
Shape Aquisition and Processing 225

implemented operation corresponds simply to adding the products of each
weight with the corresponding pixels of the image. In order to process the
entire image, the window is shifted by positioning its origin onto each of the
image pixels, generating the corresponding output pixels (see Figure 3.18(c)).

Clearly, the size of the window can be changed, implying neighborhoods
of different sizes to be taken into account. For instance, a neighborhood of
size 5 × 5 would work in an analogous way, except that the weights should be
1/25. Such a larger neighborhood allows more distant pixels to also influence
the output value. In other words, the analyzing spatial scale becomes larger.
The practical effect is that the output image becomes smoother. It is observed
that choosing a suitable analyzing scale is not a problem that has a unique or
simple solution.

It is important to note that processing the pixels on the border of the image
presents a special problem because when the origin of the operator is placed
over the border pixels, some positions of the window fall outside the image.
In fact, not only the outermost pixels are affected, but those near (but not on)
the border also present this problem (the number of outer pixel layers affected
by this problem depends on the size of the operator). The following three
typical solutions can be considered in such situations:

(1) The outer layers are simply ignored, i.e., the filter operation is carried
out only for the inner pixels. As a consequence, the resulting image is
typically smaller than the original, although its size can be kept by filling
up the borders with zeroes.

(2) The image is augmented with outer layers in order to complement the
necessary number of neighboring pixels required by the filtering process.
The value of these extra pixels have to be set arbitrarily (e.g., to zero),
which can adversely affect the results.

(3) The image is assumed to be periodic (namely a thorus), so that if a
position of the operator falls off the image, the corresponding operation
is carried out over the pixel at the other side of the image. This type of
structure is naturally implemented by linear filtering techniques based on
the Fourier transform [Morrison, 1994].

The choice of one of the above solutions depends on each specific problem.
Algorithms can be easily altered in order to implement any of the above
discussed solutions. In this sense, average filtering is a special case of linear
filtering, which can be modelled by 2D convolutions:

∑ ∑ −−=
m n

nqmpgnmh
MN

qpf),(),(
1

),(

where M × N is the size of the input image.
In fact, there are many image processing tasks carried out in an analogous
way, varying only as far as the filtering function is concerned. The definition
of different sets of weights can lead to completely different results. For
instance, special operators can be defined in order to differentiate the image or

Shape Aquisition and Processing 229

As in the one-dimensional case, we define the Fourier pair as follows:

() ()vuGyxg ,, ↔

As an example, the 2D Dirac delta function is defined as

()

 ==

=δ
otherwise

yandxifdefinednot
yx

00

0

,

() 1, =∫ ∫
∞

∞−

∞

∞−

dxdyyxδ

and its Fourier transform is calculated as

(){ } () (){ } () { }

()∫ ∫

∫ ∫∫ ∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

==

==+−=ℑ

1,

0exp,2exp,,

dxdyyx

dxdyyxdxdyvyuxjyxyx

δ

δπδδ

Since the respective inverse can be verified to exist, we have () 1, ↔δ yx .

The 2D Fourier transform exhibits a series of useful and practical
properties in image processing and analysis, most of which are analogous to
the 1D Fourier properties explained in Chapter 2. Table 3.2 summarizes some
of the most useful 2D Fourier properties (see also [Castleman, 1996;
Gonzalez and Woods, 1993]).

Table 3.2: 2D Fourier transform properties assuming () ()vuGyxg ,, ↔ .

Property Description
Separability (DFT) The discrete Fourier transform can be computed in

terms of 1D Fourier transforms of the image rows
followed by 1D transforms of the columns (or
vice-versa).

Spatial Translation
(Shifting)

() ()[] ()vuGvyuxjyyxxg ,2exp, 0000 +−↔−− π

Frequency Translation
(Shifting)

()[] () ()0000 ,,2exp vvuuGyxgyvxuj −−↔+π

Conjugate Symmetry If g(x, y) is real, then),(),(vuGvuG −−= ∗

Rotation by θ ()
()θ+θ−θ+θ↔

↔θ+θ−θ+θ
cossin,sincos

cossin,sincos

vuvuG

yxyxg

Linearity – Sum () () () ()vuGvuGyxgyxg ,,,, 2121 +↔+

Shape Aquisition and Processing 233

(a) (b)

(c) (d)

Figure 3.22: Frequency domain 2D filter defined by Equation (3.1) (a);
Fourier transform of the image in Figure 3.21(b) filtered by this filter

function (b);the resulting filtered image (c). The histogram equalized version
of (c) is shown in (d). It is important to observe that while (b) shows only the

filtered Fourier modulus for visualizations sake, the filtering is actually
carried out on the complex coefficients. (The neural cell in (c) has been

reprinted from Journal of Neuroscience Methods, 27, T. G. Smith Jr., W. B.
Marks, G. D. Lange, W. H. Sheriff Jr. and E. A. Neale, A Fractal Analysis of

Cell Images, 173-180, Copyright (1989), with permission from Elsevier
Science.)

SHAPE ANALYSIS AND CLASSIFICATION234

(a) (b)

(c) (d)
Figure 3.23: Frequency domain 2D Gaussian filter (a); Fourier transform of

Figure 3.21(b) filtered by this Gaussian function (b); and the resulting
filtered image(c). The histogram equalized version of (c) is shown in (d).
(The neural cell in (c) has been reprinted from Journal of Neuroscience

Methods, 27, T. G. Smith Jr., W. B. Marks, G. D. Lange, W. H. Sheriff Jr. and
E. A. Neale, A Fractal Analysis of Cell Images, 173-180, Copyright (1989),

with permission from Elsevier Science.)

3.2.6 Median and Other Nonlinear Filters
Another classic technique for image filtering is known as median filtering.
This technique can be understood similarly to the previously discussed
average filtering, though the mathematical implications are different because
of its nonlinear nature. Recall that the linear filtering approach is based on
placing the origin of an operator at each pixel of the image and carrying out a
weighted sum between the mask weights and the respective pixels under the
mask. As far as median filtering is concerned, the window operator does not
have any weight. Instead, the pixels under the operator are sorted5, and the
middle value (i.e., the median) is selected to substitute the reference pixel.
Figure 3.24 illustrates this process. In this example, as in the sorted sequence

5 Information about efficient sorting algorithms can be found in [Langsam et al.,
1996].

Shape Aquisition and Processing 241

Figure 3.29: The Roberts operator.

Let g be a digital image. The value of the Roberts operator at (p0,q0) is
typically defined as

() () ()() () ()()2
0000

2
000000 1,,11,1,, +−++++−= qpgqpgqpgqpgqpr

It is observed that a number of alternative definitions for this operator can
be found in the related literature. Schalkoff [1989], for example, defines the
Roberts operator as

() () () () (){ }1,,1,1,1,max, 0000000000 +−+++−= qpgqpgqpgqpgqpr

On the other hand, Angulo and Madrigal [1986] present the following
definition:

() () () () ()1,,11,1,, 0000000000 +−++++−= qpgqpgqpgqpgqpr

These two definitions may be preferable for real-time applications since
they do not involve the square root operation. Finally, Castleman [1996]
adopts

() ()() () ()()20000

2

0000 1,,11,1, +−++++−= qpgqpgqpgqpgr

In the latter definition, the square root of each pixel is taken before the
calculus of the differences. Castleman argues that this operation makes the
Roberts operator more similar to edge detection in the human visual system.

Shape Aquisition and Processing 253

 Algorithm: Belong

function belong(image, seed_gl, current_pixel)
bel = FALSE;
If ((current_pixel.p >= 1) AND
 (current_pixel.p <= P) AND
 (current_pixel.q >= 1) AND
 (current_pixel.q <= Q))
 then
 If (abs(image[current_pixel.p,
 Current_pixel.q] - seed_gl) < ERROR)

then
 bel = TRUE;

The function belong is initialized with FALSE , so that if nothing
happens in the following if, it returns FALSE , indicating that the pixel does
not belong to the region. The first if verifies that the pixel coordinates are
valid, assuming that the indexes p and q of the image vary from 1 to P and 1
to Q, respectively. The second if checks the difference between the gray-
levels of the current pixel and that of the seed, where ERROR is a constant that
must be set a priori. Knowledge about each specific problem can be
incorporated into the above procedure. For instance, if the objects to be
segmented in the image are known not to present a diameter larger than a
given value, this condition can be easily incorporated into the second if of
the function belong by testing the distance between the current pixel and
the seed (or between the current pixel and the farthest one still belonging to
the object).

In addition, a mechanism has to be devised so that the already considered
pixels are not revisited. This can be easily accomplished as follows. First, it is
important to note that the output of the region growing procedure is a labeled
image and, therefore, we must define some labeling representation. This can
be achieved by marking the pixels that belong to the growing region with a
special value, preferably one that is not a valid gray-level. For instance, if the
input gray-levels vary from 0 and 255, we could mark the growing region
with, say 1000, in such a way that a simple thresholding operation over the
output image with a threshold of 300 would produce a binary image with the
segmented region of interest. Furthermore, this labeling scheme also avoids
the algorithm to reconsider already visited pixels, because if the label to be
assigned to the pixels that belong to the region is large enough, the difference
between the labeled pixels and the seed will always exceed the threshold
ERROR. Therefore, the procedure label(image, current_pixel) only
has to assign a (large enough) marking value to the current_pixel of the
image.

