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Motivation

▶ Probabilistic answer set programming provides a flexible and powerful relational language for representing
and computing with uncertain knowledge containing recursive definitions, logical constraints and
incomparability
• Sato’s semantics describe Bayesian networks and cyclic dependences

• Credal semantics: describe belief functions by multivalued-mappings

▶ This work: Extend semantics to general imprecise probability models

0.3::a.
c :- not d. d :- not c.
c :- a. d :- a.
b :- a.
b :- not a, c.
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Probabilistic Answer Set Programming

▶ Atoms represent basic unit of knowledge, e.g. edge(a,b)

▶ Normal rules constrain models, e.g. edge(X,Y) :- edge(Y,X)

▶ Disjunctions state incomparable choices, e.g. red(X); blue(X)

▶ Default negation: not a is true if a cannot be proved

▶ Annotated disjunctions state probabilistic choices, e.g.
0.2::red; 0.5::green; 0.3::blue

▶ Stable model semantics: models of the program are minimal
models of reduct, where default negation is interpreted away

▶ Credal semantics: Infinitely-monotone probability induced by:
• Total choices Λ: selections of independent probabilistic choices
• Probability mass function Pr(𝜆) is the product of selected choices
• Γ maps total choices to stable models of corresponding program

Pr(A) = Pr ({𝜆 ∈ Λ | Γ(𝜆) ⊆ A}) Pr(A | B) =
Pr(A ∩ B)

Pr(A ∩ B) + Pr(Ac ∩ B)

Example

% A random undirected random graph
0.5::edge(a,b). 0.2::edge(a,c). 0.7::edge(b,c).
edge(X,Y) :- edge(Y,X). color(a,red).
% (recursive) definition of node reachability
reachable(X,Y) :- edge(X,Y).
reachable(X,Y) :- edge(X,Z), reachable(Z,Y).
% (disjunctive) definition of 2−colorability
color(X,red); color(X,blue).
conflict :- edge(X,Y), color(X,C), color(Y,C).
color(X,red) :- node(X), conflict.
color(X,blue) :- node(X), conflict.
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▶ Pr(reachable(a,b )) = 0.57
▶ Pr(not conflict) = 0.93
▶ Pr(color(b,red )) ∈ [0.14, 0.57]
▶ Pr(not conflict|color(b,red )) ∈

[
0.5, 0.5

0.5+0.07
]
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Results: Precise Prob.

Thm. Every infinitely monotone lower
probability can be specified by a PASP
program in size proportional to the number
of focal sets of its m-function
characterization.

Proof. Take focal sets A1, . . . ,An and write:
m(A1)::m(1);. . . ;m(An)::m(n).
x(o1);. . . ;x(ok) :- m(1).
. . .
x(o1);. . . ;x(ok) :- m(n).

where the constants o1, . . ., ok denote the
elements of focal set Ai = {𝜔1, . . . ,𝜔k}. The
stable models correspond to the focal sets.

Results: Interval-Valued Prob.

[0.1,0.3]::red; [0.2,0.4]::green; [0.4,0.6]::blue.

Semantics: Extend PrΓ(𝛾) to PrΩ(𝜔)
Thm. Every finitely-generated credal set can

be represented by an acyclic and positive
program with a single vacuous
interval-valued annotated disjunction.

Thm. Any program with interval-valued
annotated disjunctions can be converted
into an equivalent program containing
only interval-valued probabilistic facts; if
the original program is acyclic
(nondisjunctive), the resulting program is
also acyclic (nondisjunctive).

Results: Parametrized Prob.

P::win(X); Q::draw(X); R::loose(X) :-
match(X), P > Q, P > R, R <= 0.3.

Expressivity: The semantics of an acyclic
PASP program is given by a credal
network; if only probabilistic facts and
nonprobabilistic rules appear, the
network structure is the dependency
graph of the program.

Inferential complexity: Deciding whether the
unconditional lower probability of an
atom is above a given threshold is
NPPP-complete.
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