continuous variables

4k(k − 1)/2 + 2(k − 1) linear constraints

Qk,[Ω,h,w]
CH given by (1,5,3,8,10)
2k2 − k binary variables

2k + 8k(k − 1) continuous variables
41k(k − 1)/2 + 2(k − 1) linear constraints

Mixed Integer
Linear Programming

Problems

Disjunctive
Programming

Problem

Pk,[Ω,h,w]
LGDP given by (1,2,3)
k binary variables

2k continuous variables
k(k − 1)/2 disjuntive constraints
(with 4 linear constraints each)

Pk,[Ω,h,w]
BM given by (1,4,3)
k2 binary variables

2k continuous variables
2k(k − 1) linear constraints

Pk,[Ω,h,w]
CH given by (1,5,3)
2k2 − k binary variables

2k + 8k(k − 1) continuous variables
41k(k − 1)/2 linear constraints

Mixed Integer
Linear Programming

Problems

Disjunctive
Programming

Problem

Rk,[Ω,h,w]
LGDP given by (1,11,3)

k binary variables
2k continuous variables

k(k − 1)/2 disjuntive constraints
(with 2 linear constraints each)

Rk,[Ω,h,w]
BM given by (1,12,3)

k/2 + k2/2 binary variables
2k continuous variables

k(k − 1) linear constraints

Rk,[Ω,h,w]
CH given by (1,13,3)
k2 binary variables

2k + 4k(k − 1) continuous variables
23k(k − 1)/2 linear constraints

Mixed Integer
Linear Programming

Problems

Disjunctive
Programming

Problem

Big-M Reformulation:
substituting (2) by (4)

Convex-Hull Reformulation:
substituting (2) by (5)

Adding Symmetry
Breaking Contraints

(8,10)

Substituting non-overlapping
constraint(2) by non-overlapping

plus symmetry-breaking constraint (11)

Big-M Reformulation:
substituting (2) by (4)

Convex-Hull Reformulation:
substituting (2) by (5)

Big-M Reformulation:
substituting (11) by (12)

Convex-Hull Reformulation:
substituting (11) by (13)

Q
M
o
d
els

P
M
o
d
el
s

R
M
o
d
els

Figure 3: Description of the disjunctive programming and mixed integer linear programming fea-
sibility models for the problem of placing k non-overlapping identical rectangles with height h and
width w, allowed to differ only by horizontal or vertical translations and possibly ninety-degree
rotations, within Ω. Numbers of constraints do not include the number of placing constraints (3),
that depends on the description of Ω.
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4 Numerical experiments

In the numerical experiments we considered the case of equilateral triangular objects and
identical rectangular items with height h = 1 and width w = 0.5. Equilateral triangles were ar-
bitrarily chosen as illustrative examples. There is no additional difficulty in considering a generic
polyhedral object Ω, other than dealing with the additional linear constraints needed to define
it. Note that, as detailed in (3), if the polyhedral object is described by p linear inequalities,
each item requires only 4p linear constraints to enforce its vertices (and, in consequence, the
whole item) to be accommodated within the object. All the models considered in the numerical
experiments were implemented in C/C++ (gcc version 4.4.3) and solved with CPLEX (IBM
ILOG AMPL/CPLEX 12.1.0) using its default parameters. It means that a solution is reported
as optimal by the solver when

absolute gap = best feasible solution− best lower bound ≤ 10−6

or

relative gap =
| best feasible solution− best lower bound |

1e−10 + | best feasible solution | ≤ 10−4.

In order to test the proposed models, values for constants α, β, and Mo in (10), Mw and Mh

in (4,12), and ĉx and ĉy in (5,13) must be given. For α and β we considered random numbers
with uniform distribution within the interval [−1, 1]. A sufficient condition for the correctness of

the symmetry-breaking constraints (10) is Mo ≥ Lub +
√
3
2 Lub, where Lub is an upper bound on

the (possible unknown) side L of the triangular object. A sufficient condition for the correctness

of the overlapping constraints (4,12) is Mw ≥ Lub and Mh ≥
√
3
2 Lub. Valid values for ĉx and ĉy

in (5,13) are ĉx = Lub and ĉy =
√
3
2 Lub. When the triangle is given and the problem consists on

computing the largest number of identical rectangles that can be packed within the triangle, L
is known and we set Lub = L. When the problem consists on computing the smallest equilateral
triangle that packs a given fixed number of identical rectangles, we proceed as follows. A square
that contains the given number N of identical rectangular items is computed, and the side of the
smallest equilateral triangle that circumscribe the square is taken as Lub. As a result, in the case
in which L is unknown, the considered values of Lub where Lub = 2.16 for N ∈ {1, 2}, Lub = 4.31
for N ∈ {2, 3, . . . , 8}, and Lub = 6.47 for N ∈ {9, 10, . . . , 16}. Note that providing those values
is important as it is well know that they interfere in the performance of the considered MIP
solver.

4.1 Minimizing the object dimension

In this subsection we deal with the problem of finding the smallest equilateral triangle within
which a given set of N identical rectangular items can be packed. (Recall that we are dealing
with rectangular items with height h = 1 and width w = 0.5.)

In a first set of experiments, in order to have a starting point for comparison, we tried to solve

instances of Sk,[Ω,h,w]
LGDP (LGDP model (7)), Sk,[Ω,h,w]

BM (big-M MIP reformulation), and Sk,[Ω,h,w]
CH

(convex-hull MIP reformulation), that do not include any symmetry-breaking constraint, in-
creasing the number of items N ∈ {1, 2, . . . }. Table 1 shows the results. In the table, N is the
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number of items being packed. For the side of the smallest equilateral triangle that packs the
N items, the table shows the best lower bound as well as the best feasible solution found by the
solver. Relative and absolute gaps are also provided. The right-hand side of the table displays
the effort measurements: “MIP” is the number of MIP iterations, “B&B nodes” is the number
of nodes in the branch-and-bound tree, and “CPU Time” is the CPU time in seconds. In the
table, it can be seen that, with a CPU time limit of 6 hours, we were not able to solve instances
with N > 8.

Instance data Effort measurements

Fixed N
Triangle side MIP GAP

MIP B&B nodes CPU Time
Best lower bound Best feasible solution Relative Absolute

L
G
D
P

m
o
d
el

(7
)

1 1.577350269189626 1.577350269189626 0.00e+00 0.00e+00 0 0 0.00
2 2.154700538379251 2.154700538379251 0.00e+00 0.00e+00 38 4 0.01
3 2.443375672974064 2.443375672974064 0.00e+00 0.00e+00 215 53 0.01
4 2.732050807568878 2.732050807568878 0.00e+00 0.00e+00 1,212 315 0.04
5 3.020725942163691 3.020725942163691 0.00e+00 0.00e+00 41,003 12,476 1.46
6 3.231852460094526 3.232050807568877 6.14e−05 1.98e−04 910,795 232,853 40.26
7 3.443060783087007 3.443375672338170 9.14e−05 3.15e−04 27,536,014 6,626,931 1,466.85
8 3.597717089329720 3.598076211353316 9.98e−05 3.59e−04 153,247,823 36,600,213 11,186.81
9 3.215704772343326 3.809401068449104 1.56e−01 5.94e−01 − − >21,600.00
10 3.016083139658178 4.020725924957480 2.50e−01 1.00e+00 − − >21,600.00

B
ig
-M

M
IP

re
fo
rm

u
la
ti
on

1 1.577350269189626 1.577350269189626 0.00e+00 0.00e+00 0 0 0.00
2 2.154700538379251 2.154700538379251 0.00e+00 0.00e+00 30 11 0.01
3 2.443375672974065 2.443375672974065 0.00e+00 0.00e+00 149 80 0.01
4 2.732050807568878 2.732050807568878 0.00e+00 0.00e+00 1,315 725 0.07
5 3.020725942163690 3.020725942163690 0.00e+00 0.00e+00 28,832 17,763 1.08
6 3.232050807568878 3.232050807568878 0.00e+00 0.00e+00 457,542 283,835 17.45
7 3.443375672974065 3.443375672974065 0.00e+00 0.00e+00 27,097,399 14,284,652 1,032.67
8 3.443375672974065 3.598076205466564 4.30e−02 1.55e−01 − − >21,600.00
9 3.154700538379261 3.809401070449102 1.72e−01 6.55e−01 − − >21,600.00
10 3.065384140902228 4.020725935431639 2.38e−01 9.55e−01 − − >21,600.00

C
on

ve
x
-h
u
ll
M
IP

re
fo
rm

. 1 1.577350269189626 1.577350269189626 0.00e+00 0.00e+00 0 0 0.00
2 2.154700518676984 2.154700529884166 5.20e−09 1.12e−08 78 16 0.02
3 2.443375667541825 2.443375667541825 0.00e+00 0.00e+00 2,123 259 0.07
4 2.732031213559349 2.732050717264398 7.14e−06 1.95e−05 33,886 3,841 1.16
5 3.020486516477845 3.020725894730525 7.92e−05 2.39e−04 1,592,352 138,176 60.18
6 3.231727579601285 3.232050397095424 9.99e−05 3.23e−04 45,750,048 3,594,324 2,019.11
7 3.154699924971216 3.443373062238137 8.38e−02 2.89e−01 − − >21,600.00
8 2.809401076681599 3.598076080375179 2.19e−01 7.89e−01 − − >21,600.00
9 2.618740741071466 3.866023671044396 3.23e−01 1.25e+00 − − >21,600.00
10 2.427524391209028 4.020724784525934 3.96e−01 1.59e+00 − − >21,600.00

Table 1: Instances of LGDP model Sk,[Ω,h,w]
LGDP and its MIP reformulations Sk,[Ω,h,w]

BM and Sk,[Ω,h,w]
CH

with increasing number of items N ∈ {1, 2, . . . }. Recall that these models correspond to pure
models with no symmetry-breaking constraints.

In a second set of experiments, we were interested in testing the efficiency of the introduced

symmetry-breaking constraints (8,10). Hence, we considered instances of problems T k,[Ω,h,w]
LGDP

(LGDP model (7) plus symmetry-breaking constraints (8,10)), T k,[Ω,h,w]
BM (big-M MIP reformu-

lation), and T k,[Ω,h,w]
CH (convex-hull MIP reformulation). Regarding constraint (8), it is easy to

see that there are only k + 1 possible values for variables ri, i = 1, . . . , k, such that (8) holds.

10



The k + 1 possibilities correspond to

ri =

{

0, if i ≤ p,
1, otherwise,

i = 1, . . . , k, (14)

for p = 0, . . . , k. Therefore, there are two possible ways of considering constraint (8) in connec-
tion with problem (7): (i) k + 1 problems of type (7) may be solved fixing ri, i = 1, . . . , k, as
suggested in (14) for p = 0, . . . , k, or (ii) constraint (8) can be explicitly incorporated into (7)
solving (7,8). Tables 2 and 3 show options (i) and (ii), respectively, with the addition of con-

straint (10). In Table 2, we can see that all instances of T k,[Ω,h,w]
LGDP and T k,[Ω,h,w]

BM with N up to 10

were solved to optimality, while instances of T k,[Ω,h,w]
CH were solved to optimality only with N up

to 82. Anyway, in the three models, the symmetry-breaking constraints (8,10) helped to reduce
the computational effort needed to solve the instances. In particular, note that the CPU time
used to solve the instance with N = 8, the largest one solved without the help of the symmetry-
breaking constraints, was reduced from 11,186.81 seconds (see Table 1) to 16.05 seconds (see
Table 2). The comparison between Tables 2 and 3 shows that it seems to be profitable to use
strategy (i) instead of strategy (ii) to deal with constraints (8). Tables 1–3 suggest that the
solver deals more efficiently with the original LGDP models than with any of their MIP refor-
mulations, while the big-M reformulations can be solved with less effort than the convex-hull
reformulations.

To complete the numerical experiments of the present subsection, we tested the efficiency of
replacing, in the LGDP model (7), the non-overlapping constraints (2) by the non-overlapping
plus symmetry-breaking constraints (11). Therefore, we tried to solve instances of the LGDP

model Uk,[Ω,h,w]
LGDP and its MIP reformulations Uk,[Ω,h,w]

BM and Uk,[Ω,h,w]
CH , increasing the number of

items N ∈ {1, 2, . . . }. Table 4 shows the results. Figures in the table show that replacing the
non-overlapping constraints (2) by the non-overlapping plus symmetry-breaking constraints (11)
is much more effective than adding the symmetry breaking constraints (8,10) (see Tables 2 and 3),
as instances with larger values of N were solved to optimality in the former case. Figure 4 shows

a graphical representation of the solutions described in Table 4 for Uk,[Ω,h,w]
BM varying the number

of rectangles from 1 to 15.

4.2 Packing as many rectangles as possible

In this subsection we deal with the problem of, given an equilateral triangle of fixed dimen-
sions, find the largest number N of identical rectangular items that can be packed within it.
(Recall that rectangular items have height h = 1 and width w = 0.5.)

As detailed in Section 2, the strategy for packing as many rectangular items as possible

consists of solving Pk,[Ω,h,w]
LGDP (the feasibility LGDP model (1–3)), or any of its MIP reformulations

Pk,[Ω,h,w]
BM and Pk,[Ω,h,w]

CH , for increasing values of k until a problem with k′ items is proven to
be infeasible. In practice, a time limit is imposed for this strategy. If, within the time limit,
the infeasible problem is reached and solved (i.e. proven to be infeasible), then it is clear that

2It is worth noting that, for N = 9, the small reported relative gap corresponds to the solution for the case
r1 = 0 and ri = 1, i > 1, while there was not enough time to consider most of the other feasible combinations of
fixed values for the rotation variables ri within the time limit.
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Instance data Effort measurements

Fixed N
Triangle side MIP GAP

MIP B&B nodes CPU Time
Best lower bound Best feasible solution Relative Absolute

L
G
D
P

m
o
d
el

(7
,8
,1
0)

1 1.577350269189625 1.577350269189625 0.00e+00 0.00e+00 0 0 0.01
2 2.154700538379168 2.154700538379168 0.00e+00 0.00e+00 0 0 0.00
3 2.443375672974064 2.443375672974064 0.00e+00 0.00e+00 143 16 0.02
4 2.732050807568876 2.732050807568876 0.00e+00 0.00e+00 957 170 0.06
5 3.020725942163691 3.020725942163691 0.00e+00 0.00e+00 7,787 1,879 0.28
6 3.232050807568879 3.232050807568879 0.00e+00 0.00e+00 40,757 7,211 1.41
7 3.443375672974065 3.443375672974064 2.58e−16 8.88e−16 90,126 17,075 3.31
8 3.598076211353316 3.598076211353316 0.00e+00 0.00e+00 423,122 67,662 16.05
9 3.809162326070802 3.809401076758502 6.27e−05 2.39e−04 14,817,741 2,466,016 590.69
10 4.020399584377308 4.020725942163673 8.12e−05 3.26e−04 36,412,075 4,894,328 1,680.93

B
ig
-M

M
IP

re
fo
rm

u
la
ti
on

1 1.577350269189626 1.577350269189626 0.00e+00 0.00e+00 0 0 0.01
2 2.154700538379251 2.154700538379251 0.00e+00 0.00e+00 0 0 0.00
3 2.443375672974064 2.443375672974064 0.00e+00 0.00e+00 166 76 0.02
4 2.732050807568878 2.732050807568878 0.00e+00 0.00e+00 921 463 0.04
5 3.020725942163691 3.020725942163691 0.00e+00 0.00e+00 9,112 3,693 0.36
6 3.232050807568878 3.232050807568878 0.00e+00 0.00e+00 34,669 13,086 1.25
7 3.443375672974062 3.443375672974062 0.00e+00 0.00e+00 195,958 96,956 7.26
8 3.598076211353316 3.598076211353316 0.00e+00 0.00e+00 1,242,459 600,426 51.12
9 3.809252482546021 3.809401076758503 3.90e−05 1.49e−04 22,397,280 8,929,210 872.38
10 4.020335713626388 4.020725942163690 9.71e−05 3.90e−04 191,614,100 81,788,232 10,443.75

C
on

ve
x
-h
u
ll
M
IP

re
fo
rm

. 1 1.577350269189625 1.577350269189625 0.00e+00 0.00e+00 0 0 0.01
2 2.154700538379251 2.154700538379251 0.00e+00 0.00e+00 59 0 0.00
3 2.443375672974065 2.443375672974065 0.00e+00 0.00e+00 733 76 0.05
4 2.732050807568877 2.732050807568877 0.00e+00 0.00e+00 4,883 686 0.18
5 3.020725942163687 3.020725942163687 0.00e+00 0.00e+00 69,208 6,219 2.81
6 3.232050807568884 3.232050807568884 0.00e+00 0.00e+00 357,205 28,210 14.42
7 3.443375672973989 3.443375672973989 0.00e+00 0.00e+00 1,948,856 184,532 83.96
8 3.597775882542360 3.598076211353317 8.35e−05 3.00e−04 12,018,350 1,126,677 581.89
9 3.886402767942472 3.886751345948120 8.97e−05 3.49e−04 − − >21,600.00
10 3.892320595579104 4.154700528069849 6.32e−02 2.62e−01 − − >21,600.00

Table 2: Instances of LGDP model T k,[Ω,h,w]
LGDP and its MIP reformulations T k,[Ω,h,w]

BM and T k,[Ω,h,w]
CH

with increasing number of items N ∈ {1, 2, . . . }. The symmetry-breaking constraint (8) was
considered by solving k + 1 instances of model (7,10), fixing the values of ri according to (14)
for p = 0, . . . , k.

the optimal solution is given by the one obtained for the problem with N = k′ − 1 items. On
the other hand, if the strategy is halted due to the time limit, two different possibilities exist
regarding the last solved problem with, say, k′′ items (assuming that k′′ ≥ 1): (a) k′′ represents
a suboptimal solution and a packing with at least k′′+1 items exists, but there was not enough
time to solve it; or (b) k′′ is the maximum number of items that can be packed, but there was
not enough time to prove that the instance with k′′ + 1 is infeasible.

In the first set of experiments of this subsection, we considered ten different instances

of Pk,[Ω,h,w]
LGDP (LGDP feasibility model (1–3)), Pk,[Ω,h,w]

BM (big-M reformulation), and Pk,[Ω,h,w]
CH

(convex-hull reformulation). In those ten instances, the immutable triangle side was fixed ac-
cording to the best feasible solutions presented in Tables 1–4. In this way, a lower bound on the
number of items that can be packed within each triangle is known. Table 5 shows some figures
related to the solution of those problems. In the table, the CPU Time is presented in detail.
The first column, named “Total” represents the total CPU time used to solve the problem or
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Instance data Effort measurements

Fixed N
Triangle side MIP GAP

MIP B&B nodes CPU Time
Best lower bound Best feasible solution Relative Absolute

L
G
D
P

m
o
d
el

(7
,8
,1
0)

1 1.577350269189626 1.577350269189626 0.00e+00 0.00e+00 0 0 0.00
2 2.154700538379252 2.154700538379252 0.00e+00 0.00e+00 5 0 0.00
3 2.443375672974065 2.443375672974065 0.00e+00 0.00e+00 148 37 0.02
4 2.732050807568881 2.732050807568881 0.00e+00 0.00e+00 781 195 0.03
5 3.020725942163691 3.020725942163691 0.00e+00 0.00e+00 9,173 1,574 0.43
6 3.232050807568879 3.232050807568879 0.00e+00 0.00e+00 29,822 5,752 1.48
7 3.443375672974064 3.443375672974064 0.00e+00 0.00e+00 138,598 22,211 6.93
8 3.597794231919681 3.598076211353336 7.84e−05 2.82e−04 536,140 83,428 29.21
9 3.809064591545733 3.809401076758504 8.83e−05 3.36e−04 8,346,530 1,109,399 488.32
10 4.020338430165712 4.020725942163692 9.64e−05 3.88e−04 71,062,703 10,825,791 5,238.60

B
ig
-M

M
IP

re
fo
rm

u
la
ti
on

1 1.577350269189626 1.577350269189626 0.00e+00 0.00e+00 0 0 0.00
2 2.154700538379251 2.154700538379251 0.00e+00 0.00e+00 23 5 0.00
3 2.443375672974064 2.443375672974064 0.00e+00 0.00e+00 119 54 0.01
4 2.732050807568878 2.732050807568878 0.00e+00 0.00e+00 754 315 0.04
5 3.020725942163691 3.020725942163690 4.41e−16 1.33e−15 5,564 2,231 0.23
6 3.232050807568877 3.232050807568877 0.00e+00 0.00e+00 32,150 128,80 1.22
7 3.443375672974065 3.443375672974065 0.00e+00 0.00e+00 131,457 62,731 5.99
8 3.598076211353317 3.598076211353317 0.00e+00 0.00e+00 852,407 391,708 42.24
9 3.809031272878700 3.809401076758504 9.71e−05 3.70e−04 37,824,870 12,474,040 2,935.49
10 4.020324767277819 4.020725939008989 9.98e−05 4.01e−04 165,798,740 58,305,517 15,722.49

C
on

ve
x
-h
u
ll
M
IP

re
fo
rm

. 1 1.577350269189626 1.577350269189626 0.00e+00 0.00e+00 0 0 0.00
2 2.154700534174552 2.154700534174552 0.00e+00 0.00e+00 63 15 0.01
3 2.443374238386405 2.443375672363309 5.87e−07 1.43e−06 1,282 166 0.07
4 2.732045702433151 2.732050806969059 1.87e−06 5.10e−06 12,153 1,227 0.43
5 3.020505520742559 3.020725922875648 7.30e−05 2.20e−04 157,030 13,592 5.60
6 3.231730502831837 3.232050797184711 9.91e−05 3.20e−04 1,936,538 139,754 76.34
7 3.443031366455914 3.443375648663827 1.00e−04 3.44e−04 25,129,693 1,802,254 1,222.66
8 3.597716312942202 3.598076064926102 1.00e−04 3.60e−04 − − >21,600.00
9 3.207584396989211 3.886749550355905 1.75e−01 6.79e−01 − − >21,600.00
10 3.105662430987886 4.020725345200177 2.28e−01 9.15e−01 − − >21,600.00

Table 3: Instances of LGDP model T k,[Ω,h,w]
LGDP and its MIP reformulations T k,[Ω,h,w]

BM and T k,[Ω,h,w]
CH

with increasing number of items N ∈ {1, 2, . . . }. The symmetry-breaking constraint (8) was
considered explicitly in the model.

elapsed until the time limit was reached. The three remaining columns represent: (i) the CPU
time used to solve the instances with 1, . . . , N − 1 items; (ii) the CPU time used to solve the
largest feasible instance with N items; and (iii) the CPU time used to solve the last, infeasible
instance, with N + 1 items. Note that only the first seven smaller instances were solved within
the time limit (6 hours). In the remaining three cases, the optimal solution was in fact achieved,
but the time limit was reached before proving the infeasibility of the last instance. Note that
the time used to find the optimal solution is always very small and that the major part of the
computation time is used to prove that the solution found is optimal. This observation justifies
the sequential increase of N in contrast with a maybe more intuitive bisection approach.

Tables 6 and 7 show the solutions obtained by solving the same ten instances (same im-

mutable triangles sides) of Qk,[Ω,h,w]
LGDP (LGDP model (1–3,8,10)), Qk,[Ω,h,w]

BM (big-M reformulation),

and Qk,[Ω,h,w]
CH (convex-hull reformulation); and Rk,[Ω,h,w]

LGDP (LGDP model (1,11,8)), Rk,[Ω,h,w]
BM (big-

M reformulation), and Rk,[Ω,h,w]
CH (convex-hull reformulation), respectively. Figure 5 shows a
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Instance data Effort measurements

Fixed N
Triangle side MIP GAP

MIP B&B nodes CPU Time
Best lower bound Best feasible solution Relative Absolute

L
G
D
P

m
o
d
el

(7
)
re
p
la
ci
n
g
(2
)
b
y
(1
1)

1 1.577350269189626 1.577350269189626 0.00e+00 0.00e+00 0 0 0.00
2 2.154700538379251 2.154700538379251 0.00e+00 0.00e+00 5 0 0.00
3 2.443375672974064 2.443375672974064 0.00e+00 0.00e+00 46 7 0.02
4 2.732050807568879 2.732050807568879 0.00e+00 0.00e+00 94 10 0.00
5 3.020725942163691 3.020725942163691 0.00e+00 0.00e+00 286 61 0.02
6 3.232050807568878 3.232050807568878 0.00e+00 0.00e+00 738 173 0.08
7 3.443375672974065 3.443375672974065 0.00e+00 0.00e+00 3,193 715 0.15
8 3.598076211353317 3.598076211353317 0.00e+00 0.00e+00 16,115 2,847 0.75
9 3.809401076758504 3.809401076758504 0.00e+00 0.00e+00 71,257 11,960 3.46
10 4.020509285973630 4.020725942163690 5.39e−05 2.17e−04 203,721 41,891 12.03
11 4.175304993828159 4.175426480542942 2.91e−05 1.21e−04 927,056 110,081 43.67
12 4.386375364750972 4.386751345948129 8.57e−05 3.76e−04 3,244,798 736,824 156.11
13 4.463659545857176 4.464101615137761 9.90e−05 4.42e−04 20,780,447 2,483,065 1,356.96
14 4.597626257023785 4.598076211353318 9.79e−05 4.50e−04 84,549,515 12,186,953 7,119.75
15 4.419443416399242 4.752776740536415 7.01e−02 3.33e−01 − − >21,600.00
16 4.357521665581659 4.964101605673653 1.22e−01 6.07e−01 − − >21,600.00

B
ig
-M

M
IP

re
fo
rm

u
la
ti
on

1 1.577350269189626 1.577350269189626 0.00e+00 0.00e+00 0 0 0.00
2 2.154700538379251 2.154700538379251 0.00e+00 0.00e+00 14 0 0.00
3 2.443375672974064 2.443375672974064 0.00e+00 0.00e+00 49 7 0.01
4 2.732050807568878 2.732050807568878 0.00e+00 0.00e+00 105 13 0.00
5 3.020725942163691 3.020725942163691 0.00e+00 0.00e+00 416 91 0.02
6 3.232050807568878 3.232050807568878 0.00e+00 0.00e+00 1,619 373 0.06
7 3.443216646206837 3.443375672974065 4.62e−05 1.59e−04 7,003 1,462 0.24
8 3.598076211353316 3.598076211353316 0.00e+00 0.00e+00 14,739 2,622 0.54
9 3.809401076758503 3.809401076758503 0.00e+00 0.00e+00 51,510 5,636 1.54
10 4.020725942163691 4.020725942163691 0.00e+00 0.00e+00 486,468 77,816 16.25
11 4.175088319554543 4.175426480542939 8.10e−05 3.38e−04 857,439 103,487 32.44
12 4.386326500032685 4.386751345948128 9.68e−05 4.25e−04 6,235,708 695,202 244.93
13 4.463655413028338 4.464101615137753 1.00e−04 4.46e−04 27,231,140 3,427,145 1,327.47
14 4.597616595058138 4.598076211353316 1.00e−04 4.60e−04 80,702,664 5,283,372 3,402.18
15 4.752303388377661 4.752776749732567 9.96e−05 4.73e−04 165,176,634 26,793,091 9,019.73
16 4.318527513204312 4.964101607673653 1.30e−01 6.46e−01 − − >21,600.00

C
o
n
ve
x
-h
u
ll
M
IP

re
fo
rm

u
la
ti
on

1 1.577350269189626 1.577350269189626 0.00e+00 0.00e+00 0 0 0.00
2 2.154700538070694 2.154700538381463 1.44e−10 3.11e−10 40 7 0.02
3 2.443375672645347 2.443375672645347 0.00e+00 0.00e+00 201 33 0.01
4 2.732050806483621 2.732050806483621 0.00e+00 0.00e+00 1,019 139 0.07
5 3.020725579211940 3.020725942196470 1.20e−07 3.63e−07 3,408 506 0.26
6 3.231850013972345 3.232050807511775 6.21e−05 2.01e−04 12,039 1,458 0.61
7 3.443202829554564 3.443375666133137 5.02e−05 1.73e−04 46,810 5,859 3.18
8 3.597886815976836 3.598076209758018 5.26e−05 1.89e−04 123,158 13,064 8.20
9 3.809272419509341 3.809401078416926 3.38e−05 1.29e−04 662,582 73,940 51.17
10 4.020327421884938 4.020725794811397 9.91e−05 3.98e−04 4,930,428 54,196 445.95
11 4.175027994557123 4.175426437952257 9.54e−05 3.98e−04 18,041,399 1,720,300 1,797.97
12 4.366025218173216 4.386751328238087 4.72e−03 2.07e−02 − − >21,600.00
13 4.166912549242940 4.464101448383035 6.66e−02 2.97e−01 − − >21,600.00
14 3.963950046260996 4.598075130802665 1.38e−01 6.34e−01 − − >21,600.00
15 3.787499813498732 4.752776715788993 2.03e−01 9.65e−01 − − >21,600.00
16 3.845092857113551 4.964101312861107 2.25e−01 1.12e+00 − − >21,600.00

Table 4: Instances of LGDP model Uk,[Ω,h,w]
LGDP and its MIP reformulations Uk,[Ω,h,w]

BM and Uk,[Ω,h,w]
CH

with increasing number of items N ∈ {1, 2, . . . }.

graphical representation of the solutions described in Table 7 for Rk,[Ω,h,w]
BM varying the number

of rectangles from 1 to 14. It is easy to see that the symmetry-breaking constraints help a lot to
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Figure 4: Graphical representation of the solutions to the problem of minimizing the size of an
equilateral triangle that contains N ∈ {1, 2, . . . , 15} identical rectangles with height h = 1 and

width w = 0.5. The figures correspond to the solutions to Uk,[Ω,h,w]
BM described in Table 4. Note

that they satisfy constraints in (11) or their reformulations (12) and (13).

drastically reduce the effort required to solve the instances. In fact, with their help, the optimal
solutions of the ten instances were found and proven to be optimal and even larger instances
were also solved to optimality. The comparison between the times displayed in Tables 5–7 is
elucidating. When an instance with a fixed value k of items is feasible, it seems that eliminating
symmetric solutions with the help of the symmetry-breaking constraints is not profitable. Note
that CPU times for solving the instances with N items in Table 5 (which correspond to not
using symmetry breaking constraints) are smaller than the ones displayed in Tables 6 and 7,
which considers the symmetry-breaking constraints. The explanation for that observation seems
to be simple. If a feasibility problem is feasible, the larger the number of feasibly (symmetric
or not) feasible solutions, the faster a method (which aims to find a feasible solution) will find
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Instance data Effort measurements

Fixed triangle side Best N MIP B&B nodes
CPU Time

Total 1 to N − 1 N N + 1

L
G
D
P

m
o
d
el

(1
–
3
)

1.577350269189625 1 0 0 0.01 − 0.00 0.01
2.154700529884166 2 112 15 0.01 0.00 0.00 0.01
2.443375667541825 3 444 149 0.04 0.01 0.00 0.03
2.732050717264398 4 17,882 3,270 0.63 0.01 0.00 0.62
3.020725894730525 5 337,480 54,092 10.31 0.02 0.00 10.29
3.232050397095424 6 1,702,397 288,180 64.57 0.02 0.02 64.53
3.443373062238137 7 310,606,602 41,339,182 20,824.26 0.04 0.08 20,824.14
3.598076064926102 8 − − >21,600.00 0.06 0.03 −
3.809401068449104 9 − − >21,600.00 0.08 4.57 −
4.020724784525934 10 − − >21,600.00 0.09 0.44 −

B
ig
-M

re
fo
rm

u
la
ti
o
n

1.577350269189625 1 0 0 0.00 − 0.00 0.00
2.154700529884166 2 61 23 0.01 0.00 0.00 0.01
2.443375667541825 3 484 213 0.02 0.00 0.00 0.02
2.732050717264398 4 10,844 4,847 0.31 0.00 0.01 0.30
3.020725894730525 5 340,644 133,09 5 9.21 0.00 0.01 9.20
3.232050397095424 6 5,891,214 2,488,436 193.02 0.01 0.01 193.00
3.443373062238137 7 346,797,622 132,731,792 12,484.64 0.02 0.02 12,484.60
3.598076064926102 8 − − >21,600.00 0.04 0.36 −
3.809401068449104 9 − − >21,600.00 0.05 0.57 −
4.020724784525934 10 − − >21,600.00 0.05 0.22 −

C
o
n
v
ex

-h
u
ll
re
fo
rm

.

1.577350269189625 1 51 1 0.01 − 0.00 0.01
2.154700529884166 2 839 94 0.04 0.00 0.01 0.03
2.443375667541825 3 11,087 1,016 0.30 0.01 0.01 0.28
2.732050717264398 4 294,957 16,712 8.76 0.02 0.03 8.71
3.020725894730525 5 10,026,367 632,425 301.85 0.03 0.13 301.69
3.232050397095424 6 − − >21,600.00 0.07 1.53 −
3.443373062238137 7 − − >21,600.00 0.13 2.77 −
3.598076064926102 8 − − >21,600.00 1.31 5.91 −
3.809401068449104 9 − − >21,600.00 0.60 871.80 −
4.020724784525934 10 − − >21,600.00 0.93 221.04 −

Table 5: Instances of Pk,[Ω,h,w]
LGDP , Pk,[Ω,h,w]

BM , and Pk,[Ω,h,w]
CH setting the fixed side of the equilateral

triangles as the best feasible solutions depicted in Tables 1–4.

one of them and stop declaring success. The opposite situation occurs when we compare the
CPU times used to solve the infeasible problem with N + 1 items in Tables 5–7. As instances
are infeasible, the whole tree must be visited to prove the infeasibility. In this case, eliminating
symmetric solutions makes the search tree smaller converting the task of proving infeasibility
into an easier job. All in all, considering the symmetry-breaking constraints is profitable. More-
over, the best of both scenarios might be useful in an heuristic combined approach to rapidly
find a probably optimal solution and then proving its optimality.

5 Conclusions

LGDP and MIP models for two packing problems were presented and symmetry-breaking
constraints were introduced. The symmetry-breaking constraints do help, as expected, with the
one exception of checking for feasibility/infeasibility when the problem is feasible. The main
benefit of adding symmetry-breaking constraints, in terms of reduced computation time, comes
when proving optimality or infeasibility. The non-rotated-first and the preorder symmetry-
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Instance data Effort measurements

Fixed triangle side Best N MIP B&B nodes
CPU Time

Total 1 to N − 1 N N + 1

L
G
D
P

m
o
d
el

(1
,2
,3
,8
,1
0
) 1.577350269189625 1 0 0 0.01 − 0.00 0.01

2.154700529884166 2 0 0 0.01 0.00 0.00 0.01
2.443375667541825 3 0 0 0.03 0.00 0.01 0.02
2.732050717264398 4 272 49 0.06 0.00 0.01 0.05
3.020725894730525 5 10,604 1,575 0.39 0.01 0.07 0.31
3.232050397095424 6 53,965 7,822 2.20 0.02 0.83 1.35
3.443373062238137 7 151,158 21,720 5.14 0.05 0.86 4.50
3.598076064926102 8 3,486,287 288,006 107.50 0.07 0.60 106.83
3.809401068449104 9 20,550,301 1,819,760 666.90 0.10 196.57 469.23
4.020724784525934 10 244,497,247 18,368,674 9,090.28 3.11 442.74 8,644.43

B
ig
-M

re
fo
rm

u
la
ti
o
n

1.577350269189625 1 0 0 0.00 − 0.00 0.00
2.154700529884166 2 0 0 0.00 0.00 0.00 0.00
2.443375667541825 3 222 64 0.04 0.00 0.01 0.03
2.732050717264398 4 1,374 626 0.08 0.00 0.01 0.08
3.020725894730525 5 20,295 6,363 0.66 0.00 0.11 0.55
3.232050397095424 6 71,477 22,973 2.26 0.02 0.78 1.46
3.443373062238137 7 348,952 104,069 10.32 0.02 1.06 9.24
3.598076064926102 8 3,198,793 743,105 78.42 0.12 1.21 77.09
3.809401068449104 9 20,967,920 4,103,489 591.68 0.31 159.70 431.67
4.020724784525934 10 504,665,327 92,696,919 15,443.09 0.14 213.67 15,229.28

C
o
n
v
ex

-h
u
ll
re
fo
rm

.

1.577350269189625 1 0 0 0.01 − 0.00 0.01
2.154700529884166 2 141 0 0.02 0.00 0.00 0.02
2.443375667541825 3 865 16 0.08 0.01 0.01 0.06
2.732050717264398 4 12,495 712 0.47 0.00 0.00 0.47
3.020725894730525 5 189,844 6,809 7.46 0.01 0.58 6.87
3.232050397095424 6 888,823 31,810 34.58 0.04 11.32 23.22
3.443373062238137 7 9,305,812 302,078 468.18 0.50 18.58 449.10
3.598076064926102 8 110,802,449 2,211,931 9,489.72 0.91 27.68 9,461.13
3.809401068449104 9 − − >21,600.00 3.41 − −
4.020724784525934 10 − − >21,600.00 1.68 − −

Table 6: Instances of Qk,[Ω,h,w]
LGDP , Qk,[Ω,h,w]

BM , and Qk,[Ω,h,w]
CH setting the fixed side of the equilateral

triangles as the best feasible solutions depicted in Tables 1–4.

breaking constraints help, but the up-right ordering symmetry-breaking constraints seem to be
the more useful ones as they simplify the non-overlapping constraints making the whole model
much easier to be solved, at least for the problems considered. While the original LGDP models
appear to be simpler for the solver in the minimization case, the big-M MIP reformulations
seem to be more adequate in the feasibility case. In any case, the original LGDP models and
their big-M MIP reformulations are more competitive than the corresponding convex-hull MIP
reformulations.
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