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where the approximation symbols are used because of numerical round-off
errors.

8.3.3 Partitional Clustering
By partitional clustering (also called non-hierarchical clustering), it is usually
meant that the clusters are obtained as a definite partition of the feature space
with respect to a fixed number of clusters.  A simple partitional clustering
algorithm can be immediately obtained in terms of the trace-based dispersion
measures introduced in the previous section, which can be used to implement
the similarity clustering criterion, in the sense that a good clustering should
exhibit low intraclass dispersion and high interclass dispersion.  However, as
the overall dispersion is preserved, these two possibilities become equivalent.
A possible clustering algorithm based on such criteria is

 Algorithm:  Clustering

Assign random classes to each object;

While unstable
Randomly select an object and randomly change its

class, avoiding to leave any class empty;
If the intraclass dispersion, measured for

instance in terms of the trace of the
intraclass scatter matrix, increased, reassign
the original class.

The termination condition involves identifying when the clusters have
stabilized, which is achieved, for instance, when the number of unchanged
successive classifications exceeds a pre-specified threshold (typically two).
An important point concerning this algorithm is that the number of clusters
usually be pre-specified.   This is a consequence of the fact that the intraclass
dispersion tends to decrease with larger numbers of clusters (indeed, in the
extreme situation where each object becomes a cluster, the scattering becomes
null), which tends to decrease the number of clusters if the latter is allowed to
vary.

Figure 8.28 presents the progression of decreasing intraclass
configurations (the intermediate situations leading to increased intraclass
dispersion are not shown) obtained by the above algorithm, together with the
respective total, inter and intraclass dispersions.    Although the convergence
is usually fast, as just a few interactions are usually required, this
methodology unfortunately is not guaranteed to converge to the absolute
minimal intraclass dispersion (the local minimum problem), a problem that
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can be minimized by using simulated annealing (see, for instance, [Press et
al., 1989; Rose et al., 1993]).  In addition, if the trace of the scatter matrices is
used, different clusters can be obtained in case the coordinate axes of the
feature space are scaled [Jain and Dubes, 1988].   It can also be shown [Jain
and Dubes, 1988] that the quantification of the intraclass dispersion in terms
of the trace of the respective scatter matrix corresponds to a popular
partitional clustering technique known as square-error method, which tries to
minimize the sum of the squared Euclidean distances between the feature
vectors representing the objects in each cluster and the respective mean
feature vectors.  This can be easily perceived by observing that the trace of the
intraclass scatter matrix corresponds to the sum of the squared distances.
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Figure 8.28: The traces of the scatter matrices
(“trace(S)=trace(S inter)+trace(Sintra)”) for a sequence of cluster

configurations.   The last clustering allows the smallest intracluster
scattering.

An alternative clustering technique based on the minimal intraclass
dispersion criterion is commonly known as k-means, which can be
implemented in increasing degrees of sophistication.  Here we present one of
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terms of the trace of the intraclass scattering matrix.  Several additional
variations and enhancements of this basic technique have been reported in the
literature, including the possibility of merging the clusters corresponding to
centroids that are too close (with respect to some supplied threshold) and
splitting in two a cluster exhibiting too high a dispersion (this parameter has
also to be determined a priori).  Both strategies are used in the well-known
ISODATA clustering algorithm [Gose, 1996].

 Example:  k-means classification

Apply the k-means algorithm in order to cluster into two classes the points
characterized in terms of the following features:

Consider as initial prototype points the vectors  ( )0,01 =P  and ( )3,32 =P
and use 0.25 as minimum value for the termination criterion.

Solution:

(a) The initial distance matrix is
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(b) As m>0.25, we have a new interaction:
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Object Feature 1 Feature 2
X1 1 1
X2 3 4
X3 5 4
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practice.  The basic idea of the fuzzy k-means algorithm is described in the
following.

Let the probability that an object pj (recall that j = 1, 2, ... , N) belongs to
the class Ci; i = 1, 2, ... , K; be represented as ( )jpCP |i .  At each step of the

algorithm, the probabilities are normalized in such a way that for each object
pj  we have
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The mean for each class at any stage of the algorithm is calculated as

 

( )[ ]

( )
a

j
j

j
j

a
j

i

pCP

ppCP

P












=

∑

∑

=

=

N

1
i

N

1
i

|

|

where a is a real parameter controlling the interaction between each
observation and the respective mean value.  After all the new means Pi have
been obtained by using the above equation, the new probabilities are
calculated as follows:
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As in the classical k-means, this algorithm stops once the mean values
stabilize.

8.3.4 Hierarchical Clustering
By hierarchical clustering it is usually meant that the grouping of M objects
into K classes is performed progressively according to some parameter,
typically the distance or similarity between the feature vectors representing
the objects.  In other words, the objects that are more similar to one another
(e.g., the distance between them is smaller) are grouped into subclasses before
objects that are less similar, and the process ends once all the objects have
been joined into a single cluster.  Observe that, unlike the partitional
clustering methodology, which produces a single partition of the objects,
hierarchical clustering provides several possible partitions, which can be
selected in terms of a distance (or similarity) parameter.  Although it is also
possible to start with a single cluster and proceed by splitting it into
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of the hierarchical clustering technique based on the typical algorithm to be
described in the next section.

Table 8.6: Four definitions of possible distances between two sets A and B.
Distance between two sets

A and B
Comments Hierarchical

clustering
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Single linkage
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distances between each
of the NA points of A
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Group average
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Distance between the

centers of mass
(centroids) of the points
in set A (i.e., CA) and B

(i.e., CB)

Centroid

Figure 8.32: Minimal ( min
,BAd ), maximal ( max

,BAd ), and average ( avg
BAd , ) distances

between the sets A and B.




