
SHAPE ANALYSIS AND CLASSIFICATION350

5.2.4 Contour Representation Based on the Chain Code
A simple and popular alternative to contour representation is based on the
chain code proposed in [Freeman, 1961]. In order to understand the chain code
scheme, refer to Figure 5.20, which represents a central pixel indicated over an
image grid. In an 8-neighborhood, each pixel has 8 neighbors, which can be
numbered from 0 to 7, as indicated in that figure. These numbers are the chain-
codes used by the representation. First, observe that the neighbors have been
numbered counterclockwise starting from the right neighbor pixel. Now, refer
to Figure 5.21 (the same contour of Figure 5.5), and let p be the starting point
of that contour, i.e., p = (4,2). The next neighbor pixel in the counterclockwise
direction is the pixel to the right, i.e., (5,2). If the mask of Figure 5.20 is
superimposed onto the grid in Figure 5.21 so that the mask central pixel
matches the pixel p, then the pixel (5,2) will correspond to the chain-code 0, as
indicated in the figure. If the mask is now shifted over the new pixel (5,2), then
the next neighbor is (6,2), whose chain-code is also 0. Figure 5.21 illustrates the
repetition of this process until the whole contour is traversed. It is easy to see
that this contour is represented by the chain-code 00000222224444466666 plus
the starting point (4,2).

Figure 5.20: Chain-code.

Figure 5.21: Chain-code representation of a sample contour.

There are many interesting shape properties (see Box in Section 6.2.16) that
can be extracted directly from the chain-code representation [Angulo and
Madrigal, 1986; Gonzalez and Woods, 1993]. Two important drawbacks with

SHAPE ANALYSIS AND CLASSIFICATION368

Figure 5.30: A digital straight generic continuous straight line segment L (a)
and the respective line segment (b) obtained by spatially sampling L with a

specific spatial sampling ∆.

It is therefore clear that, while a DSL is an infinite set of lattice points, a
DSLS is a finite set of lattice points, which are henceforth represented in terms
of their coordinates (x, y). In case the straight line is defined in terms of one of
its possible parametric equations, such as the slope-intercept equation

cmxy += , the respective digital straight line can be obtained by varying

either x or y while obtaining the other variable. Several are the approaches to
spatially sample the straight line given by equation cmxy += , including the

following:

() LL ,2,1,0,1,2,, −−=+= xcmxroundy (5.1)

() LL ,2,1,0,1,2,, −−=+= xcmxtruncy (5.2)

() LL ,2,1,0,1,2,, −−=+= xcmxfloory (5.3)

() LL ,2,1,0,1,2,, −−=+= xcmxceily (5.4)

 x

 y

 L

∆

(a) (b)

2D Shape Representation 369

Figure 5.31 (a) and (b) present the spatial sampling of the function
5.0−= xy by using Equations (5.1) and (5.2), respectively.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

x

y

(a)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

x

y

(b)

Figure 5.31: The spatial sampling of 5.0−= xy (represented by the

continuous line); for 5,,2,1,0,1,5 LL −−=y ; obtained by using Equation

(5.1) in (a) and (5.2) in (b). The sampled values are represented by squares.

It is clear from this illustration that the round and trunc functions imply the
quantized points behave differently for negative and positive values of y,
which is undesirable since it enhances the DSLS discontinuity at y = 0. A
more consistent approach would be to use the floor or ceil functions (see
Section 2.1.4), but these functions would imply a shift of the quantized straight
line towards the left and right, respectively. A more balanced approach
consists in shifting the floor function by 0.5 to the left, yielding the following
quantization scheme:

() LL ,2,1,0,1,2,,5.0 −−=++= xcmxflooryi (5.5)

Figure 5.32 illustrates the quantization of the lines 5.0−= xy by using

this scheme. The above characterized additional discontinuity at the transition
of y from negative to positive is now clearly avoided.

SHAPE ANALYSIS AND CLASSIFICATION370

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

x

y

Figure 5.32: The spatial sampling of the straight line defined by the equation
5.0−= xy ; for 5,,2,1,0,1,5 LL −−=x ; by using Equation 5.5.

Therefore, Equation (5.5) is henceforth adopted for obtaining DSLSs from
straight line equations such as cmxy += . It is interesting to have a closer

look at the sampling implemented by this equation. In order to do so, let us
consider that () 1+<≤⇔= babafloorb and b is an integer value, and

rewrite Equation (5.5) as below. The reader is referred to the box Inequalities
for a brief review about inequalities and their algebraic handling.

()

5.05.0

5.05.015.00

15.05.0

++≤<−+⇔

⇔+−−<−≤−−−⇔<−++≤⇔

⇔+<++≤⇔++=

cmxycmx

cmxycmxycmx

ycmxycmxfloory

i

ii

iii

 Note: Inequalities

An expression such as bxa ≤< is called an inequality. As with equalities,
inequalities can also be transformed into equivalent forms. For instance, an
inequality does not change in case we add (or subtract) the same constant k to
all its terms, e.g., kbkxkabxa +≤+<+⇔≤< . A strictly positive
constant k (i.e., k > 0) can also be multiplied to all terms, i.e.,

bkxkakbxa ≤<⇔≤< . Observe that in case k is strictly negative (i.e., k <
0) we have akxkbkbxa <≤⇔≤< . For instance, if k = – 1 we have

1221 −<−≤−⇔≤< xx .

2D Shape Representation 389

thr=7

10 20 30

5

10

15

20

25

30

thr=8

10 20 30

5

10

15

20

25

30

thr=9

10 20 30

5

10

15

20

25

30

thr=10

10 20 30

5

10

15

20

25

30

thr=11

10 20 30

5

10

15

20

25

30

thr=12

10 20 30

5

10

15

20

25

30

thr=13

10 20 30

5

10

15

20

25

30

thr=14

10 20 30

5

10

15

20

25

30

thr=15

10 20 30

5

10

15

20

25

30

Figure 5.43: Reconstructions of the image in Figure 5.42 obtained by using
successive threshold values (thr). Observe the elimination of the

surrounding noise allowed by the HT.

5.6.4 Backmapping
Introduced in [Gerig and Klein, 1986], the technique known as backmapping
provides a simple and effective means for reducing the background noise
generally obtained in discrete HTs. This technique consists in performing a
standard HT, yielding Acc, and then repeating the HT calculation over the
same input image. However, Acc is now searched the peak along each
sinusoidal path defined by each foreground pixel in the image, and only the
cell in a secondary accumulator array Acc2 (initially cleared) having the same
coordinates as that peak is incremented. The backmapping technique for the
normal HT (the backmapping can easily be extended to other parametrizations)
is described by the following pseudo-code:

SHAPE ANALYSIS AND CLASSIFICATION402

coordinates of these points, stored sequentially as pairs. This simple
implementation of the SEDR as a matrix is illustrated below for NM = 4.

−−−−−−−−

−−
−−−−
−−

=

122121121221211285

2002200242

1111111142

1010010141

0010

SEDR

SEDR

0

1 (-1,0) (1,0) (0,-1) (0,1)

2 (-1,-1) (-1,1) (1,-1) (1,1)

 (0,0)

(-2,0) (0,2) (2,0) (0,-2)2

Figure 5.50: The SEDR for the 4 first exact distances (i.e., kM = 3).

It is clear that this implementation of the SEDR is not particularly efficient,
(especially when compared to the linked list structure in Figure 5.50) as far as
storage is concerned, since the number of columns has to be defined in terms
of the maximum number of relative positions (in the above example, eight

positions for 5=d). However, provided that NM is not too large, the
implied additional amount of memory is a small sacrifice to be made in

2D Shape Representation 407

For instance, a 3×3 image allows only six different distances, as illustrated in
Figure 5.55 (i.e., the five distances represented by arrows plus the zero
distance, not shown in the figure). Observe that, because of the inherent
symmetry of the orthogonal grid, each possible distance in a digital number
occurs for a number of points that is always a multiple of 4.

Figure 5.55: The possible distances in a 3×3 orthogonal grid.

While the number of possible distances, hence Nd, increases substantially
for larger image sizes, it will always be finite (as long as the image size is finite).
The complexity exhibited by the Euclidean distances in the orthogonal lattice,
a consequence of the anisotropy of the latter, has implied a series of practical
difficulties that, ultimately, led to many simplified schemes for the calculation
of approximated Euclidean distance transforms (see, for instance [Borgefors
1984; Hilditch, 1969, Lee and Horng, 1999]). On the other hand, recent
advancements have allowed exact Euclidean distance calculation by using
vector schemes (e.g. [Vincent, 1991; Cuisenaire, 1999] and Voronoi diagrams
(e.g. [Sherbrooke et al., 1996; Ogniewicz, 1992]) which, although highly
effective, imply relatively more complex algorithms. Another related reference
can be found in I. Ragnemalm, The Euclidean Distance Transform, Linköping
Studies in Science and Technology 1993. In the present book, we describe an
approach to exact Euclidean transform not so simple as the approximated
schemes, but also not so complex as the fastest approaches. Therefore, it
represents an alternative approach that is easy to implement and whose speed,
although not optimal, should be enough to deal with a series of problems in
shape analysis, especially when the maximum distance is not too large. This
technique, based on the concept of exact dilations described in Section 5.7, is
described in the following.

5.9 EXACT DISTANCE TRANSFORM THROUGH
EXACT DILATIONS

One of the simplest approaches to obtaining the exact Euclidean distance
transform consists in slightly modifying the exact dilation algorithm presented
in Section 5.7. This can be done simply by replacing the line dil_im(x, y):=1
by dst_tr(x, y):=SEDR(k , 1) and including a test in order not to rewrite already

SHAPE ANALYSIS AND CLASSIFICATION410

approximated approach to obtaining generalized Voronoi tessellation. This
approach is based on the concept of label propagation, also known by the
name of SKIZ [Vincent, 1991; Lantuèjoul, 1980], performed by using a simple
modification of the above exact dilation algorithm. In this approach, each of
the N isolated shapes in the image is labeled with a subsequent integer value
(i.e., L = 1, 2, … , N) and these labels are propagated around the surrounding
space, for instance by using exact dilations. A possible label propagation
algorithm is given by the following pseudo-code:

 Algorithm: Label Propagation through Exact Dilations

Initiate lbl_im with –1;
For k = 1 to NM do
 For j = 1 to N do
 For i = 1 to SEDR(k , 2) do
 x = L_x(j)+SEDR(k , 2i+1);
 y = L_y(j)+SEDR(k , 2i+2);
 If lbl_im(x, y) ≠ –1
 lbl_im(x, y)= L_lb(j);
 end
 end
 end
end

The labels are propagated through the image lbl_im. The list L_lb
contains the labels of each of the image elements, assigned as above
described. Observe that all the pixels in each isolated shape have their
coordinates stored in the same lists L_x and L_y. Although the order in which
the isolated shapes are labeled is unimportant, except for a few one-pixel
displacements of the separating frontiers, all the pixels in each of the shapes
should be stored subsequently into the lists L_x, L_y and L_lb. Figure 5.58
illustrates this fact.

Once the labels have been propagated by using the above-described
procedure, a good approximation of the Voronoi tessellation is obtained. This
is illustrated in Figure 5.59, with respect to the Voronoi tessellation (b) defined
by the isolated shapes in (a).

SHAPE ANALYSIS AND CLASSIFICATION414

 For y = 2 to Ny-1 do
 () (){ }jyixlblimgyxlblimgMax

ji
ji

++−=

=+
−=

,_,_max

1
1,0,1,

 (*)

 If max < N/2
 img_dif(x, y) = max;
 Else
 img_dif(x, y) = N – max;
 end
 end
end

Figure 5.61: Original shape outline (a), contour labeling (b) and propagated
labels up to the maximum distance √5 (c).

1 2 3

4

5

6

7

8

9

10

1 2 3

4

5

6

7

8

9

10

9

9 8

8

7

7

7 7 7

6

6

6

5 5

1

1 2 3 3 4

3 4 4

1 1
1

10

2 3 3

1 4 5

5

2

1

3

5

8 4 4

69

8

10

10

(a) (b)

(c)

