Asymptotic probability of Boolean functions over implication

Danièle Gardy, Univ. Versailles

with

Hervé Fournier and Antoine Genitrini, Univ. Versailles

Bernhard Gittenberger, T.U. Wien

April 2008
Outline

- Boolean expressions and trees
- A restricted propositional calculus
- Tautologies
- Probability and complexity of a Boolean function
- Main result: sketch of proof
- Extensions and open questions
Boolean expressions

$\left((x \lor \bar{x}) \land x \right) \land \left(\bar{x} \lor (x \lor \bar{x}) \right)$

$\left(x \lor (y \land \bar{x}) \right) \lor \left(((z \land \bar{y}) \lor (x \lor \bar{u})) \land (x \lor y) \right)$
Boolean expressions

\[
((x \lor \bar{x}) \land x) \land (\bar{x} \lor (x \lor \bar{x})) \\
(x \lor (y \land \bar{x})) \lor (((z \land \bar{y}) \lor (x \lor \bar{u})) \land (x \lor y))
\]

Probability that a “random” expression on \(n \) boolean variables is a tautology (always true)?
Boolean expressions

\[((x \lor \bar{x}) \land x) \land (\bar{x} \lor (x \lor \bar{x})) \]
\[(x \lor (y \land \bar{x})) \lor (((z \land \bar{y}) \lor (x \lor \bar{u})) \land (x \lor y)) \]

Probability that a “random” expression on \(n \) boolean variables is a tautology (always true)?

- \(n = 1 \): 4 boolean functions; \(\text{Proba}(\text{True}) = 0.2886 \)
- \(n = 2 \): 16 boolean functions; \(\text{Proba}(\text{True}) = 0.209 \)
- \(n = 3 \): 256 boolean functions; \(\text{Proba}(\text{True}) = 0.165 \)
Boolean expressions

\[(x \lor \bar{x}) \land (\bar{x} \lor (x \lor \bar{x}))\]
\[(x \lor (y \land \bar{x})) \lor (((z \land \bar{y}) \lor (x \lor \bar{u})) \land (x \lor y))\]

Probability that a “random” expression on \(n\) boolean variables is a tautology (always true)?

- \(n = 1\): 4 boolean functions; \(\text{Proba}(True) = 0.2886\)
- \(n = 2\): 16 boolean functions; \(\text{Proba}(True) = 0.209\)
- \(n = 3\): 256 boolean functions; \(\text{Proba}(True) = 0.165\)
- \(n \to +\infty\): \(2^n\) boolean functions

\(\text{Proba}(True) \sim?\)
Boolean expressions

\[
((x \lor \overline{x}) \land x) \land (\overline{x} \lor (x \lor \overline{x})) \\
(x \lor (y \land \overline{x})) \lor (((z \land \overline{y}) \lor (x \lor \overline{u})) \land (x \lor y))
\]

Probability that a “random” expression on \(n \) boolean variables is a tautology (always true)?

- \(n = 1 \): 4 boolean functions; \(\text{Proba}(True) = 0.2886 \)
- \(n = 2 \): 16 boolean functions; \(\text{Proba}(True) = 0.209 \)
- \(n = 3 \): 256 boolean functions; \(\text{Proba}(True) = 0.165 \)
- \(n \rightarrow +\infty \): \(2^{2^n} \) boolean functions

\[\text{Proba}(True) \sim? \]

\(\text{Proba}(f) \) for any boolean function \(f \)?
Boolean expressions and trees

\[(x \lor \bar{x}) \land x) \land (\bar{x} \lor (x \lor \bar{x}))\]

Consider a well-formed boolean expression

- Choose set of logical connectors, with arities
 \(\rightarrow\) Choose labels and arities for internal nodes

- Choose set of boolean literals for the leaves
 \(\rightarrow\) Choose labels for leaves
Boolean expressions and trees

- Expression \sim labelled tree
- Random expression \sim random labelled tree
- What notion of randomness on trees?
 - Choose size m of the tree; assume all trees of same size are equiprob.
 Then let $m \to +\infty$
 - Choose tree at random (e.g., by a branching process): size is also random. Then label tree at random.
Boolean expressions and trees

- Expression \sim labelled tree
- Random expression \sim random labelled tree
- Two notions of randomness on trees/boolean expressions
- Each boolean expression computes a boolean function
- A boolean function is represented by an infinite number of expressions
- Can we use random boolean expressions to define a probability distribution on boolean functions?
Former work: And/Or trees

- One of the most studied models for random boolean expressions
- Binary trees; no simple node
- Internal nodes are labelled by \lor or \land
- Leaves are labelled by the literals: $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$
And/Or trees

- Paris et al. 94: first definition of a tree distribution on boolean functions
- Lefman and Savicky 97:
 - Proof of existence of a tree distribution (by pruning)
 - Tree complexity of f: $L(f) = \text{size of smallest tree that computes } f$
 - $\frac{1}{4} \left(\frac{1}{8n}\right)^{L(f)} \leq P(f) \leq e^{-cL(f)/n^3} \left(1 + O(1/n)\right)$
- Chauvin et al. 04: alternative definition of probability by generating functions; improvement on upper bound: $P(f) \leq e^{-cL(f)/n^2} \left(1 + O(1/n)\right)$
- For tautologies:
 - Woods 05: Asymptotic probability $P(True) \sim 1/4n$ and probable shape of tautologies: $l \lor \ldots \lor \overline{l} \lor \ldots$
 - Kozik 08: Alternative derivation of asymptotic probability and shape
And/Or trees: probability and complexity

To sum up:

- definition of a tree-induced probability distribution on boolean functions
- probability of constant functions $True$ and $False$: known
- probability of a non-constant function:
 - lower bound $(1/4) (8n)^{-L(f)}$ (not that bad; order looks right)
 - upper bound $e^{-cL(f)/n^2} (1 + O(1/n))$ (probably not tight)
And/Or trees: probability and complexity

To sum up:

• definition of a tree-induced probability distribution on boolean functions
• probability of constant functions *True* and *False*: known
• probability of a non-constant function:
 – lower bound \((1/4) (8n)^{-L(f)}\) (not that bad; order looks right)
 – upper bound \(e^{-cL(f)/n^2} (1 + O(1/n))\) (probably not tight)

• Partial results. Can we go further?
And/Or trees: probability and complexity

To sum up:

- definition of a tree-induced probability distribution on boolean functions
- probability of constant functions *True* and *False*: known
- probability of a non-constant function:
 - lower bound $(1/4) (8n)^{-L(f)}$ (not that bad; order looks right)
 - upper bound $e^{-cL(f)/n^2} (1 + O(1/n))$ (probably not tight)

- Partial results. Can we go further?
- Consider a simpler system
A restricted propositional calculus

- Finite number of boolean variables: \(x_1, x_2, \ldots, x_n \); no negative literals.
- A single connector \(\rightarrow (x_1 \rightarrow x_2 \text{ is also } \overline{x_1} \lor x_2) \).
- Expressions are binary trees: \((x \rightarrow y) \rightarrow (x \rightarrow (z \rightarrow u) \rightarrow t) \)
A restricted propositional calculus

- Finite number of boolean variables: \(x_1, x_2, \ldots, x_n\); no negative literals.
- A single connector \(\rightarrow (x_1 \rightarrow x_2\) is also \(\overline{x_1} \lor x_2\).
- Expressions are binary trees: \((x \rightarrow y) \rightarrow (x \rightarrow (z \rightarrow u) \rightarrow t)\)

An expression is a (possibly empty) sequence of expressions: premises, followed by a variable: goal.
A restricted propositional calculus

• Finite number of boolean variables: x_1, x_2, \ldots, x_n; no negative literals.

• A single connector \rightarrow

• “Simple” system: may hope for a detailed study of random expressions and boolean functions.

• Relevance to intuitionistic logic:

 Tautology \sim proof of a goal from premises
Boolean functions and expressions

An expression (a tree) computes a boolean function on k variables.

- What is the set of boolean functions that can be computed?

\Rightarrow Post set $S_0 = \{ x \lor g(x_1, \ldots, x_k) \}$
Boolean functions and expressions

An expression (a tree) computes a boolean function on \(k \) variables.

- What is the set of boolean functions that can be computed?

 \[S_0 = \{ x \lor g(x_1, \ldots, x_k) \} \]

- Many different expressions compute the same boolean function.

 Probability that a “random” expression computes a specific function?
Probability of a boolean function

- Informally, it is the ratio of trees that compute f to the total number of trees (assuming this ratio can be defined).
- Define the size of a formula (tree) as the number of variable occurrences (leaves).
- Define $A_m = \{\text{trees of size } m\}$; $A_m(f) = \{\text{trees in } A_m \text{ that compute } f\}$. Assume a uniform distribution on A_m.
- Probability that a tree of size m computes f:

$$P_m(f) = \frac{|A_m(f)|}{|A_m|}$$

- For any boolean function f, $\lim_{m \to +\infty} P_m(f)$ exists?
Probability of a boolean function

Existence of a limit $P(f) = \lim_{m \to +\infty} P_m(f)$?

- Enumerate trees by size: g.f. $\Phi(z) = \sum_m |A_m|z^m = (1 - \sqrt{1 - 4nz})/2$
- Enumerate the set $A(f)$ of trees computing a specific function f:
 Generating function $\phi_f(z)$?
 Consider all boolean functions
 $A(f) = \bigcup_{g,h} (A(g), \to, A(h)) \Rightarrow \phi_f = \sum_{g,h} \phi_g \phi_h$
 \Rightarrow write a system of algebraic equations for the enumerating functions
 \Rightarrow Drmota-Lalley-Woods theorem gives asymptotics of $[z^m]\phi_f(z)$

- Putting all this together proves the existence of the prob. distribution P

For any boolean function f, we compute

$$P(f) = \lim_{m \to +\infty} \frac{[z^m]\phi_f(z)}{[z^m]\Phi(z)}$$
Probability of a boolean function

- We have proved the existence of $P(f)$ for any f

 $(f \not\in S_0: P(f) = 0)$

- *Can we compute explicitly the probability of a boolean function?*
Probability of a boolean function

- We have proved the existence of \(P(f) \) for any \(f \)

 \[(f \notin S_0: P(f) = 0) \]

- Can we compute explicitly the probability of a boolean function?

- The complexity of a function \(f \) is the smallest size of a tree that computes \(f \).

- What is the relation between the complexity and the probability of a boolean function?

- What is the typical shape of a tree that computes a specific function?

- What is the average complexity of a random boolean function?
Tautologies

We begin with the simplest function: the constant $True$

- **Simple** tautology: a premise is equal to the goal.
- We know the probability of simple tautologies:
 \[
 \frac{4n + 1}{(2n + 1)^2} \sim \frac{1}{n}
 \]

- Almost all tautologies are simple (Fournier et al. 07)
- Hence $P(True) \sim 1/n$

- Consequence: almost all tautologies in the system of implication and positive literals are intuitionnistic tautologies.
Probability of boolean functions

We know a.s. the shape of a random tautology.

We can compute the probability of True.

Can we extend this to a non-constant boolean function f?
Probability of boolean functions

- True: $1/n + O(1/n^2)$
- Literal x: $1/2n^2 + O(1/n^3)$
- Function $x \rightarrow y$: $9/16n^3 + O(1/n^4)$
- For all $f \in S_0 \setminus \{1\}$:

$$P(f) = \frac{\lambda(f)}{4^{L(f)}n^{L(f)+1}} (1 + O(1/n))$$

- $\lambda(f)$ is related to the minimal trees for f
- The trees of $A(f)$ are simple: a.s. obtained from a minimal tree by a single expansion
Sketch of proof

- Start from the set of minimal trees that compute f.
- Define extension rules: we obtain a larger (infinite) set of trees, still computing f; we can compute the probability of this set.
- Probability of this new set is related to the sizes of the initial trees, i.e. to the tree complexity of f.
- Do we obtain a.s. all the trees that compute f?
- If so, we know the probability of f, and we can express it in terms of its complexity.
Extensions of minimal trees

Consider a tree A that computes f, and a node of A

When can we expand a node of A, and still get a tree that computes f?
Extensions of minimal trees: example

$f = x_1 \rightarrow x_2$ has a unique minimal tree A_{min}:

- E is a tautology
- E has goal x_1
- E has a premise x_2
Extensions of minimal trees: example

$f = x_1 \rightarrow x_2$ has a unique minimal tree A_{min}:

- E is a tautology
- E has goal x_2
- E has a premise x_1
Extensions of minimal trees: example

\(f = x_1 \rightarrow x_2 \) has a unique minimal tree \(A_{min} \):

\[
\begin{array}{c}
\rightarrow \\
\wedge \\
\ \ x_1 \\
\ \ \ x_2 \\
\Rightarrow \\
\rightarrow \\
\wedge \\
\ \ x_1 \\
\ \ \ E \\
\ \ \ x_2
\end{array}
\]

- \(E \) is a tautology
- \(E \) has goal \(x_1 \)
- \(E \) has a premise \(x_2 \)
Extensions of minimal trees: example

$f = x_1 \rightarrow x_2$ has a unique minimal tree A_{min}

• Nine possible types of expansion ⇒ set $\mathcal{E}(A_{\text{min}})$ of trees computing f
• We can compute the probability of $\mathcal{E}(A_{\text{min}})$:

$$\frac{9}{16n^3} + O \left(\frac{1}{n^4} \right)$$

• This is the probability of f
Extensions of minimal trees

- Define extensions for minimal trees
- Compute probability of the set $\mathcal{E}(f)$ obtained by one extension
- Compute probability of the set $\mathcal{E}^+(f)$ obtained by a finite number of extensions
- Compute probability of $A(f) \setminus \mathcal{E}^+(f)$:
 - Define pruning rules: inverses of expansion rules
 - Any tree of $A(f)$ can be pruned into an irreducible tree
 - $\{\text{Minimal trees}\} \subset \{\text{Irreducible trees}\}$
 - Almost all trees of f can be pruned into irreducible trees.
Probability of a boolean function \(f \)

- Expression of the probability

\[
P(f) = \frac{\lambda(f)}{4L(f)nL(f)+1} \left(1 + O(1/n)\right)
\]

- We obtain almost all the trees by a single expansion of a minimal tree

\[
P(f) = Proba(\mathcal{E}(f)) \left(1 + o(1)\right)
\]

- The number of possible expansions is related to properties of minimal trees:

 - \(m \) = number of minimal trees for \(f \)
 - \(e \) = number of essential variables of \(f \)

Then

\[
2(2m - 1)L(f) \leq \lambda(f) \leq (1 + 2e)(2L(f) - 1)m
\]
Possible extensions

- Computation of the constant factor $\lambda(f)$?

 Done for read-once functions; for other functions?

- Result can be adapted when trees are obtained by a growing process

- What if we allow negative literals?

- What if we choose a different set of connectors?
Average complexity of a boolean function

- For a uniform distribution on boolean functions, maximal and average tree complexity is $2^k / \log k$ (Shannon, Lupanov...)

- What if the distribution is not uniform? for example, a tree distribution?

- We have computed the probability of a boolean function of known (hence, “fixed, small” and independent of k) complexity.

- What about the probability of a function of “large” (dependent on k) complexity?