The triangle-free process

Simon Griffiths

The triangle-free process starts with the empty graph G_{0} on n vertices. At each step thereafter we set $G_{m+1}=G_{m} \cup\{e\}$ where e is a selected uniformly at random from the set of potential edges whose addition would not create a triangle. The process ends when we reach a maximal triangle-free graph; we denote by $G_{n, \Delta}$ this (random) final graph. Recently Bohman (2009) proved that $e\left(G_{n, \Delta}\right)=\Theta\left(n^{3 / 2} \sqrt{\log n}\right)$ edges. His approach was based on differential equations method of Wormald and used martingale inequalities to track various parameters associated with the evolution of the process. We follow the triangle-free process until (almost) its end. We prove that, with high probability,

$$
e\left(G_{n, \Delta}\right)=\left(\frac{1}{2 \sqrt{2}}+o(1)\right) n^{3 / 2} \sqrt{\log n} .
$$

Furthermore, by bounding the size of independent sets in $G_{n, \Delta}$, we give an improved lower bound on the Ramsey number $R(3, k)$ (the upper bound is due to Shearer):

$$
\left(\frac{1}{4}-o(1)\right) \frac{k^{2}}{\log k} \leqslant R(3, k) \leqslant(1+o(1)) \frac{k^{2}}{\log k} .
$$

These results are based on joint work with Gonzalo Fiz Pontiveros, Robert Morris and Roberto Imbuzeiro Oliveira. Similar results have been proved independently by Bohman and Keevash.

