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Abstract

The edge clique graph of a graph G is one having as vertices the edges of G, two vertices
being adjacent if the corresponding edges of G belong to a common clique. We describe char-
acterizations relative to edge clique graphs and some classes of chordal graphs, such as starlike,
starlike-threshold, split and threshold graphs. In particular, a known necessary condition for a
graph to be an edge clique graph is that the sizes of all maximal cliques and intersections of
maximal cliques ought to be triangular numbers. We show that this condition is also su7cient
for starlike-threshold graphs. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Chordal graphs; Cliques; Edge clique graphs; Split graphs; Threshold graphs;
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1. Introduction

Edge clique graphs were introduced and ,rst studied by Albertson and Collins in
1984 [1]. Afterwards, a few papers have been written about the subject, as those by
Raychaudhuri [13,14], Chartrand et al. [3], and the article [2]. Some of the results
concerning this class of graphs have been described by McKee [10] and by Prisner in
a survey on line graphs [12] and in the book about graph operators [11]. It should be
noted that these graphs were also implicitly used by Kou, Stockmeyer and Wong in
1978 [8].
As for characterizations of edge clique graphs for special classes of graphs, some

partial results in this direction are as follows. If a graph is chordal, so is its edge clique
graph [1,13,14]. A similar property applies, if the graph is strongly chordal [13], an
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interval graph [3] or a line graph [3,14]. If !(G)63 and G is planar, so is its edge
clique graph [1]. Also, if �(G)63 and G is planar, then the edge clique graph of G is
perfect [1]. Finally, a su7cient condition for a graph G, so that its edge clique graph
remains in the same class as G, has been presented in [14].
Given the above partial results, it is reasonable to look for characterizations of edge

clique graphs of subclasses of chordal graphs. In this paper, we describe characteriza-
tions relative to four such subclasses, namely starlike graphs, starlike-threshold graphs,
split graphs and threshold graphs. In addition, we solve the inverse problem for these
classes. The inverse problem for a given class C consists of characterizing which are
the graphs whose edge clique graphs belong to C. Finally, we also consider the prob-
lem of characterizing which graphs of a given class are edge clique graphs. We solve
this problem for both starlike-threshold and split graphs.
Starlike graphs were introduced by Gustedt [7], split graphs by FMoldes and Ham-

mer [5], while threshold graphs were introduced by Chv#atal and Hammer [4]. Starlike-
threshold graphs form a class between starlike and threshold graphs, and they arise nat-
urally when studying edge clique graphs of threshold graphs. Split graphs and threshold
graphs have been intensively studied. For example, see the books by Golumbic [6] and
Mahadev and Peled [9].
G denotes an undirected graph, with vertex set V (G) and edge set E(G). For

v∈V (G), denote by NG(v) the set of neighbours of v in G, while NG[v]={v}∪NG(v).
When convenient, drop the index G of the notation. If u; v∈V (G) are neighbours,
denote by uv the edge whose ends are u and v. A vertex adjacent to no other vertex
is called isolated. For S ⊆V (G), say that S is a clique when S induces a complete
subgraph in G. In particular, if N [v] is a clique, then v is a simplicial vertex. A
maximal clique is one not properly contained in any other. In case that S induces
a subgraph with no edges in G, then S is an independent set. On the other hand if
|S| = ( n2 ), for some n = 0; 1; : : : ; then S is a triangular subset and |S| a triangular
number.
Let G be a graph. The edge clique graph, Ke(G), of G is the one whose vertices

are the edges of G, two vertices being adjacent in Ke(G), when the corresponding
edges of G belong to the same clique. A necessary condition for a graph H to be the
edge clique graph of some graph G is that all its maximal cliques and intersections of
maximal cliques ought to be triangular. That is,

Proposition 1 (Albertson and Collins [1]). There exists a one-to-one correspondence
between maximal cliques (intersections of maximal cliques) of G and of H; whenever
H = Ke(G). Moreover; if C is a maximal clique (intersection of maximal cliques)
of G; then the corresponding clique of H is formed by the vertices which correspond
to the edges of G with both ends in C.

An example of a graph (Fig. 1) with triangular maximal cliques and intersections
of maximal cliques that is not an edge clique graph has been described in [3].
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Fig. 1.

A graph G is starlike when there exists a partition C;D1; : : : ; Ds of its vertices, such
that C is a maximal clique and, for all u∈Di; v∈Dj; i �= j implies uv �∈E(G), while
if i = j, then N [u] = N [v]. In this case, C;D1; : : : ; Ds is called a starlike partition
of G. It follows that each Di is a clique contained in exactly one maximal clique
Ci, and Di = Ci\C. Through this paper, C; C1; : : : ; Cs denote the maximal cliques of a
starlike graph and C;D1; : : : ; Ds the corresponding starlike partition of the graph.
A split graph is one whose vertices can be partitioned into a clique and an indepen-

dent set. It follows that if G is a split graph, then it is a starlike graph, with a starlike
partition C;D1; : : : ; Ds, such that |Di|= 1; 16i6s.
A starlike-threshold graph G is a starlike graph admitting an ordering of its maximal

cliques C; C1; : : : Cs, such that C ∩ Ci⊆C ∩ Ci+1. By letting Di = Ci \ C, the sequence
C;D1; : : : ; Ds is a special starlike partition of G, called starlike-threshold partition. In
addition, if |Di|= 1, G is a threshold graph.
Let G be a graph. An edge component of G is a (not necessarily induced) maximal

subgraph G1 of G, in which for any pair of edges e; f∈E(G1), there exists a sequence
of edges e1; : : : ; ek ∈E(G1), such that e1 = e, ek = f and ei; ei+1 belong to a common
clique of G. If G1 consists of a single vertex, then it is called trivial. The set of non
trivial edge components of G form a partition of its edges. Say that G is edge con-
nected when it has at most one non trivial edge component. The following is straight-
forward.

Proposition 2. Let G be a graph. Then Ke(G) is connected if and only if G is edge
connected.

Moreover, there is a one-to-one correspondence between the edge components of G
and the connected components of Ke(G).
In the sequel, we look at those edge clique graphs which are a collection of disjoint

complete graphs.
A generalized block graph is a graph whose edge components are complete sub-

graphs.

Proposition 3. Let H = Ke(G). Then G is a generalized block graph if and only if
H is formed by a collection of vertex disjoint triangular cliques.
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The class of starlike graphs is considered in Section 2, while starlike-threshold graphs
is the subject of Section 3. For the latter class, we show that the necessary condition
stating that the maximal cliques and intersections of maximal cliques of H ought to
be triangular is also su7cient. Section 4 considers split and threshold graphs. Further,
we formulate a characterization of the split graphs which are edge clique graphs.
Finally, the theorem below describes a characterization of threshold graphs, which

will be used in the study of their edge clique graphs.

Theorem 1 (Chv#atal and Hammer [4]). A graph G is a threshold graph if and only
if G is both a starlike-threshold and a split graph.

2. Star-like graphs

In this section, we study the characterization problems related to edge clique graphs
and starlike graphs. The following class of graphs will be of interest.
Let G be a graph, and G1; : : : ; Gt its edge components, t¿1. Then G is a generalized

starlike graph when one of the components, say G1, is starlike, while G2; : : : ; Gt are
complete subgraphs.

Theorem 2. Let H =Ke(G). Then G is a generalized starlike graph if and only if H
is a starlike graph.

Proof. Let G be a generalized starlike graph and G1; : : : ; Gt its edge components, t¿1,
where G1 is a starlike graph and G2; : : : ; Gt are all complete. Without loss of generality as-
sume that G has no isolated vertices. Let C;D1; : : : ; Ds be a starlike partition of G1, and
C; C1; : : : ; Cs its corresponding maximal cliques. Let H1 = Ke(G1). By Proposition 1,
H1 has s+1 maximal cliques C′; C′

1; : : : ; C
′
s , and the vertices of C′

i are the edges of G1

having their both ends in Ci, 16i6s. Similarly for C′. De,ne D′
i = C

′
i \C′. We show

that C′; D′
1; : : : ; D

′
s is a starlike partition of H1.

Observe that the vertices of D′
i are the edges of G1 having at least one of its ends

in Di.
In the sequel, we show that C′; D′

1; : : : ; D
′
s is a partition of V (H1). Examine the

intersections of these subsets. Clearly, C′∩D′
i=∅, by de,nition. Suppose that D′

i∩D′
j �=

∅, i �= j, and let v∈V (H1) be a vertex of this intersection. By the above observation,
v is an edge of G1 having at least one end in Di, and at least one end in Dj. The
existence of such an edge contradicts the fact that C;D1; : : : ; Ds is a starlike partition
of G1. Consequently, C′; D′

1; : : : ; D
′
s is indeed a partition of V (H1).

It remains to show that the partition is starlike. Let u∈D′
i and v∈D′

j. Then u is an
edge of G1 with at least one end in Di, while v has at least one end in Dj. If i �= j,
because G1 is starlike, there is no clique of G1 containing both edges u and v. Therefore
the pair uv is not an edge of H1. While if i = j, consider z ∈NH1 [u]. If z ∈C′

i , then
z ∈NH1 [v]. When z �∈C′

i , since uz ∈E(H1), there exists C′
k , such that u; z ∈C′

k . Clearly,
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i �= k. Therefore u∈C′
i ∩ C′

k . Since u �∈C′, it follows that u∈D′
i ∩ D′

k , contradicting
the fact that C′; D′

1; : : : ; D
′
s is a partition. Therefore the situation z �∈C′

i does not occur,
meaning that NH1 [u]⊆NH1 [v]. Similarly, NH1 [v]⊆NH1 [u]. Consequently, NH1 [u]=NH1 [v]
and, by de,nition, H1 is a starlike graph with partition C′; D′

1; : : : ; D
′
s.

Finally, consider the remaining edge components of G. Clearly, the graph de,ned
by G2; : : : ; Gt is a generalized block graph. By Proposition 3, its edge clique graph is
formed by a collection of vertex disjoint cliques. Consequently, H is a starlike graph
with partition C′; D′

1; : : : ; D
′
s; D

′
s+1; : : : ; D

′
s+t−1.

Conversely, let H = Ke(G) be a starlike graph. The aim is to prove that G is
a generalized starlike graph. Let H1; : : : ; Ht be the connected components of H . By
Proposition 2, G is formed by the edge components G1; : : : ; Gt , where Hi = Ke(Gi),
with the possible addition of isolated vertices. Since H is starlike, at most one of its
connected components, say H1, is not complete. Examine H1 and G1. Let C′; D′

1; : : : ; D
′
s

be a starlike partition of H1, and C′; C′
1; : : : ; C

′
s its corresponding maximal cliques. By

Proposition 1, G1 has exactly s + 1 maximal cliques C; C1; : : : ; Cs, corresponding to
C′; C′

1; : : : ; C
′
s , respectively. De,ne Di = Ci \ C, 16i6s. The following facts will be

useful.

Fact 1. u; v∈Ci ∩ Cj; u �= v and i �= j ⇒ u; v∈C.
Since u �= v and u; v∈Ci ∩ Cj, it follows that the edge uv of G is a vertex of H1

belonging to C′
i and C′

j . Because H1 is starlike and i �= j, C′
i ∩ C′

j ⊆C′. Hence uv is
a vertex of C′, implying that u; v∈C.
Fact 2. Di ∩ Dj �= ∅ and i �= j ⇒ C ∩ Ci ∩ Cj = ∅.

Let i �= j and u∈Di ∩Dj. Suppose there exists v∈C ∩Ci ∩Cj. Then u �= v, because
u �∈C. In addition, it follows that u; v∈Ci∩Cj. Applying Fact 1, conclude that u; v∈C,
contradicting u �∈C. Consequently, no such v may exist.

Fact 3. Di ∩ Dj �= ∅; C ∩ Ci �= ∅ and i �= j ⇒ C ∩ Cj = ∅.
Let i �= j, u∈Di ∩ Dj and x∈C ∩ Ci. Suppose there exists y∈C ∩ Cj. By Fact 2,

x �∈Cj. Then x; y and u are mutually adjacent vertices of G1. That is, xu and yu are
adjacent vertices of H1. Note that xu is a vertex of D′

i , because x; u∈Ci and u �∈C.
Similarly, yu is in D′

j. Since C
′; D′

1; : : : ; D
′
s is a starlike partition of H1, D′

i ∩ D′
j = ∅,

meaning that xu and yu do not belong to a common clique of G1, a contradiction.
Hence there can be no y∈C ∩ Cj.
Fact 4. C ∩ Ci �= ∅.
Suppose C∩Ci=∅, for some i. Since H1 is the edge clique graph of G1, C′∩C′

i =∅.
Because H1 is starlike, the latter implies that H1 is disconnected, a contradiction. Hence
C ∩ Ci �= ∅.
The idea is to prove that C;D1; : : : ; Ds is a starlike partition of G1. The following

argument shows that C;D1; : : : ; Ds is a partition of V (G1). We recall that C ∩ Di = ∅,
by de,nition. Suppose there exist i and j, such that Di ∩Dj �= ∅ and i �= j. By Fact 3,
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either C ∩Ci= ∅ or C ∩Cj= ∅, contradicting Fact 4. Therefore, C;D1; : : : ; Ds is indeed
a partition of V (G1).
In the sequel, examine a pair of vertices u; v∈V (G1), u �= v, u∈Di and v∈Dj.

Suppose i �= j and uv∈E(G1). Consequently, u and v belong to some maximal clique
Ck . Since u; v �∈C, it follows u; v∈Dk . If k = i, then Dj ∩Dk �= ∅. If k �= i, the conse-
quence is Di∩Dk �= ∅. Any of these situations contradicts C;D1; : : : ; Ds to be a partition
of V (G1). Therefore uv �∈E(G1). Examine the second alternative i = j, and consider
z ∈NG1 [u]. If z ∈Ci, then z ∈NG1 [v]. When z �∈Ci, since uz ∈E(G1), there exists Ck ,
such that u; z ∈Ck . Clearly, i �= k. Therefore u∈Ci ∩ Ck . Since u �∈C, it follows that
u∈Di ∩ Dk , contradicting the fact that C;D1; : : : ; Ds is a partition. Therefore the situ-
ation z �∈Ci does not occur, meaning that NG1 [u]⊆NG1 [v]. Similarly, NG1 [v]⊆NG1 [u].
Consequently, NG1 [u] = NG1 [v], implying that G1 is a starlike graph with partition
C;D1; : : : ; Ds.
Finally, consider the remaining connected components H2; : : : ; Ht of H . Each one

is a complete graph. Therefore, by Proposition 3 the corresponding edge components
G2; : : : ; Gt of G are also complete graphs. Consequently, G is a generalized starlike
graph. This completes the proof of Theorem 2.

3. Starlike-threshold graphs

In this section we study the problems related to edge clique graphs and starlike-
threshold graphs. The following de,nition is similar to that of the previous section, for
starlike graphs.
Let G be a graph, and G1; : : : ; Gt its edge components, t¿1. Then G is a generalized

starlike-threshold graph when one of the components, say G1, is starlike-threshold,
while G2; : : : ; Gt are complete subgraphs.
The proof of the following theorem is basically similar to that of Theorem 2.

Theorem 3. Let H = Ke(G). Then G is a generalized starlike-threshold graph if and
only if H is a starlike-threshold graph.

Below, we describe exactly which starlike-threshold graphs are edge clique graphs.
In particular, the necessary condition for a graph to be an edge clique graph, given by
Proposition 1, is shown to be su7cient for starlike-threshold graphs.

Theorem 4. Let H be a starlike-threshold graph. Then H is an edge clique graph if
and only if its maximal cliques and intersections of maximal cliques are triangular.

Proof. We need only to prove the su7ciency. By hypothesis, H is a starlike-threshold
graph in which all its maximal cliques and intersections of maximal cliques are trian-
gular. Without loss of generality, assume that H is connected, otherwise apply the
techniques already employed in Theorems 2 and 3. We show that there exists a
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(starlike-threshold) graph G, such that H = Ke(G). Let C′; D′
1; : : : ; D

′
s be a starlike-

threshold partition of H , and C′; C′
1; : : : ; C

′
s its corresponding maximal cliques. Since

C′; C′
1; : : : ; C

′
s and C′ ∩ C′

i are all triangular cliques, there are positive integers c; ci; ni
satisfying |C′|=( c2 ), |C′

i |=( ci2 ), |C′∩C′
i |=( ni2 ), 16i6s. Observe that a starlike-threshold

graph is uniquely determined by the numbers s, |C|, |Ci| and |C ∩ Ci|, 16i6s. We
construct G, by describing a starlike-threshold partition C;D1; : : : ; Ds of it, with corre-
sponding maximal cliques C; C1; : : : ; Cs, where Di = Ci \ C.
Start by de,ning C as a clique of cardinality c. Afterwards, de,ne n0 = 0, C0 = ∅

and for 16i6s, construct Ci as follows. De,ne C ∩ Ci = (C ∩ Ci−1) ∪ C∗
i , where

C∗
i ⊆C \Ci−1 and |C∗

i |= ni − ni−1. Further, de,ne a clique Di as consisting of ci − ni
new vertices. Finally, for each pair of vertices u; v∈V (G), such that u∈C ∩ Ci and
v∈Di, include in G the edge uv. Consequently, Ci is a maximal clique formed by ci
vertices. The construction of G is completed.
Note that the above construction requires the existence of a clique C∗

i ⊆C\Ci−1, pos-
sibly empty, of cardinality |C∗

i |=ni−ni−1. However, this is true by the following simple
fact. Since the partition C′; D′

1; : : : ; D
′
s is starlike-threshold, C

′∩C′
i−1 ⊆C′∩C′

i and there-
fore ni−16ni. Because |C∩Ci−1|=ni−1 and c¿ni it follows that there exists C∗

i ⊆C,
as required. Consequently, C is a maximal clique and C∩Ci is constructed successfully.
So is Di, since ci ¿ni. Because ni is a positive integer, G has no isolated vertices.
Clearly, G is a starlike graph, because C;D1; : : : ; Ds is a starlike partition of it.

In addition, C ∩ Ci−1 ⊆C ∩ Ci. Then G is a starlike-threshold graph. It remains to
show that H = Ke(G). Let H ′′ be the edge clique graph of G. By Theorem 3, H ′′

is a starlike-threshold graph, with corresponding partition C′′; D′′
1 ; : : : ; D

′′
s and maximal

cliques C′′; C′′
1 ; : : : ; C

′′
s , where D

′′
i =C

′′
i \C′′, and C′′ ∩C′′

i−1 ⊆C′′ ∩C′′
i . Since |C|= c,

|C′′| = ( c2 ). Examine each maximal clique C′′
i of H ′′. From the de,nitions of C ∩ Ci

and Ci, we derive |C′′∩C′′
i |=( ni2 ) and |C′′

i |=( ci2 ). Comparing H and H ′′ we conclude
that they coincide. Consequently, H is an edge clique graph.

Theorem 4 cannot be extended to starlike graphs. For example, the graph of Fig. 1
is starlike, satis,es the conditions of Theorem 4, but is not an edge clique graph.

4. Split and threshold graphs

In this section, we examine edge clique graphs of split and threshold graphs. In
addition, we describe the split graphs which are edge clique graphs and we solve the
inverse problem for this class. The following de,nitions are useful.
Let G be a graph, and G1; : : : ; Gt its edge components, t¿1. Then G is a generalized

split graph when one of the components, say G1, is split, while each of G2; : : : ; Gt
consists of a single edge.
Let G be a starlike graph, with partition C;D1; : : : ; Ds and maximal cliques

C; C1; : : : ; Cs, where Di = Ci\C. Say that G is singular when |C ∩ Ci| = ( |Di|2 ), for
all 16i6s.
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Theorem 5. Let H = Ke(G). Then G is a generalized split graph if and only if H is
a singular starlike graph.

The proof of the above theorem is again similar to that of Theorem 2.
In the sequel, we examine which split graphs are edge clique graphs. We conclude

that these graphs are very restricted.

Theorem 6. Let H be a split graph. Then H is an edge clique graph if and only
if H consists of a triangular clique; together with zero or more additional isolated
vertices.

Proof. Let H be a split graph and an edge clique graph. Then the vertices of H can
be split into a clique C and an independent set I . Because H is an edge clique graph,
C must be triangular. Suppose that the theorem is false. Then |I |¿1 and I is not a
collection of isolated vertices. Consequently, there exists v∈ I , such that NH (v) �= ∅.
Clearly, NH [v] is a maximal clique of H , while NH (v) is an intersection of maximal
cliques. These conditions imply that NH (v) and NH [v] must be both triangular. Since
they diRer by one, there are no more than two possibilities: |NH (v)| = 0 or 1. The
,rst alternative does not occur because NH (v) �= ∅. In the second case, |NH (v)| = 1,
v has a unique neighbour w∈C. This implies that the vertices v; w form a maximal
clique of size two, meaning that it is not triangular. Hence, H is not an edge clique
graph, a contradiction. Consequently, H is a triangular clique together with zero or
more isolated vertices.
The converse is straightforward.

The problem of characterizing which are the graphs whose edge clique graphs are
split graphs also has a simple solution. Namely, the class is formed by the graphs with
at most one edge component being a complete graph and the others consisting of a
single edge or vertex.
Finally, we consider edge clique graphs and threshold graphs. The following de,ni-

tion is similar to the case of split graphs.
A graph with edge components G1; : : : ; Gt is a generalized threshold graph when

one of the components, say G1, is a threshold graph and each of G2; : : : ; Gt consists
of a single edge.
From Theorem 1, it follows that edge clique graphs of threshold graphs can be

described by combining the corresponding results for starlike-threshold and split graphs.
Therefore, the theorem below is a consequence of Theorems 1, 3 and 5.

Theorem 7. Let H = Ke(G). Then G is a generalized threshold graph if and only if
H is a singular starlike-threshold graph.
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5. Conclusions

We have described characterizations relative to edge clique graphs and four sub-
classes of chordal graphs. We have solved the inverse problem for these classes and
described which starlike-threshold, split and threshold graphs are edge clique graphs.
It remains to characterize which starlike graphs are edge clique graphs. We have also
proved that the condition of having triangular maximal cliques and intersection of max-
imal cliques is su7cient for a starlike-threshold graph to be an edge clique graph. It
would be interesting to identify other classes of graphs with this property.
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