MAC0323 Algoritmos e Estruturas de Dados II

Edição 2020 - 2

Fonte: ash.atozviews.com

Compacto dos melhores momentos

AULA 13

BSTs rubro-negras: delete()

Fonte: .../only-one/red-leaves-black-tree/

Referências: BSTs rubro-negras (PF); Balanced Search Trees (S&W); slides (S&W)

Remoção em árvore 2-3

No caminho até a chave a ser removida, o algoritmo mantém a relação invariante com respeito à árvore 2-3:

o nó sendo examinado é um 3-nó ou um 4-nó (temporário).

deleteMin: Três casos

Caso 1: Nó esquerdo ou seu filho esquerdo é vermelho (ou seja, faz parte de um 3-nó ou 4-nó) Prossigo com a remoção no nó da esquerda.

deleteMin: Três casos

Caso 1: Nó esquerdo ou seu filho esquerdo é vermelho (ou seja, faz parte de um 3-nó ou 4-nó) Prossigo com a remoção no nó da esquerda.

Caso 2: Nó esquerdo e seu filho esquerdo são **negros** (ou seja, filho esquerdo é um 2-nó)

Caso 2.1: Se filho direito é um 3-nó, ajusto para transformar filho esquerdo em 3-nó.

deleteMin: Três casos

Caso 1: Nó esquerdo ou seu filho esquerdo é vermelho (ou seja, faz parte de um 3-nó ou 4-nó) Prossigo com a remoção no nó da esquerda.

Caso 2: Nó esquerdo e seu filho esquerdo são **negros** (ou seja, filho esquerdo é um 2-nó)

Caso 2.1: Se filho direito é um 3-nó, ajusto para transformar filho esquerdo em 3-nó.

Caso 2.2: Se filho direito também é um 2-nó, formo 4-nó com filhos e o nó corrente.

Depois dos ajustes, prossigo com a remoção no nó da esquerda.

Caso 2

Nó esquerdo e seu filho esquerdo são **negros** Caso 2.1: Se filho direito é um 3-nó, ajusto para transformar filho esquerdo em 3-nó.

Caso 2.2: Se filho direito também é um 2-nó, formo 4-nó com filhos e o nó corrente.

```
static Node moveRedLeft(Node h) {
   flipColors(h);
   if (isRed(h->right->left)) {
      h->right = rotateRight(h->right);
      h = rotateLeft(h);
      flipColors(h);
   }
   return h;
}
```

deleteMin()

Se ambos os filhos da raiz são **negros** faz a raiz rubra.

deleteMin()

```
static Node deleteMinTree(Node h) {
  if (h->left == NULL)
     return NULL;
  if (!isRed(h->left) && !isRed(h->left->left))

⊳ filho esquerdo é 2-nó
     h = moveRedLeft(h);
  h->left = deleteMinTree(h->left);
  return balance(h);
```

deleteMin()

Volta o invariante rubro-negro.

```
static Node balance(Node h) {
   if (isRed(h->right))
      h = rotateLeft(h):
   if (isRed(h->left) && isRed(h->left->left))
      h = rotateRight(h);
   if (isRed(h->left) && isRed(h->right))
      flipColors(h);
   h\rightarrow n = size(h\rightarrow left) + size(h\rightarrow right) + 1;
   return h;
```

AULA 14

delete()

Remoção de uma chave arbitrária.

```
void delete(Key key) {
  if (!isRed(r->left))
    r->color = RED;
  r = delete(r, key);
  if (!isEmpty())
    r->color = BLACK;
}
```

delete()

```
static Node delete(Node h, Key key) {
   if (compare(key, h->key) < 0) {
     if(!isRed(h->left) && !isRed(h->left->left))
        h = moveRedLeft(h):
     h->left = delete(h->left, key);
   if (isRed(h->left))
        h = rotateRight(h);
     if (compare(key, h->key) == 0
        && h->right == NULL)
        return NULL:
```

delete()

```
if(!isRed(h->right) && !isRed(h->right->left))
      h = moveRedRight(h);
   if (compare(key, h->key) == 0) {
      Node x = min(h->right);
      h->key = x->key;
      h->val = x->val:
      h->right = deleteMin(h->right);
   }
   else h->right = delete(h->right, key);
}
return balance(h);
```

moveRedRight

Um pouco mais simples que o moveRedLeft.

```
static Node moveRedRight(Node h) {
   flipColors(h);
   if (isRed(h->left->left)) {
      h = rotateRight(h);
      flipColors(h);
   }
   return h;
}
```

Observação

BSTs são estruturas ordenadas.

Como as chaves de uma BST são comparáveis, podemos perguntar pela chave mínima e pela chave máxima.

Já fizemos isso.

Observação

BSTs são estruturas ordenadas.

Como as chaves de uma BST são comparáveis, podemos perguntar pela chave mínima e pela chave máxima.

Já fizemos isso.

O **piso** (floor()) de uma chave key na BST é a maior chave da BST que é menor que ou igual a key.

Observação

BSTs são estruturas ordenadas.

Como as chaves de uma BST são comparáveis, podemos perguntar pela chave mínima e pela chave máxima.

Já fizemos isso.

O **piso** (floor()) de uma chave key na BST é a maior chave da BST que é menor que ou igual a key.

O **teto** (ceiling()) de uma chave key na BST é a menor chave da BST que é maior que ou igual a key.

Os métodos min(), max(), floor() e ceiling() são exatamente os mesmos das BSTs ordinárias!

floor()

Devolve NULL se key não tem piso nesta BST.

```
Key floor(Key key) {
   Node x = floorTree(r, key);
   if (x == NULL) return NULL;
   return x->key;
}
```

floor()

```
Devolve o nó que contém o piso
de key na subárvore com raiz x.
Devolve NULL se esse piso não existe.
```

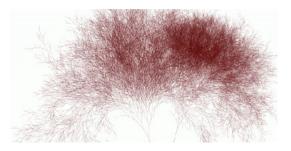
```
static Node floorTree(Node x, Key key) {
  if (x == NULL) return NULL;
  int cmp = compare(key, x->key);
  if (cmp == 0) return x;
  if (cmp < 0)
     return floorTree(x->left, key);
  Node t = floorTree(x->right, key);
  if (t != NULL) return t;
  else return x;
                              4 D > 4 B > 4 B > 4 B > 9 Q P
```


Fonte: ash.atozviews.com

Compacto dos melhores momentos

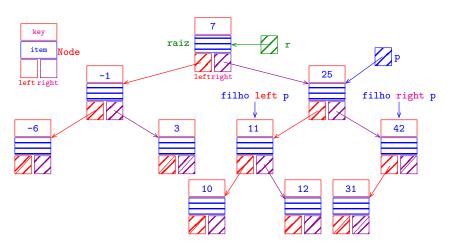
das últimas aulas

Árvores binárias de busca



Fonte: http://infosthetics.com/archives/

Árvore binárias de busca



in-ordem (e-r-d): -6 -1 3 7 10 11 12 25 31 42

Consumo de tempo

O consumo de tempo das operações get(), put() e delete() é, no pior caso, proporcional à altura da árvore.

Consumo de tempo no pior caso

No pior caso a altura de uma BST é proporcional ao número n de nós BST.

Conclusão:

O consumo de tempo das operações get(), put() e delete() em uma BST é, no pior caso, proporcional ao número n de nós.

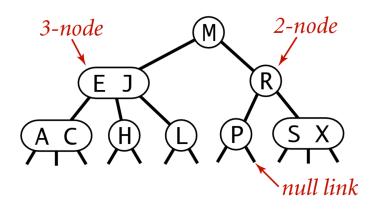
Consumo de tempo esperado

A altura esperada de BST aleatória é aproximadamente $2 \lg n$.

Conclusão:

O consumo de tempo esperado das operações get(), put() e delete() em uma BST aleatória é proporcional lg n, onde n é o número de nós.

Árvore 2-3 de busca



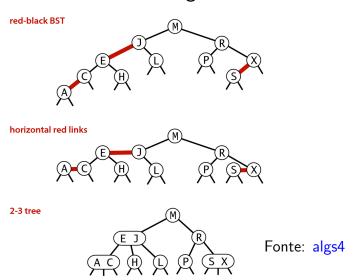
Anatomy of a 2-3 search tree

Fonte: algs4

Consumo de tempo

Numa árvore 2-3 com n nós, busca e inserção nunca visitam mais que $\lg(n+1)$. Cada visita faz no máximo 2 comparações de chaves.

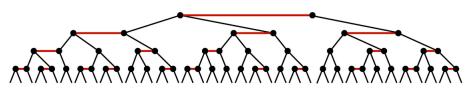
BST rubro-negra



1-1 correspondence between red-black BSTs and 2-3 trees

Árvore 2-3 para rubro-negra

Se os links rubros forem desenhados horizontalmente e depois contraídos, teremos uma árvore 2-3:



A red-black tree with horizontal red links is a 2-3 tree

Fonte: algs4

Consumo de tempo

A altura esperada de uma BST rubro-negra é aproximadamente $\leq 2 \lg n$.

Conclusão:

O consumo de tempo das operações get(), put() e delete() em uma BST rubro-negra é $O(\lg n)$.

Self-adjusting BSTs

Self-adjusting BSTs

Uma BST com auto balanceamento/ajuste (self-balancing/self-adjusting) é uma ABB que automaticamente mantém a sua altura pequena diante de uma sequência de operações put(), get(), ...

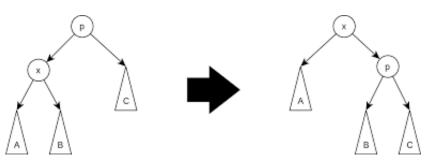
Árvores rubro-negras são BSTs com auto balanceamento.

Splay trees

Uma splay tree é uma BST com auto-balanceamento e com a propriedade adicional que os elementos acessados recentemente são rapidamente acessados.

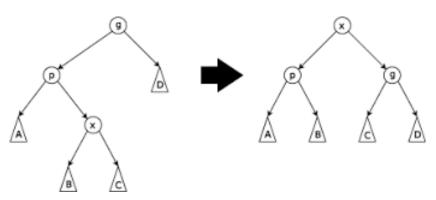
Splay trees implementam em BSTs a política *move to front*.

Splaying: zig



Fonte: Wikipedia

Splaying: zig-zag



Fonte: Wikipedia

Resumo

estrutura	consumo de tempo	observação
	get(), put(),	
Skip list	$O(\lg n)$	esperado
BST	O(n)	pior caso
BST-aleatória	$O(\lg n)$	esperado
2-3 ST	$O(\lg n)$	pior caso
RedBlack BST	$O(\lg n)$	pior caso
Splay BST	$O(\lg n)$	amortizado
Treap BST	$O(\lg n)$	esperado

n = número de nós na estrutura

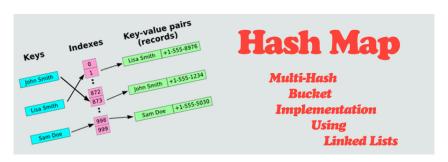
Mais experimentos ainda

Consumo de tempo para se criar um ST em que as chaves são as palavras em les_miserables.txt e os valores são o número de ocorrências.

estrutura	ST	tempo
vetor MTF	não-ordenada	7.6
vetor	ordenada	1.5
lista ligada MTF	não-ordenada	15.3
skiplist	ordenada	1.1
árvore binária de busca	ordenada	0.72
árvore rubro-negra	ordenada	0.76
splay tree	ordenada	0.68

Tempos em segundos obtidos com StopWatch.

Hashing



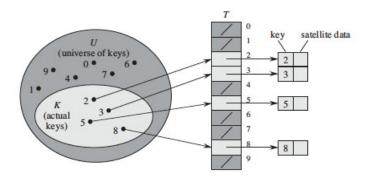
Fonte: http://programmingnotes.freeweq.com

Referências: Hashing (PF); Hash Tables (S&W); slides (S&W); Hashing Functions (S&W); CLRS, cap 12; TAOP, vol 3, cap. 6.4;

Endereçamento direto (*directed-address*) é uma técnica que funciona bem quando o universo de chaves é razoavelmente pequeno.

Tabela indexada pelas chaves, uma posição para cada possível índice.

Cada posição armazena o valor correspondente a uma dada chave.



Fonte: CLRS

Implementação:

```
static Value *vals;

void DirectAddressInit(int m) {
   vals = mallocSafe(m * sizeof(Value));
   for (int i = 0; i < m; i++)
      vals[i] = NULL;
}</pre>
```

```
Value get(Key key) {
  return vals[key];
}
void put(Key key, Value val) {
  vals[key] = val;
}
void delete(Key key) {
  vals[key] = NULL;
```

Consumo de tempo

Em uma tabela se símbolos com endereçamento direto o consumo de tempo de get(), put() e delete() é O(1).

Maiores defeitos

Os maiores defeitos dessa implementação são:

- ► Em geral, as chaves não são inteiros não-negativos pequenos. . .
- desperdício de espaço: é possível que a maior parte da tabela fique vazia.

Tabelas de dispersão (hash tables)

Uma **tabela de dispensão** (= *hash table*) é uma maneira de organizar uma tabela de símbolos.

Inventadas para funcionar bem (em O(1)) em média.

universo de chaves = conjunto de **todas**as possíveis chaves

chaves realmente usadas são, em geral, uma parte pequena do universo.

A tabela terá a forma st[0..m-1], onde m é o tamanho da tabela.

Funções de dispersão

Uma função de dispersão (= hash function) é uma maneira de mapear o universo de chaves no conjunto de índices da tabela.

A função de dispersão recebe uma chave key e retorna um número inteiro h(key) no intervalo 0..m-1.

O número h(key) é o **código de dispensão** (= hash code) da chave.

Queremos uma função de hashing que . . .

Queremos uma função de hashing que:

- ightharpoonup possa ser calculada eficientemente (em $\mathrm{O}(1)$) e
- espalhe bem as chaves pelo intervalo 0..m-1.

Knuth, TAOC, pg. 514:

"The verb 'to hash' means to chop something up to make a mess out of it; the idea in hashing is to scramble some aspects of the key and to use this partial information as basis for searching..."

Funções injetoras...

Funções que associam chaves diferentes a inteiros diferentes são difíceis de se encontrar.

Mesmo se conhecêssemos as chaves de antemão!

Exemplo:

Existem $41^{31} \equiv 10^{50}$ funções de 31 elementos em 41 elementos e somente $41!/10! \equiv 10^{43}$ são injetoras: uma em cada 10 milhões!

Funções injetoras...

Funções que associam chaves diferentes a inteiros diferentes são difíceis de se encontrar.

Mesmo se conhecêssemos as chaves de antemão!

Mesmo se o tamanho da tabela for razoavelmente maior que o número de chaves.

O paradoxo do aniversário nos diz que se selecionarmos uniformemente ao acaso uma função que leva 23 chaves em uma tabela de tamanho 365, a probabilidade de que duas chaves sejam associadas a uma mesma posição é maior 0,5.

Conclusão: temos que conviver com colisões.

Método da divisão (*division method*) ou hash modular: supondo que as chaves são inteiros positivos, podemos usar a função modular (resto da divisão por m):

```
static int hash(int key) {
   return key % m;
}
```

Exemplos com m = 100 e com m = 97:

key	hash (<i>M</i> = 100)	hash (<i>M</i> = 97)	
212	12	18	
618	18	36	
302	2	11	
940	40	67	
702	2	23	
704	4	25	
612	12	30	
606	6	24	
772	72	93	
510	10	25	
423	23	35	
650	50	68	
317	17	26	
907	7	34	
507	7	22	
304	4	13	Fonte: algs4
714	14	35	
857	57	81	
801	1	25	
900	0	27	
413	13	25	←□ ト ←□ ト ← 直 ト ← 直 ト □ 直

No caso de Strings, podemos iterar hashing modular sobre os caracteres da string:

```
static int hash(String key) {
   int h = 0;
   for (int i = 0; i < strlen(key); i++)
      h = (31 * h + key[i]) % m;
   return h;
}</pre>
```

Vantagens: rápida, faz apenas uma divisão.

Desvantagem:

devemos evitar certos valores para m, por exemplo:

- se m = 2^p, então h(key) são os p bits menos significativos de key.
- se a string de caracteres é interpretada como números na base 2^p, então m = 2^p - 1 é uma má escolha: permutações de caracteres são levadas ao mesmo valor de hash.

Um primo não "muito perto" de uma potência de 2 parece ser uma boa escolha para m.

Função Multiplicativa

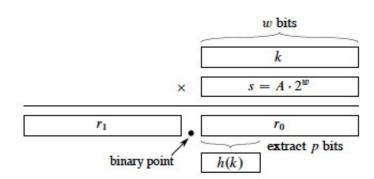
Método multiplicativo (multiplicative method):

- escolha uma constante A com 0 < A < 1;
- multiplique key por A;
- extraia a parte fracional de key × A;
- multiplique a parte fracionária por m;
- o valor de hash é o chão dessa multiplicação.

Função Multiplicativa

Nesse caso, m é uma potência de 2.

Assim, h(key) contém os bits iniciais da metade menos significa de $key \times A$.



Função Multiplicativa

Desvantagem: mais lenta que o hash modular

Vantagem: o valor de m não é crucial

O que Ubuntu tem a dizer...

http://releases.ubuntu.com/17.10/

```
MD5SUMS
                               2018-01-12 05:38
                                                 198
MD5SUMS-metalink
                               2018-01-12 05:38
                                                 213
MD5SUMS-metalink.gpg
                              2018-01-12 05:38
                                                 916
MD5SUMS.gpg
                               2018-01-12 05:38
                                                 916
                               2018-01-12 05:38
SHA1SUMS
                                                 222
                                                 916
SHA1SUMS.gpg
                               2018-01-12 05:38
SHA256SUMS
                               2018-01-12 05:38
                                                 294
SHA256SUMS.gpg
                               2018-01-12 05:38
                                                 916
```

https://en.wikipedia.org/wiki/MD5

https://en.wikipedia.org/wiki/SHA-2

O que Java tem a dizer

```
Em Java, toda classe tem um método padrão hashCode() que produz um inteiro entre -2^{31} e 2^{31}-1.
```

Exemplo:

```
String s = StdIn.readString();
int h = s.hashCode();
```

Boas e más funções de dispersão

Uma função só é eficiente se espalha as chaves pelo intervalo de índices de maneira *razoavelmente uniforme*.

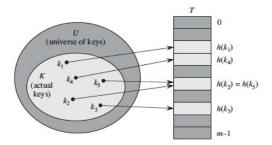
Por exemplos, se os dois últimos dígitos das chaves não variam muito, então "key % 100" é uma péssima função de dispersão.

Em geral é recomendável que m seja um número primo.

Escolha de funções de dispersão é uma combinação de estatística, probabilidade, teoria dos números (primalidade), . . .

Colisões

Como o número de chaves é em geral maior que m, é inevitável que a função de dispersão leve várias chaves diferentes no mesmo índice.



Fonte: CLRS

Colisões

Dizemos que há uma **colisão** quando duas chaves diferentes são levadas no mesmo índice.

Algumas maneiras de tratar colisões:

- lista encadeadas (=separating chaining);
- sondagem linear (=linear probing);
 Também conhecido como open addressing.
- double hashing (open addressing);