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ANOTHER REASON TO COME TO BRAZIL!



COMPUTATIONAL GROUP THEORY (CGT)

After some early work in the 1950s and 1960s CGT really began
with Sims’ (1969) computations in permutation groups.

� 1970s and 1980s: Computation in permutation groups.
Character tables (CAS). Construction of sporadic simple
groups. Restricted Burnside problem. P-quotient algorithm.
Coset enumeration. Matrix representations over finite fields
(MEATAXE). Cohomology computations.

� CGT systems: GAP 3.1 (1992) and MAGMA (1993 out of
CAYLEY)

� Since 1990: extensive development of underlying theory,
improved algorithms, applications packages

� "Practical" algorithms vs. "Asymptotic" analysis



CONCISE DESCRIPTION OF GROUPS

We shall consider here only finite groups. Different ways in
which groups are described:

� Generators and relations: for example,
Dih(2n) :=



x; y j x2 = y2 = (xy)n = 1

�
� Through generators as a permutation group or as a matrix

group (usually over a finite field)
� By a polycyclic presentation (for solvable groups)
� Implicitly as groups of automorphisms of geometric or

algebraic objects
� Monster M of size � 8� 1053 generated by two

196822� 196822 matrices over GF(2) (8� 1010 bits)





HOW CAN WE GENERATE RANDOM ELEMENTS IN A

GROUP?

Randomization is used in many CGT algorithms - ideally we
should like to have a fast generator which produces a sequence
of independent elements which are uniformly distributed.
The remainder of this talk considers the problem of generating
random elements in a finite group G.
In some cases it is easy to generate random elements. We shall
look at the other cases, the methods proposed and the questions
which arise.

� A fast random element generator should not take more
than O(lg jGj) group operations to produce each element
(lg means log to base 2).



VIRTUAL ENUMERATION OF A GROUP
Let

G = G0 � G1 � ::: � Gm = 1

be a series of subgroups of a finite group G: Let Ti be a set of
right coset representatives of Gi+1 in Gi (i = 0; :::;m� 1), so
Gi = Gi+1Ti.
Each element x of G can be written uniquely in the form
x = tm�1:::t1t0 with each ti 2 Ti. In favorable situations
jT0j+ jT1j+ :::+ jTm�1j is much smaller than jGj (closer to
O(lg jGj)).
A random selection of ti 2 Ti for each i gives a random x 2 G for
an average cost of �(m) group operations.

� (Sims 1969) Permutation groups with Gi as the stabilizer
subgroup of f1;2; :::; ig (base and strong generating set).

� (Laue, Neubüser and Schoenwaelder 1982) Solvable groups with
a normal series in which the successive indices equal primes
(polycyclic presentation).



LINEAR GROUPS

Sims’ virtual enumeration trick may not work for matrix groups
over finite fields because they do not have chains of subgroups
where the successive indices are small.
For example, the important group SL(2; q) (q > 3 a prime
power) has order g := q(q2 � 1) but the smallest index of a
proper subgroup is q+ 1 � g1=3.

� (P.M. Neumann and Praeger 1992) constructive
recognition program seeks to recognize the composition
factors of a linear group over a finite field in a way in which
useful computations can be carried out. Currently, all
known methods use selection of random elements
extensively, so a different kind of random generator is
needed.



CUBES IN GROUPS

If we do not have have a virtual enumeration of G, then we can
approximate one as follows.
In place of the subgroups and sets of right coset representatives,
choose T1;T2; :::;Tm where each Ti := f1; xig ; and define

C :=
�

x"1
1 x"2

2 :::x
"m
m j each "i = 0 or 1

	
:

C is called a cube in G.

� (Babai and Erdös 1982) If m � lg jGj+ lg lg jGj+ 0:5 then
there exist x1; x2; :::; xm 2 G such that each element of G can
be written in the form x"1

1 x"2
2 :::x

"m
m in at least one way.



BLACK BOX GROUPS

Black box groups are a computational model for a group G:

� We know a set of generators x1; :::; xd for G
� We have a rough estimate of lg jGj
� We can determine whether x; y 2 G are distinct
� We can compute the inverse x�1 and product xy of known

elements of G



PROBABILITY DISTRIBUTIONS ON GROUPS

Suppose that P is a probability distribution on a group G of size
g, and that U is the uniform distribution (U(x) = 1=g for all
x 2 G).

� P is "-uniform if P(x) � (1� ")=g for all x
� Difference between P and U in the variational norm is

kP� Ukvar :=
1
2

X
x2G

jP(x)� U(x)j = max
A�G

jP(A)� U(A)j



HOW DO WE FIND RANDOM ELEMENTS IN A BLACK BOX

GROUP?

In a group for which we have a virtual enumeration with small
factors it is straightforward to generate random elements. In
favourable situations this requires �(lg jGj) group operations to
generate each random element.
For a black box group, we have not got a virtual enumeration,
but want a method of generating elements which gives a
sequence of (“almost") random elements. Some approaches:

� Random walks on a Cayley graph
� Product replacement algorithm
� Cooperman’s algorithm



RANDOM CUBES

For any list x1; x2; :::; xm of elements of G, the random cube

Cube(x1; x2; :::; xm)

of length m is the probability distribution on G induced by
("1; "2; :::; "m) 7! x"1

1 x"2
2 :::x

"m
m from the the uniform distribution

on f0;1gm. A typical element generated this way is called a
random product.



PROPERTIES OF RANDOM CUBES

� (Babai, Luks and Seress 1988) If x1; x2; :::; xm generate G,
and H is a proper subgroup of G then an element chosen
from Cube(x1; x2; :::; xm) has probability � 1

2 of not lying in
H (random subproduct lemma) [Easy exercise]

� (Erdös and Renyi 1965) If m > 2 lg jGj+ 2 lg(1=") + lg(1=�)
with "; � > 0, then with probability > 1� � a random
choice of x1; x2; :::; xm give a cube which is "-uniform.



GENERATING RANDOM ELEMENTS BY RANDOM WALKS ON

CAYLEY GRAPH CAYLEY(G,S)

A random walk on a Cayley graph of a group where the arcs
correspond to a set of generators eventually reaches every
vertex, but it may take a long time!



BABAI’S RANDOM WALK ALGORITHM (1991)

Given a set S = fy1; :::; ydg of generators of G: Put Sd := S.
Algorithm: for k = d; :::;m� 1 :

� compute yk+1 as the destination of a simple random walk
on Cayley(G; Sk) after �(lg4 jGj) steps starting at 1

� put Sk+1 := Sk [ fyk+1g

Theorem (Babai 1991): If m = d+��;"(lg jGj) then with
probability > 1� � the distribution of Cube(y1; :::; ym) is
"-uniform.

Remark The number of steps to construct the random element
generator is ��;"(lg

5 jGj)



NIELSEN TRANSFORMATIONS

Assume that G can be generated by k elements. Let �k be the set
of all k-tuples which generate G, and define the following
Nielsen transformations on (x1; :::; xk) 2 �k (for i 6= j):

� R�ij replaces xi by xix�1
j and leaves other components fixed

� L�ij replaces xi by x�1
j xi and leaves other components fixed

The Nielsen graph Nk has vertex set �k and edges defined by
the transpositions R�ij and L�ij .



PRODUCT REPLACEMENT ALGORITHM
F. CELLER, C.R. LEEDHAM-GREEN, S. MURRAY, A. NIEMEYER AND E.A. O’BRIEN (1995)

� Starting from a known k-tuple of generators of G, carry out
and m-step random walk on Nk (they suggest that k be at
least 10 and m be between 50 and 100). A sequence of
‘random’ elements of G is now made using the following
procedure: make a single step in Nk (affecting the ith
component, say) and output the new value of xi.

� There is considerable evidence that the elements generated
by this process can work well in some algorithms which
require random elements.

� The algorithm has been analysed extensively by I. Pak,
Babai and others. Pak has proved that one version of it
produces close to uniform elements when k = �(lg jGj) and
m = �(lg5 jGj), but this does not explain the apparently
superfast generator which has been observed in practice.



COOPERMAN’S ALGORITHM

G. Cooperman, “Towards a practical, theoretically sound
algorithm for random generation in a finite group” (posted on
arXiv:math 2002)

Cooperman claims to show the following:

� Let G be a black box group generated by x1; :::; xd. Then we
can construct a "-uniform random cube X of length
O(lg(1=") lg jGj) using O(lg2 jGj+ d lg jGj) operations. We
can take X = Cube(x�1

m ; :::x�1
1 ; x1; :::; xm) for sufficiently

large m where, for each i > d, xi is chosen at random from
G using the distribution Cube(x�1

i�1; :::x
�1
1 ; x1; :::; xi�1):

[Proof in the preprint is incomplete and has never been
published, but the result is true.]



GROUP RING AND PROBABILITY DISTRIBUTIONS

� The group ring R[G] of a group G over the reals R consists
of all formal sums

P
x2G �xx (with �x 2 R) with the natural

addition and the product given by convolution: X
x2G

�xx

!0@X
y2G

�yy

1A :=
X
z2G

 X
xy=z

�x�y

!
z

� If Z is a probability distribution on G; identify Z with the
element

P
x2G �xx in the group ring R [G] where �x = Z(x).

� If W is another probability distribution, then ZW (product
in the group ring) is the distribution of the product of
independent random variables from Z and W, respectively.

� Uniform distribution U := (1=g)
P

x2G x where g := jGj :
� Cube(x1; x2; :::; xm) = 2�mQm

i=1(1+ xi).



GROUP RING (CONT ’D)

� Involution � on R[G] given by
P

x2G �xx 7!
P

x2G �xx�1, and
inner product on R[G] given by hX;Yi := tr(X�Y) (= hY;Xi)
where the trace tr(

P
x2G �xx) := �1. The inner product is

just the dot product of the vectors of coefficients with
respect to the obvious basis.

� If Z =
P

x2G �xx, then kZk2 := hZ;Zi =
P

x2G �
2
x .

� In general it is not true that kXYk � kXk kYk, but
kXxk = kXk for all x 2 G.

� For a probability distribution Z we have ZU = UZ = U and

4 kZ� Uk2
var � g kZ� Uk2 = g kZk2 � 1:



MAIN THEOREM (COOPERMAN’S ALGORITHM)

THEOREM
Let x1; :::; xd generate G with d � lg jGj and consider the sequence
of cubes Zm := Cube(x1; :::; xm) for m � d where for m > d we
choose xm at random from the distribution of the cube Z�m�1Zm�1.
Then for each "; � > 0 there exists C";� > 0 such that with
probability at least 1� � the cube Z�mZm is "-uniform whenever
m > C";� lg jGj :

Note Z�mZm = Cube(x�1
m ; :::x�1

1 ; x1; :::; xm).
It takes ��;"(lg

2 jGj) operations to construct the random element
generator.

We shall outline a fairly simple proof based on properties of the
group ring.



THE MAIN LEMMA

LEMMA
Suppose that Z := Cube(x1; x2; :::; xm) where x1; x2; :::; xm generate
G. Then kZ(1+ x)=2k � kZk for all x 2 G, and either

(a) Z�Z is 0:2-uniform, or
(b) the probability that

kZ(1+ x)=2k2 < 0:975 kZk2

holds for x 2 G (under the distribution Z�Z) is at
least 0:3.



AN OPEN PROBLEM

� The product replacement algorithm which is widely used as
a “practical” means of generating random elements in a
group has not been theoretically justified with parameters
anywhere near those for which it is applied.

� On the other hand the theoretically justified algorithm of
Cooperman appears to be too slow for many of the
applications which are needed in practice.

Is it possible to find a random element generator which is both
theoretically justifiable and faster than Cooperman’s algorithm?
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