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may be adopted instead of the orthogonal lattice).  While we could have
proceeded directly to discrete shapes, it is felt that a more solid and
comprehensive understanding of the essence of shapes and shape-related
issues including invariance, transformations and characterization can be
achieved by starting with continuous shapes as connected sets of points in
continuous spaces.  Indeed, most discrete shapes can be understood as the
result of sampling some continuous shape according to a pre-defined
quantization scheme (see Section 3.1.4).  Since the choice of such a scheme
defines many of the properties of the respectively obtained discrete shapes
and possibly affects the properties of continuous shapes (such as invariance to
rotation) in particular ways, the continuous approach provides a more unified
and uniform treatment of shapes and their properties.

4.2.1 Continuous Shapes and their Types
As discussed above, connectivity is herein considered to be the essential
feature characterizing shapes. As will soon become clear, connectivity
corresponds to a well-defined, although not trivial, mathematical concept.
Informally speaking, it indicates that any two points inside a given set can be
reached through at least a path fully contained in that set.  Figure 4.2 presents
several examples of planar (i.e., 2D) sets of points that satisfy the shape
definition in the previous section.  The reader should have no difficulty
verifying that all these shapes correspond to connected sets.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n)

(o) (p) (q) (r) (s)

Figure 4.2: Examples of planar continuous shapes. (The neural cell in (o) has
been reprinted from Journal of Neuroscience Methods, 27,  T. G. Smith Jr.,

W. B. Marks, G. D. Lange, W. H. Sheriff Jr. and E. A. Neale, A Fractal
Analysis of Cell Images, 173-180,  Copyright (1989), with permission from

Elsevier Science.)
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, are mapped
by the morphic transformation T into a new shape ( )STQ = .

Morphic transformations are particularly interesting because they allow us
to relate different shapes.  As a matter of fact, to identify the transformation
taking one shape into another corresponds to learning almost everything about
the relationship between both of these shapes.  The transformation itself, as
well as its properties (such as local magnification and phase, to be discussed
in Section 4.9), often provides important insights about the physical processes
relating distinct versions of a shape.   For instance, the uniform distortion of a
square into a rhombus, under the action of some parallel but opposing forces
applied at two opposite vertices, can be verified to be representable by an
affine transformation.  Observe, however, that the interpretation of the
obtained transformation taking a shape into another shape can only be
properly validated and understood when considered in the light of additional
information about the possible processes acting over the shapes, and the
physical properties of the latter.  Morphic transformations are discussed in
more depth in Section 4.9.

We conclude this section with an example of a morphic transformation,
illustrated in Figure 4.9 in terms of its x- (a) and y- (b) scalar field
components (refer to Section 2.4.1), that transform a single shape (c) into the
composed shape in (d).

4.4  CHARACTERIZING 2D SHAPES IN TERMS OF FEATURES

Given a specific shape, or a composed shape, it is often necessary to quantify
some of its properties.  This task, which constitutes one of the basic steps in
shape classification, is henceforth called shape characterization .  The
respective characterization of a shape S can be made in terms of a series of its
respective measures and properties, which are commonly referred to as
features.  For instance, a shape can be characterized in terms of its area, the
total arc length of its boundary (i.e., its perimeter), its number of holes, its
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involves considering the distances between several of the points in the shape.
Chapter 8 provides further discussion on how to select features for shape
classification.

We have seen in the above discussion that features, represented in terms of
a feature vector, can be associated with shapes.  It is important to note that
feature vectors live in a respective feature space.  For instance, a feature
vector composed of M real scalar measures is a vector in RM. Although it is
possible to consider heterogeneous feature spaces, defined by feature vectors
involving more than one type of scalar (such as real, Boolean, etc.), most of
the situations in this book will be restricted to real feature spaces, i.e., RM.
This important concept is illustrated in Figure 4.11, where a shape has been
measured with respect to its area and perimeter, allowing it to be mapped into
the feature space (perimeter)×(area), which is clearly a subset of R2.   It is
generally expected that similar shapes will be mapped into feature vectors
(i.e., points in the feature space) that are close to each other.  Such a property
is often implied by the continuity of the transformation taking the shape into
its respective features.  In case this transformation is continuous and the
shapes define a continuum of variations, the respectively obtained
representation in the feature space produced by a continuous feature
extraction transformation will also be connected.  The concept that similar
shapes have similar features is illustrated in Figure 4.12, which shows a series
of feature points (b), respective to the normalized centroid size (see Section
4.8.3) and perimeter of the similar polygonal shapes (a).  It is clear that the
feature points are close each other, starting to form a cluster in the feature
space.  On the other hand, a discontinuous feature extraction transformation
will tend to imply disconnected regions in the feature space.

Figure 4.11: The S shape mapped into the feature space defined by area and
perimeter.



Shape Concepts 317

preserved.  This type of transformation has often been used in practice, for
instance as a means of relating different species (see [Thompson, 1992]).
Another important type of morphic transformations are defined by projections
(see, for instance, the interesting book [Dubery and Willats, 1972]).

The main importance of morphic transformations in shape analysis stems
from the fact that the shapes of interest often appear in a transformed fashion.
For instance, a shape submitted to a shearing process (see Figure 4.32) will be
related to the original shape by an affine transform.  In case both such types of
shapes, i.e., the original and transformed versions, are to be understood as
equivalent, the selected features have to be invariant to the transformation in
question.  This is an especially important concept in shape analysis and
classification, deserving special attention.  For instance, in case the original
shape (a) and its affine transformation (b) in Figure 4.32 are to be considered
as equivalent, a suitable feature would be the number of vertices or the
number of holes, which is invariant to the transformation in question.  In case
a shape and one of its rotated versions are to be considered as equivalent,
suitable features would be the area, perimeter, number of vertices, etc.
Therefore, an important issue in shape analysis and classification concerns the
identification of the transformations underlying the several observed instances
of the same shape.  Often, such transformations are a direct consequence of
the natural processes producing the shapes.  Unfortunately, it is not always
easy to identify such transformations, except in the case of simple
transformations such as the affine and its specific cases.  To cope with this
problem one should consider several transformations and find that which
better explains the observed shape variations. The remainder of this chapter
presents the application of thin-plate splines as a reasonably general means to
interpolate shape transformations.  More specifically, given the original shape
and its transformed version, both expressed in terms of landmark points, the
thin-plate formulation allows us to obtain an interpolated approximation of
the sought transformation.

4.9.6 Thin-Plate Splines
The concept of thin-plate splines was first applied to the analysis of plane
shapes by Bookstein [Bookstein 1991].  In such approaches, a thin-plate is
understood as a thin sheet of some stiff material (e.g., steel) with infinite
extension.  When specific control points along the plate are displaced, the
plate undergoes a deformation in such a way as to minimize the total bending
energy E implied by the transformation.  This formulation can be immediately
extended to planar shapes by using pairs of thin-plates, represented in terms of
landmark points.  We start by presenting and illustrating the traditional thin-
plate and proceed by discussing its extension as a means to interpolate
morphic transformations.
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Now, the sought coefficients required to interpolate through the n control
points can be easily obtained by solving the following simple matrix equation,
provided the matrix M is not singular:

 HMC 1−=   (4.20)

The bending energy E can be immediately obtained as

TWWE T= (4.21)

where W is the 1×n  vector containing the n first rows of C.

The accompanying box provides a complete example of the above described
thin-plate spline interpolation.

 Example:  1D Thin-Plate Spline Interpolation

Obtain the thin-plate spline passing through the following five control points
(−1, 0, 4); (0, 1, 5); (0, −1, 3); (1, 0, 4); and (0, 0, 2).  These points are shown
in Figure 4.39 (a).

Solution:

We have n = 5 and start by obtaining T, Se, H, and M :
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Note that values ( ) 6931.02 ≅== αα dg , ( ) 7726.22 ≅== ββ dg

and ( ) 01 ≅==γ γdg  correspond to the respective distances between the x-

and y-coordinates of the control points, as shown in the Figure 4.40. Now, by
applying (4.20) we get

 [ ]1029236.14809.04809.04809.04809.01 −== − HMC

and the bending energy is

8472.3== TWWE T

The obtained interpolating spline has been used to transform a uniform grid,
and the result is shown in Figure 4.39(b).
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Figure 4.40: The distances considered for calculating the elements of
matrix M.
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Figure 4.42: Concepts and representations adopted in the pair of thin-plate
splines approximation to shape analysis.  S is the original shape and Q its

transformed version or another shape to which S is to be compared.

The sought interpolating thin-plate splines ( )yxx ,Ψ  and ( )yxy ,Ψ  can be

obtained by applying the procedure described in Section 4.9.6.1 separately, or
through the integrated approach presented in the following.  First, matrices T,
Qe and M are obtained by the method described in Section 4.9.6.1 (items A, B
and C, respectively).  The following two additional matrices are then
constructed:

(AA) The ( ) 23 ×+n  matrix H2 containing the coordinates of the landmark

points of shape Q is
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The coefficients in Equations (4.22) and (4.23) can now be obtained by
solving the following matrix equation:

 2
1

2 HMC −= (4.25)

and the bending energy E can be obtained as

{ }TWWTraceE T=  (4.26)

Figure 4.43 illustrates the application of the thin-plate splines to planar
shapes.  S is the original shape, and the shape Q its transformation or the
shape to which it is being compared.  The obtained interpolating thin-plate
spline has been used to transform the orthogonal grid of Figure 4.43(a) into
the deformed grid in (b).  The bending energy E implied by this
transformation is 1.4779.  It should be borne in mind that the bending energy
implied by the inverse morphic transformation, as implemented by the thin-
plate formulation, is not equal to the bending energy implied by the respective
direct transformation. In addition, observe that, as illustrated in Figure 4.44,
excessive displacement of the control points can cause folding (or overlap) of
the interpolating surface.

Figure 4.45 presents a more sophisticated example regarding the dynamic
modification of a neural cell from the original configuration shown by circles
into the new shape shown by asterisks.  Observe that the thin-plate spline
interpolation approach allows the comprehensive characterization of the
spatial deformations related to the shape alterations, in this case the bending
(identified by one asterisk) and growth (identified by two asterisks) of
dendrites.

 To probe further:  Shapes

Additional material on shape related concepts can be found in the literature of
the most diverse areas, from complex variables to biological shape analysis. A
good reference on transformations underlying projective drawing systems  can
be found in [Dubery and Willats, 1972]. A relatively old but still interesting
book is [Thomson, 1992], a traditional approach to biological shape. See also
M. Ghyka, The Geometry of Art and Life, Dover, NY, 1977, which provides a
general perspective of shapes in art and life mostly in terms  of proportions
and T. Cook, The Curves of Life , Dover, NY, 1979, which concentrates on
spiral shapes. More modern treatments of shapes include [Bookstein, 1991;
Dryden and Mardia, 1998; Small, 1996; Otterloo, 1991].




