Minioficina de Combinatória

NUMEC/MaCLinC, Núcleo de Modelagem Estocástica e Complexidade Instituto de Matemática e Estatística, USP

Sexta-feira, 10 de maio de 2013

2:00-3:00
On Erdôs-Ko-Rado type theorems
Peter Frankl
Hungarian Academy of Sciences
The lecture will focus on extremal set theory. The general problem concerns the maximum possible size of a subset of the power set of a finite set X of n elements subject to some conditions. The simplest result is probably the following.

Proposition 0. If F is a subset of 2^{X} such that any two sets in F have non-empty intersection, then $|F| \leq 2^{n-1}$.

One way to achieve equality is by taking all subsets containing a fixed element.
Erdős-Ko-Rado Theorem. If F is a collection of k-element subsets of X such that any two sets in F have non-empty intersection and, moreover, $2 k<n$, then $|F| \leq\binom{ n-1}{k-1}$, with equality holding if and only if all subsets in F contain a fixed element.

We shall discuss various generalisations and extensions of this result, some of which are still unsolved.

3:20-4:20
 On two Ramsey type problems for K_{t+1}-free graphs
 Voutěch Rödl
 Emory University

In 1970, Erdôs and Hajnal asked if for any r and t there is a K_{t+1}-free graph H with the property that any r-coloring of the edges of H yields a monochromatic K_{t}. This conjecture was resolved positively by Folkman for $r=2$ and by Nešetřil and the speaker for r arbitrary. In this talk we will discuss some old and new results related to this conjecture.
A related question was raised by A. Hajnal. The t-independence number $\alpha_{t}(H)$ of a graph H is the largest size of a subset of vertices of H containing no K_{t}. Let $h_{t}(n)$ be the minimum value of $\alpha_{t}(H)$ with the minimum taken over all graphs on n vertices containing no K_{t+1}. Hajnal proposed the problem of investigating $h_{t}(n)$. This question was addressed first by Erdôs and Rogers, who proved that $h_{t}(n)$ is at most $n^{1-\epsilon}$, where $\epsilon=\Theta\left(1 / t^{4 \log t}\right)$. Recently, jointly with Dudek and Retter, we proved that $h_{t}(n)=n^{1 / 2+o(1)}$ for any given t.

