MAT2351 - Cálculo para Funções de Várias Variáveis I Prova 1 - 05/04/2018

Profa. Cláudia Cueva Candido

	Q	1N
Nome :	1	
	2	
$N^{\underline{O}}$ USP :	3	
	4	
	Total	

Justifique suas afirmações.

- 1. (2,0) O domínio de uma função de duas variáveis dada por h=h(x,y) é o maior subconjunto do \mathbb{R}^2 em que a expressão algébrica h(x,y) está definida. a) Determine e esboce o domínio da função f dada por $f(x,y)=\frac{2xy-x^2}{\sqrt{9-x^2-y^2}}$.
 - b) Esboce a região $A = \{(x, y) \in \mathbb{R}^2 \mid y^2 x \ge 0\}$ e exiba uma expressão g(x, y) de modo que o domínio da função g, definida por tal expressão, seja igual a A.

2. Considere a curva parametrizada $\gamma: \mathbb{R} \to \mathbb{R}^2$ dada por

$$\gamma(t) = (x(t), y(t)) = (t(t-3)^2, t(t-3)).$$

- a) Estude o sinal das funções coordenadas $x: \mathbb{R} \to \mathbb{R}$ e $y: \mathbb{R} \to \mathbb{R}$ e indique a que quadrante pertence $\gamma(t)$ conforme t varia em \mathbb{R} . Marque os pontos que pertencem aos eixos.
- b) Estude o sinal das derivadas x' e y' e indique direção e sentido do vetor $\gamma'(t)$ conforme t varia em \mathbb{R} . Marque no \mathbb{R}^2 os pontos em que a tangente é vertical ou horizontal.
- c) A partir das informações dos itens anteriores esboce a $Im \gamma$ com os vetores tangentes e indique o sentido de percurso determinado por γ .

- 3. Decida se a afirmação é verdadeira ou falsa. Justifique cuidadosamente a sua resposta.
 - a) Se $\beta(t)=$ (sen t , sen 3t), $t\in\mathbb{R}$ e $\gamma(t)=(t,t^3)$, $t\in\mathbb{R}$, então $Im\,\beta=Im\,\gamma.$
 - b) A curva dada em coordenadas polares por $r=\cos\theta,\;\theta\in\mathbb{R},$ é uma circunferência no $\mathbb{R}^2.$
 - c) O domínio da função f dada por $f(x,y) = \ln(x-2y)$ é uma região não limitada do \mathbb{R}^2 .
 - d) A curva $\gamma(t)=\left(3+\frac{\text{sen }t}{2} \ , \ 2+\frac{\cos\,t}{3}\right), \ t\in\mathbb{R},$ parametriza uma circunferência.

- 4. Seja $r = 1 + \frac{1}{2}$ sen θ curva dada em coordenadas polares.
 - a) Esboce a curva;
 - b) Esboce a região R interior à circunferência r=1 e exterior à curva $r=1+\frac{1}{2}$ sen $\theta;$
 - c) Determine o domínio de integração e calcule a área de ${\cal R}.$

MAT2351 - Cálculo para Funções de Várias Variáveis I Prova 1 - 05/04/2018

Profa. Cláudia Cueva Candido

	Q	IN
Nome :	 1	
	2	
$N^{\underline{O}}USP:$	 3	
	4	
	Total	

Justifique suas afirmações.

- 1. (2,0) O domínio de uma função de duas variáveis dada por h = h(x,y) é o maior subconjunto do \mathbb{R}^2 em que a expressão algébrica h(x,y) está definida.
 - a) Determine e esboce o domínio da função f dada por $f(x,y) = \frac{3x^2 xy}{\sqrt{4 x^2 y^2}}$.
 - b) Esboce a região $A = \{(x, y) \in \mathbb{R}^2 \mid y^2 + x \ge 0\}$ e exiba uma expressão g(x, y) de modo que o domínio da função g, definida por tal expressão, seja igual a A.

2. Considere a curva parametrizada $\gamma: \mathbb{R} \to \mathbb{R}^2$ dada por

$$\gamma(t) = (x(t), y(t)) = (t(t+3), t(t+3)^2).$$

- a) Estude o sinal das funções coordenadas $x: \mathbb{R} \to \mathbb{R}$ e $y: \mathbb{R} \to \mathbb{R}$ e indique a que quadrante pertence $\gamma(t)$ conforme t varia em \mathbb{R} . Marque os pontos que pertencem aos eixos.
- b) Estude o sinal das derivadas x' e y' e indique direção e sentido do vetor $\gamma'(t)$ conforme t varia em \mathbb{R} . Marque no \mathbb{R}^2 os pontos em que a tangente é vertical ou horizontal.
- c) A partir das informações dos itens anteriores esboce a $Im \gamma$ com os vetores tangentes e indique o sentido de percurso determinado por γ .

- 3. Decida se a afirmação é verdadeira ou falsa. Justifique cuidadosamente a sua resposta.
 - a) Se $\beta(t)=(\cos^3 t \ , \ \cos t), \ t\in\mathbb{R}$ e $\gamma(t)=(t^3,t), \ t\in\mathbb{R}$, então $Im\,\beta=Im\,\gamma.$
 - b) A curva $\gamma(t)=\left(3+\frac{\text{sen }t}{2}\;,\;2+\frac{\cos\,t}{3}\right),\;t\in\mathbb{R},$ parametriza uma circunferência.
 - c) A curva dada em coordenadas polares por $r=\cos\theta,\;\theta\in\mathbb{R},$ é uma circunferência no $\mathbb{R}^2.$
 - d) O domínio da função f dada por $f(x,y) = \ln(x-2y)$ é uma região não limitada do \mathbb{R}^2 .

- 4. Seja $r = 1 \frac{1}{2}$ sen θ curva dada em coordenadas polares.
 - a) Esboce a curva;
 - b) Esboce a região R exterior à circunferência r=1 e interior à curva $r=1-\frac{1}{2}$ sen $\theta;$
 - c) Determine o domínio de integração e calcule a área de R.